linux/drivers/net/ethernet/intel/ice/ice_xsk.c

1186 lines
29 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock_drv.h>
#include <net/xdp.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_type.h"
#include "ice_xsk.h"
#include "ice_txrx.h"
#include "ice_txrx_lib.h"
#include "ice_lib.h"
static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
{
return &rx_ring->xdp_buf[idx];
}
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_vsi_stats *vsi_stat;
struct ice_pf *pf;
pf = vsi->back;
if (!pf->vsi_stats)
return;
vsi_stat = pf->vsi_stats[vsi->idx];
if (!vsi_stat)
return;
memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
if (ice_is_xdp_ena_vsi(vsi))
memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (ice_is_xdp_ena_vsi(vsi)) {
synchronize_rcu();
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
}
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
* @vsi: VSI that has netdev
* @q_vector: q_vector that has NAPI context
* @enable: true for enable, false for disable
*/
static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
bool enable)
{
if (!vsi->netdev || !q_vector)
return;
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
/**
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
* @vsi: the VSI that contains queue vector being un-configured
* @rx_ring: Rx ring that will have its IRQ disabled
* @q_vector: queue vector
*/
static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u16 reg;
u32 val;
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
* here only QINT_RQCTL
*/
reg = rx_ring->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
if (q_vector) {
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
ice_flush(hw);
synchronize_irq(q_vector->irq.virq);
}
}
/**
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
u16 reg_idx = q_vector->reg_idx;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
ice_cfg_itr(hw, q_vector);
ice_for_each_tx_ring(tx_ring, q_vector->tx)
ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
q_vector->tx.itr_idx);
ice_for_each_rx_ring(rx_ring, q_vector->rx)
ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
q_vector->rx.itr_idx);
ice_flush(hw);
}
/**
* ice_qvec_ena_irq - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
ice_irq_dynamic_ena(hw, vsi, q_vector);
ice_flush(hw);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_q_vector *q_vector;
struct ice_tx_ring *tx_ring;
struct ice_rx_ring *rx_ring;
int timeout = 50;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
ice_qvec_toggle_napi(vsi, q_vector, false);
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (err)
return err;
}
err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
if (err)
return err;
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return 0;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_q_vector *q_vector;
int err;
err = ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
err = ice_vsi_cfg_single_txq(vsi, vsi->xdp_rings, q_idx);
if (err)
return err;
ice_set_ring_xdp(xdp_ring);
ice: xsk: use Rx ring's XDP ring when picking NAPI context Ice driver allocates per cpu XDP queues so that redirect path can safely use smp_processor_id() as an index to the array. At the same time though, XDP rings are used to pick NAPI context to call napi_schedule() or set NAPIF_STATE_MISSED. When user reduces queue count, say to 8, and num_possible_cpus() of underlying platform is 44, then this means queue vectors with correlated NAPI contexts will carry several XDP queues. This in turn can result in a broken behavior where NAPI context of interest will never be scheduled and AF_XDP socket will not process any traffic. To fix this, let us change the way how XDP rings are assigned to Rx rings and use this information later on when setting ice_tx_ring::xsk_pool pointer. For each Rx ring, grab the associated queue vector and walk through Tx ring's linked list. Once we stumble upon XDP ring in it, assign this ring to ice_rx_ring::xdp_ring. Previous [0] approach of fixing this issue was for txonly scenario because of the described grouping of XDP rings across queue vectors. So, relying on Rx ring meant that NAPI context could be scheduled with a queue vector without XDP ring with associated XSK pool. [0]: https://lore.kernel.org/netdev/20220707161128.54215-1-maciej.fijalkowski@intel.com/ Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Fixes: 22bf877e528f ("ice: introduce XDP_TX fallback path") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:49 +02:00
ice_tx_xsk_pool(vsi, q_idx);
}
err = ice_vsi_cfg_single_rxq(vsi, q_idx);
if (err)
return err;
q_vector = vsi->rx_rings[q_idx]->q_vector;
ice_qvec_cfg_msix(vsi, q_vector);
err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
if (err)
return err;
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
clear_bit(ICE_CFG_BUSY, vsi->state);
return 0;
}
/**
* ice_xsk_pool_disable - disable a buffer pool region
* @vsi: Current VSI
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
{
struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
if (!pool)
return -EINVAL;
ice: track AF_XDP ZC enabled queues in bitmap Commit c7a219048e45 ("ice: Remove xsk_buff_pool from VSI structure") silently introduced a regression and broke the Tx side of AF_XDP in copy mode. xsk_pool on ice_ring is set only based on the existence of the XDP prog on the VSI which in turn picks ice_clean_tx_irq_zc to be executed. That is not something that should happen for copy mode as it should use the regular data path ice_clean_tx_irq. This results in a following splat when xdpsock is run in txonly or l2fwd scenarios in copy mode: <snip> [ 106.050195] BUG: kernel NULL pointer dereference, address: 0000000000000030 [ 106.057269] #PF: supervisor read access in kernel mode [ 106.062493] #PF: error_code(0x0000) - not-present page [ 106.067709] PGD 0 P4D 0 [ 106.070293] Oops: 0000 [#1] PREEMPT SMP NOPTI [ 106.074721] CPU: 61 PID: 0 Comm: swapper/61 Not tainted 5.12.0-rc2+ #45 [ 106.081436] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 106.092027] RIP: 0010:xp_raw_get_dma+0x36/0x50 [ 106.096551] Code: 74 14 48 b8 ff ff ff ff ff ff 00 00 48 21 f0 48 c1 ee 30 48 01 c6 48 8b 87 90 00 00 00 48 89 f2 81 e6 ff 0f 00 00 48 c1 ea 0c <48> 8b 04 d0 48 83 e0 fe 48 01 f0 c3 66 66 2e 0f 1f 84 00 00 00 00 [ 106.115588] RSP: 0018:ffffc9000d694e50 EFLAGS: 00010206 [ 106.120893] RAX: 0000000000000000 RBX: ffff88984b8c8a00 RCX: ffff889852581800 [ 106.128137] RDX: 0000000000000006 RSI: 0000000000000000 RDI: ffff88984cd8b800 [ 106.135383] RBP: ffff888123b50001 R08: ffff889896800000 R09: 0000000000000800 [ 106.142628] R10: 0000000000000000 R11: ffffffff826060c0 R12: 00000000000000ff [ 106.149872] R13: 0000000000000000 R14: 0000000000000040 R15: ffff888123b50018 [ 106.157117] FS: 0000000000000000(0000) GS:ffff8897e0f40000(0000) knlGS:0000000000000000 [ 106.165332] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 106.171163] CR2: 0000000000000030 CR3: 000000000560a004 CR4: 00000000007706e0 [ 106.178408] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 106.185653] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 106.192898] PKRU: 55555554 [ 106.195653] Call Trace: [ 106.198143] <IRQ> [ 106.200196] ice_clean_tx_irq_zc+0x183/0x2a0 [ice] [ 106.205087] ice_napi_poll+0x3e/0x590 [ice] [ 106.209356] __napi_poll+0x2a/0x160 [ 106.212911] net_rx_action+0xd6/0x200 [ 106.216634] __do_softirq+0xbf/0x29b [ 106.220274] irq_exit_rcu+0x88/0xc0 [ 106.223819] common_interrupt+0x7b/0xa0 [ 106.227719] </IRQ> [ 106.229857] asm_common_interrupt+0x1e/0x40 </snip> Fix this by introducing the bitmap of queues that are zero-copy enabled, where each bit, corresponding to a queue id that xsk pool is being configured on, will be set/cleared within ice_xsk_pool_{en,dis}able and checked within ice_xsk_pool(). The latter is a function used for deciding which napi poll routine is executed. Idea is being taken from our other drivers such as i40e and ixgbe. Fixes: c7a219048e45 ("ice: Remove xsk_buff_pool from VSI structure") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: Kiran Bhandare <kiranx.bhandare@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-27 21:52:09 +02:00
clear_bit(qid, vsi->af_xdp_zc_qps);
xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
return 0;
}
/**
* ice_xsk_pool_enable - enable a buffer pool region
* @vsi: Current VSI
* @pool: pointer to a requested buffer pool region
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int
ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
int err;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
if (qid >= vsi->netdev->real_num_rx_queues ||
qid >= vsi->netdev->real_num_tx_queues)
return -EINVAL;
err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
ICE_RX_DMA_ATTR);
if (err)
return err;
ice: track AF_XDP ZC enabled queues in bitmap Commit c7a219048e45 ("ice: Remove xsk_buff_pool from VSI structure") silently introduced a regression and broke the Tx side of AF_XDP in copy mode. xsk_pool on ice_ring is set only based on the existence of the XDP prog on the VSI which in turn picks ice_clean_tx_irq_zc to be executed. That is not something that should happen for copy mode as it should use the regular data path ice_clean_tx_irq. This results in a following splat when xdpsock is run in txonly or l2fwd scenarios in copy mode: <snip> [ 106.050195] BUG: kernel NULL pointer dereference, address: 0000000000000030 [ 106.057269] #PF: supervisor read access in kernel mode [ 106.062493] #PF: error_code(0x0000) - not-present page [ 106.067709] PGD 0 P4D 0 [ 106.070293] Oops: 0000 [#1] PREEMPT SMP NOPTI [ 106.074721] CPU: 61 PID: 0 Comm: swapper/61 Not tainted 5.12.0-rc2+ #45 [ 106.081436] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [ 106.092027] RIP: 0010:xp_raw_get_dma+0x36/0x50 [ 106.096551] Code: 74 14 48 b8 ff ff ff ff ff ff 00 00 48 21 f0 48 c1 ee 30 48 01 c6 48 8b 87 90 00 00 00 48 89 f2 81 e6 ff 0f 00 00 48 c1 ea 0c <48> 8b 04 d0 48 83 e0 fe 48 01 f0 c3 66 66 2e 0f 1f 84 00 00 00 00 [ 106.115588] RSP: 0018:ffffc9000d694e50 EFLAGS: 00010206 [ 106.120893] RAX: 0000000000000000 RBX: ffff88984b8c8a00 RCX: ffff889852581800 [ 106.128137] RDX: 0000000000000006 RSI: 0000000000000000 RDI: ffff88984cd8b800 [ 106.135383] RBP: ffff888123b50001 R08: ffff889896800000 R09: 0000000000000800 [ 106.142628] R10: 0000000000000000 R11: ffffffff826060c0 R12: 00000000000000ff [ 106.149872] R13: 0000000000000000 R14: 0000000000000040 R15: ffff888123b50018 [ 106.157117] FS: 0000000000000000(0000) GS:ffff8897e0f40000(0000) knlGS:0000000000000000 [ 106.165332] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 106.171163] CR2: 0000000000000030 CR3: 000000000560a004 CR4: 00000000007706e0 [ 106.178408] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 106.185653] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 106.192898] PKRU: 55555554 [ 106.195653] Call Trace: [ 106.198143] <IRQ> [ 106.200196] ice_clean_tx_irq_zc+0x183/0x2a0 [ice] [ 106.205087] ice_napi_poll+0x3e/0x590 [ice] [ 106.209356] __napi_poll+0x2a/0x160 [ 106.212911] net_rx_action+0xd6/0x200 [ 106.216634] __do_softirq+0xbf/0x29b [ 106.220274] irq_exit_rcu+0x88/0xc0 [ 106.223819] common_interrupt+0x7b/0xa0 [ 106.227719] </IRQ> [ 106.229857] asm_common_interrupt+0x1e/0x40 </snip> Fix this by introducing the bitmap of queues that are zero-copy enabled, where each bit, corresponding to a queue id that xsk pool is being configured on, will be set/cleared within ice_xsk_pool_{en,dis}able and checked within ice_xsk_pool(). The latter is a function used for deciding which napi poll routine is executed. Idea is being taken from our other drivers such as i40e and ixgbe. Fixes: c7a219048e45 ("ice: Remove xsk_buff_pool from VSI structure") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: Kiran Bhandare <kiranx.bhandare@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-27 21:52:09 +02:00
set_bit(qid, vsi->af_xdp_zc_qps);
return 0;
}
/**
* ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
* @rx_ring: Rx ring
* @pool_present: is pool for XSK present
*
* Try allocating memory and return ENOMEM, if failed to allocate.
* If allocation was successful, substitute buffer with allocated one.
* Returns 0 on success, negative on failure
*/
static int
ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
{
size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
sizeof(*rx_ring->rx_buf);
void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
if (!sw_ring)
return -ENOMEM;
if (pool_present) {
kfree(rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
rx_ring->xdp_buf = sw_ring;
} else {
kfree(rx_ring->xdp_buf);
rx_ring->xdp_buf = NULL;
rx_ring->rx_buf = sw_ring;
}
return 0;
}
/**
* ice_realloc_zc_buf - reallocate XDP ZC queue pairs
* @vsi: Current VSI
* @zc: is zero copy set
*
* Reallocate buffer for rx_rings that might be used by XSK.
* XDP requires more memory, than rx_buf provides.
* Returns 0 on success, negative on failure
*/
int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
{
struct ice_rx_ring *rx_ring;
unsigned long q;
for_each_set_bit(q, vsi->af_xdp_zc_qps,
max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
rx_ring = vsi->rx_rings[q];
if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
return -ENOMEM;
}
return 0;
}
/**
* ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
* @vsi: Current VSI
* @pool: buffer pool to enable/associate to a ring, NULL to disable
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
{
bool if_running, pool_present = !!pool;
int ret = 0, pool_failure = 0;
ice: xsk: prohibit usage of non-balanced queue id Fix the following scenario: 1. ethtool -L $IFACE rx 8 tx 96 2. xdpsock -q 10 -t -z Above refers to a case where user would like to attach XSK socket in txonly mode at a queue id that does not have a corresponding Rx queue. At this moment ice's XSK logic is tightly bound to act on a "queue pair", e.g. both Tx and Rx queues at a given queue id are disabled/enabled and both of them will get XSK pool assigned, which is broken for the presented queue configuration. This results in the splat included at the bottom, which is basically an OOB access to Rx ring array. To fix this, allow using the ids only in scope of "combined" queues reported by ethtool. However, logic should be rewritten to allow such configurations later on, which would end up as a complete rewrite of the control path, so let us go with this temporary fix. [420160.558008] BUG: kernel NULL pointer dereference, address: 0000000000000082 [420160.566359] #PF: supervisor read access in kernel mode [420160.572657] #PF: error_code(0x0000) - not-present page [420160.579002] PGD 0 P4D 0 [420160.582756] Oops: 0000 [#1] PREEMPT SMP NOPTI [420160.588396] CPU: 10 PID: 21232 Comm: xdpsock Tainted: G OE 5.19.0-rc7+ #10 [420160.597893] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019 [420160.609894] RIP: 0010:ice_xsk_pool_setup+0x44/0x7d0 [ice] [420160.616968] Code: f3 48 83 ec 40 48 8b 4f 20 48 8b 3f 65 48 8b 04 25 28 00 00 00 48 89 44 24 38 31 c0 48 8d 04 ed 00 00 00 00 48 01 c1 48 8b 11 <0f> b7 92 82 00 00 00 48 85 d2 0f 84 2d 75 00 00 48 8d 72 ff 48 85 [420160.639421] RSP: 0018:ffffc9002d2afd48 EFLAGS: 00010282 [420160.646650] RAX: 0000000000000050 RBX: ffff88811d8bdd00 RCX: ffff888112c14ff8 [420160.655893] RDX: 0000000000000000 RSI: ffff88811d8bdd00 RDI: ffff888109861000 [420160.665166] RBP: 000000000000000a R08: 000000000000000a R09: 0000000000000000 [420160.674493] R10: 000000000000889f R11: 0000000000000000 R12: 000000000000000a [420160.683833] R13: 000000000000000a R14: 0000000000000000 R15: ffff888117611828 [420160.693211] FS: 00007fa869fc1f80(0000) GS:ffff8897e0880000(0000) knlGS:0000000000000000 [420160.703645] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [420160.711783] CR2: 0000000000000082 CR3: 00000001d076c001 CR4: 00000000007706e0 [420160.721399] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [420160.731045] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [420160.740707] PKRU: 55555554 [420160.745960] Call Trace: [420160.750962] <TASK> [420160.755597] ? kmalloc_large_node+0x79/0x90 [420160.762703] ? __kmalloc_node+0x3f5/0x4b0 [420160.769341] xp_assign_dev+0xfd/0x210 [420160.775661] ? shmem_file_read_iter+0x29a/0x420 [420160.782896] xsk_bind+0x152/0x490 [420160.788943] __sys_bind+0xd0/0x100 [420160.795097] ? exit_to_user_mode_prepare+0x20/0x120 [420160.802801] __x64_sys_bind+0x16/0x20 [420160.809298] do_syscall_64+0x38/0x90 [420160.815741] entry_SYSCALL_64_after_hwframe+0x63/0xcd [420160.823731] RIP: 0033:0x7fa86a0dd2fb [420160.830264] Code: c3 66 0f 1f 44 00 00 48 8b 15 69 8b 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bc 0f 1f 44 00 00 f3 0f 1e fa b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 3d 8b 0c 00 f7 d8 64 89 01 48 [420160.855410] RSP: 002b:00007ffc1146f618 EFLAGS: 00000246 ORIG_RAX: 0000000000000031 [420160.866366] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa86a0dd2fb [420160.876957] RDX: 0000000000000010 RSI: 00007ffc1146f680 RDI: 0000000000000003 [420160.887604] RBP: 000055d7113a0520 R08: 00007fa868fb8000 R09: 0000000080000000 [420160.898293] R10: 0000000000008001 R11: 0000000000000246 R12: 000055d7113a04e0 [420160.909038] R13: 000055d7113a0320 R14: 000000000000000a R15: 0000000000000000 [420160.919817] </TASK> [420160.925659] Modules linked in: ice(OE) af_packet binfmt_misc nls_iso8859_1 ipmi_ssif intel_rapl_msr intel_rapl_common x86_pkg_temp_thermal intel_powerclamp mei_me coretemp ioatdma mei ipmi_si wmi ipmi_msghandler acpi_pad acpi_power_meter ip_tables x_tables autofs4 ixgbe i40e crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel crypto_simd cryptd ahci mdio dca libahci lpc_ich [last unloaded: ice] [420160.977576] CR2: 0000000000000082 [420160.985037] ---[ end trace 0000000000000000 ]--- [420161.097724] RIP: 0010:ice_xsk_pool_setup+0x44/0x7d0 [ice] [420161.107341] Code: f3 48 83 ec 40 48 8b 4f 20 48 8b 3f 65 48 8b 04 25 28 00 00 00 48 89 44 24 38 31 c0 48 8d 04 ed 00 00 00 00 48 01 c1 48 8b 11 <0f> b7 92 82 00 00 00 48 85 d2 0f 84 2d 75 00 00 48 8d 72 ff 48 85 [420161.134741] RSP: 0018:ffffc9002d2afd48 EFLAGS: 00010282 [420161.144274] RAX: 0000000000000050 RBX: ffff88811d8bdd00 RCX: ffff888112c14ff8 [420161.155690] RDX: 0000000000000000 RSI: ffff88811d8bdd00 RDI: ffff888109861000 [420161.168088] RBP: 000000000000000a R08: 000000000000000a R09: 0000000000000000 [420161.179295] R10: 000000000000889f R11: 0000000000000000 R12: 000000000000000a [420161.190420] R13: 000000000000000a R14: 0000000000000000 R15: ffff888117611828 [420161.201505] FS: 00007fa869fc1f80(0000) GS:ffff8897e0880000(0000) knlGS:0000000000000000 [420161.213628] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [420161.223413] CR2: 0000000000000082 CR3: 00000001d076c001 CR4: 00000000007706e0 [420161.234653] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [420161.245893] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [420161.257052] PKRU: 55555554 Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:48 +02:00
if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
pool_failure = -EINVAL;
goto failure;
}
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
if (if_running) {
struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
ret = ice_qp_dis(vsi, qid);
if (ret) {
netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
goto xsk_pool_if_up;
}
ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
if (ret)
goto xsk_pool_if_up;
}
pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
ice_xsk_pool_disable(vsi, qid);
xsk_pool_if_up:
if (if_running) {
ret = ice_qp_ena(vsi, qid);
if (!ret && pool_present)
ice: xsk: use Rx ring's XDP ring when picking NAPI context Ice driver allocates per cpu XDP queues so that redirect path can safely use smp_processor_id() as an index to the array. At the same time though, XDP rings are used to pick NAPI context to call napi_schedule() or set NAPIF_STATE_MISSED. When user reduces queue count, say to 8, and num_possible_cpus() of underlying platform is 44, then this means queue vectors with correlated NAPI contexts will carry several XDP queues. This in turn can result in a broken behavior where NAPI context of interest will never be scheduled and AF_XDP socket will not process any traffic. To fix this, let us change the way how XDP rings are assigned to Rx rings and use this information later on when setting ice_tx_ring::xsk_pool pointer. For each Rx ring, grab the associated queue vector and walk through Tx ring's linked list. Once we stumble upon XDP ring in it, assign this ring to ice_rx_ring::xdp_ring. Previous [0] approach of fixing this issue was for txonly scenario because of the described grouping of XDP rings across queue vectors. So, relying on Rx ring meant that NAPI context could be scheduled with a queue vector without XDP ring with associated XSK pool. [0]: https://lore.kernel.org/netdev/20220707161128.54215-1-maciej.fijalkowski@intel.com/ Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Fixes: 22bf877e528f ("ice: introduce XDP_TX fallback path") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:49 +02:00
napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
else if (ret)
netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
}
failure:
if (pool_failure) {
netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
pool_present ? "en" : "dis", pool_failure);
return pool_failure;
}
return ret;
}
/**
* ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
* @pool: XSK Buffer pool to pull the buffers from
* @xdp: SW ring of xdp_buff that will hold the buffers
* @rx_desc: Pointer to Rx descriptors that will be filled
* @count: The number of buffers to allocate
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Note that ring wrap should be handled by caller of this function.
*
* Returns the amount of allocated Rx descriptors
*/
static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
union ice_32b_rx_flex_desc *rx_desc, u16 count)
{
dma_addr_t dma;
u16 buffs;
int i;
buffs = xsk_buff_alloc_batch(pool, xdp, count);
for (i = 0; i < buffs; i++) {
dma = xsk_buff_xdp_get_dma(*xdp);
rx_desc->read.pkt_addr = cpu_to_le64(dma);
ice: xsk: clear status_error0 for each allocated desc Fix a bug in which the receiving of packets can stop in the zero-copy driver. Ice HW ignores 3 lower bits from QRX_TAIL register, which means that tail is bumped only on intervals of 8. Currently with XSK RX batching in place, ice_alloc_rx_bufs_zc() clears the status_error0 only of the last descriptor that has been allocated/taken from the XSK buffer pool. status_error0 includes DD bit that is looked upon by the ice_clean_rx_irq_zc() to tell if a descriptor can be processed. The bug can be triggered when driver updates the ntu but not the QRX_TAIL, so HW wouldn't have a chance to write to the ready descriptors. Later on driver moves the ntc to the mentioned set of descriptors and interprets them as a ready to be processed, since corresponding DD bits were not cleared nor any writeback has happened that would clear it. This can then lead to ntc == ntu case which means that ring is empty and no further packet processing. Fix the XSK traffic hang that can be observed when l2fwd scenario from xdpsock is used by making sure that status_error0 is cleared for each descriptor that is fed to HW and therefore we are sure that driver will not processed non-valid DD bits. This will also prevent the driver from processing the descriptors that were allocated in favor of the previously processed ones, but writeback didn't happen yet. Fixes: db804cfc21e9 ("ice: Use the xsk batched rx allocation interface") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-11-29 15:17:46 -08:00
rx_desc->wb.status_error0 = 0;
/* Put private info that changes on a per-packet basis
* into xdp_buff_xsk->cb.
*/
ice_xdp_meta_set_desc(*xdp, rx_desc);
rx_desc++;
xdp++;
}
return buffs;
}
/**
* __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Place the @count of descriptors onto Rx ring. Handle the ring wrap
* for case where space from next_to_use up to the end of ring is less
* than @count. Finally do a tail bump.
*
* Returns true if all allocations were successful, false if any fail.
*/
static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u32 nb_buffs_extra = 0, nb_buffs = 0;
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
u16 total_count = count;
struct xdp_buff **xdp;
rx_desc = ICE_RX_DESC(rx_ring, ntu);
xdp = ice_xdp_buf(rx_ring, ntu);
if (ntu + count >= rx_ring->count) {
nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
rx_desc,
rx_ring->count - ntu);
if (nb_buffs_extra != rx_ring->count - ntu) {
ntu += nb_buffs_extra;
goto exit;
}
rx_desc = ICE_RX_DESC(rx_ring, 0);
xdp = ice_xdp_buf(rx_ring, 0);
ntu = 0;
count -= nb_buffs_extra;
ice_release_rx_desc(rx_ring, 0);
}
nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
ntu += nb_buffs;
if (ntu == rx_ring->count)
ntu = 0;
exit:
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return total_count == (nb_buffs_extra + nb_buffs);
}
/**
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
*
* Wrapper for internal allocation routine; figure out how many tail
* bumps should take place based on the given threshold
*
* Returns true if all calls to internal alloc routine succeeded
*/
bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
{
u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
u16 leftover, i, tail_bumps;
tail_bumps = count / rx_thresh;
leftover = count - (tail_bumps * rx_thresh);
for (i = 0; i < tail_bumps; i++)
if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
return false;
return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
}
/**
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
* @rx_ring: Rx ring
* @xdp: Pointer to XDP buffer
*
* This function allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb on success, NULL on failure.
*/
static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
{
unsigned int totalsize = xdp->data_end - xdp->data_meta;
unsigned int metasize = xdp->data - xdp->data_meta;
struct skb_shared_info *sinfo = NULL;
struct sk_buff *skb;
u32 nr_frags = 0;
if (unlikely(xdp_buff_has_frags(xdp))) {
sinfo = xdp_get_shared_info_from_buff(xdp);
nr_frags = sinfo->nr_frags;
}
net_prefetch(xdp->data_meta);
skb = napi_alloc_skb(&rx_ring->q_vector->napi, totalsize);
if (unlikely(!skb))
return NULL;
memcpy(__skb_put(skb, totalsize), xdp->data_meta,
ALIGN(totalsize, sizeof(long)));
if (metasize) {
skb_metadata_set(skb, metasize);
__skb_pull(skb, metasize);
}
if (likely(!xdp_buff_has_frags(xdp)))
goto out;
for (int i = 0; i < nr_frags; i++) {
struct skb_shared_info *skinfo = skb_shinfo(skb);
skb_frag_t *frag = &sinfo->frags[i];
struct page *page;
void *addr;
page = dev_alloc_page();
if (!page) {
dev_kfree_skb(skb);
return NULL;
}
addr = page_to_virt(page);
memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
addr, 0, skb_frag_size(frag));
}
out:
xsk_buff_free(xdp);
return skb;
}
/**
* ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
* @xdp_ring: XDP Tx ring
*/
static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
u16 cnt = xdp_ring->count;
struct ice_tx_buf *tx_buf;
u16 completed_frames = 0;
u16 xsk_frames = 0;
u16 last_rs;
int i;
last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
if (tx_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
if (last_rs >= ntc)
completed_frames = last_rs - ntc + 1;
else
completed_frames = last_rs + cnt - ntc + 1;
}
if (!completed_frames)
return 0;
if (likely(!xdp_ring->xdp_tx_active)) {
xsk_frames = completed_frames;
goto skip;
}
ntc = xdp_ring->next_to_clean;
for (i = 0; i < completed_frames; i++) {
tx_buf = &xdp_ring->tx_buf[ntc];
ice: Robustify cleaning/completing XDP Tx buffers When queueing frames from a Page Pool for redirecting to a device backed by the ice driver, `perf top` shows heavy load on page_alloc() and page_frag_free(), despite that on a properly working system it must be fully or at least almost zero-alloc. The problem is in fact a bit deeper and raises from how ice cleans up completed Tx buffers. The story so far: when cleaning/freeing the resources related to a particular completed Tx frame (skbs, DMA mappings etc.), ice uses some heuristics only without setting any type explicitly (except for dummy Flow Director packets, which are marked via ice_tx_buf::tx_flags). This kinda works, but only up to some point. For example, currently ice assumes that each frame coming to __ice_xmit_xdp_ring(), is backed by either plain order-0 page or plain page frag, while it may also be backed by Page Pool or any other possible memory models introduced in future. This means any &xdp_frame must be freed properly via xdp_return_frame() family with no assumptions. In order to do that, the whole heuristics must be replaced with setting the Tx buffer/frame type explicitly, just how it's always been done via an enum. Let us reuse 16 bits from ::tx_flags -- 1 bit-and instr won't hurt much -- especially given that sometimes there was a check for %ICE_TX_FLAGS_DUMMY_PKT, which is now turned from a flag to an enum member. The rest of the changes is straightforward and most of it is just a conversion to rely now on the type set in &ice_tx_buf rather than to some secondary properties. For now, no functional changes intended, the change only prepares the ground for starting freeing XDP frames properly next step. And it must be done atomically/synchronously to not break stuff. Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/20230210170618.1973430-5-alexandr.lobakin@intel.com
2023-02-10 18:06:16 +01:00
if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
tx_buf->type = ICE_TX_BUF_EMPTY;
xsk_buff_free(tx_buf->xdp);
xdp_ring->xdp_tx_active--;
} else {
xsk_frames++;
}
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
skip:
tx_desc->cmd_type_offset_bsz = 0;
xdp_ring->next_to_clean += completed_frames;
if (xdp_ring->next_to_clean >= cnt)
xdp_ring->next_to_clean -= cnt;
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
return completed_frames;
}
/**
* ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
* @xdp: XDP buffer to xmit
* @xdp_ring: XDP ring to produce descriptor onto
*
* note that this function works directly on xdp_buff, no need to convert
* it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
* side will be able to xsk_buff_free() it.
*
* Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
* was not enough space on XDP ring
*/
static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
struct ice_tx_ring *xdp_ring)
{
struct skb_shared_info *sinfo = NULL;
u32 size = xdp->data_end - xdp->data;
u32 ntu = xdp_ring->next_to_use;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
struct xdp_buff *head;
u32 nr_frags = 0;
u32 free_space;
u32 frag = 0;
free_space = ICE_DESC_UNUSED(xdp_ring);
if (free_space < ICE_RING_QUARTER(xdp_ring))
free_space += ice_clean_xdp_irq_zc(xdp_ring);
if (unlikely(!free_space))
goto busy;
if (unlikely(xdp_buff_has_frags(xdp))) {
sinfo = xdp_get_shared_info_from_buff(xdp);
nr_frags = sinfo->nr_frags;
if (free_space < nr_frags + 1)
goto busy;
}
tx_desc = ICE_TX_DESC(xdp_ring, ntu);
tx_buf = &xdp_ring->tx_buf[ntu];
head = xdp;
for (;;) {
dma_addr_t dma;
dma = xsk_buff_xdp_get_dma(xdp);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
tx_buf->xdp = xdp;
tx_buf->type = ICE_TX_BUF_XSK_TX;
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
/* account for each xdp_buff from xsk_buff_pool */
xdp_ring->xdp_tx_active++;
if (++ntu == xdp_ring->count)
ntu = 0;
if (frag == nr_frags)
break;
tx_desc = ICE_TX_DESC(xdp_ring, ntu);
tx_buf = &xdp_ring->tx_buf[ntu];
xdp = xsk_buff_get_frag(head);
size = skb_frag_size(&sinfo->frags[frag]);
frag++;
}
xdp_ring->next_to_use = ntu;
/* update last descriptor from a frame with EOP */
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
return ICE_XDP_TX;
busy:
xdp_ring->ring_stats->tx_stats.tx_busy++;
return ICE_XDP_CONSUMED;
}
/**
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
* @xdp_ring: ring to be used for XDP_TX action
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
{
int err, result = ICE_XDP_PASS;
u32 act;
act = bpf_prog_run_xdp(xdp_prog, xdp);
if (likely(act == XDP_REDIRECT)) {
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
if (!err)
return ICE_XDP_REDIR;
if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
result = ICE_XDP_EXIT;
else
result = ICE_XDP_CONSUMED;
goto out_failure;
}
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
if (result == ICE_XDP_CONSUMED)
goto out_failure;
break;
case XDP_DROP:
result = ICE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
result = ICE_XDP_CONSUMED;
out_failure:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
break;
}
return result;
}
static int
ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
struct xdp_buff *xdp, const unsigned int size)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
if (!size)
return 0;
if (!xdp_buff_has_frags(first)) {
sinfo->nr_frags = 0;
sinfo->xdp_frags_size = 0;
xdp_buff_set_frags_flag(first);
}
if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
xsk_buff_free(first);
return -ENOMEM;
}
__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
virt_to_page(xdp->data_hard_start),
XDP_PACKET_HEADROOM, size);
sinfo->xdp_frags_size += size;
xsk_buff_add_frag(xdp);
return 0;
}
/**
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
* @rx_ring: AF_XDP Rx ring
* @budget: NAPI budget
*
* Returns number of processed packets on success, remaining budget on failure.
*/
int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
u32 ntc = rx_ring->next_to_clean;
u32 ntu = rx_ring->next_to_use;
struct xdp_buff *first = NULL;
struct ice_tx_ring *xdp_ring;
unsigned int xdp_xmit = 0;
struct bpf_prog *xdp_prog;
u32 cnt = rx_ring->count;
bool failure = false;
int entries_to_alloc;
/* ZC patch is enabled only when XDP program is set,
* so here it can not be NULL
*/
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
xdp_ring = rx_ring->xdp_ring;
if (ntc != rx_ring->first_desc)
first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
while (likely(total_rx_packets < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
unsigned int size, xdp_res = 0;
struct xdp_buff *xdp;
struct sk_buff *skb;
u16 stat_err_bits;
u16 vlan_tci;
rx_desc = ICE_RX_DESC(rx_ring, ntc);
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
ice: Add hot path support for 802.1Q and 802.1ad VLAN offloads Currently the driver only supports 802.1Q VLAN insertion and stripping. However, once Double VLAN Mode (DVM) is fully supported, then both 802.1Q and 802.1ad VLAN insertion and stripping will be supported. Unfortunately the VSI context parameters only allow for one VLAN ethertype at a time for VLAN offloads so only one or the other VLAN ethertype offload can be supported at once. To support this, multiple changes are needed. Rx path changes: [1] In DVM, the Rx queue context l2tagsel field needs to be cleared so the outermost tag shows up in the l2tag2_2nd field of the Rx flex descriptor. In Single VLAN Mode (SVM), the l2tagsel field should remain 1 to support SVM configurations. [2] Modify the ice_test_staterr() function to take a __le16 instead of the ice_32b_rx_flex_desc union pointer so this function can be used for both rx_desc->wb.status_error0 and rx_desc->wb.status_error1. [3] Add the new inline function ice_get_vlan_tag_from_rx_desc() that checks if there is a VLAN tag in l2tag1 or l2tag2_2nd. [4] In ice_receive_skb(), add a check to see if NETIF_F_HW_VLAN_STAG_RX is enabled in netdev->features. If it is, then this is the VLAN ethertype that needs to be added to the stripping VLAN tag. Since ice_fix_features() prevents CTAG_RX and STAG_RX from being enabled simultaneously, the VLAN ethertype will only ever be 802.1Q or 802.1ad. Tx path changes: [1] In DVM, the VLAN tag needs to be placed in the l2tag2 field of the Tx context descriptor. The new define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN was added to the list of tx_flags to handle this case. [2] When the stack requests the VLAN tag to be offloaded on Tx, the driver needs to set either ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN or ICE_TX_FLAGS_HW_VLAN, so the tag is inserted in l2tag2 or l2tag1 respectively. To determine which location to use, set a bit in the Tx ring flags field during ring allocation that can be used to determine which field to use in the Tx descriptor. In DVM, always use l2tag2, and in SVM, always use l2tag1. Signed-off-by: Brett Creeley <brett.creeley@intel.com> Tested-by: Gurucharan G <gurucharanx.g@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-12-02 08:38:47 -08:00
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
if (unlikely(ntc == ntu))
break;
xdp = *ice_xdp_buf(rx_ring, ntc);
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
xsk_buff_set_size(xdp, size);
xsk_buff_dma_sync_for_cpu(xdp);
if (!first) {
first = xdp;
} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
break;
}
if (++ntc == cnt)
ntc = 0;
if (ice_is_non_eop(rx_ring, rx_desc))
continue;
xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
xdp_xmit |= xdp_res;
} else if (xdp_res == ICE_XDP_EXIT) {
failure = true;
first = NULL;
rx_ring->first_desc = ntc;
break;
} else if (xdp_res == ICE_XDP_CONSUMED) {
xsk_buff_free(first);
} else if (xdp_res == ICE_XDP_PASS) {
goto construct_skb;
}
total_rx_bytes += xdp_get_buff_len(first);
total_rx_packets++;
first = NULL;
rx_ring->first_desc = ntc;
continue;
construct_skb:
/* XDP_PASS path */
skb = ice_construct_skb_zc(rx_ring, first);
if (!skb) {
rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
break;
}
first = NULL;
rx_ring->first_desc = ntc;
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
total_rx_bytes += skb->len;
total_rx_packets++;
vlan_tci = ice_get_vlan_tci(rx_desc);
ice_process_skb_fields(rx_ring, rx_desc, skb);
ice_receive_skb(rx_ring, skb, vlan_tci);
}
rx_ring->next_to_clean = ntc;
entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
ice: Add support for XDP multi-buffer on Tx side Similarly as for Rx side in previous patch, logic on XDP Tx in ice driver needs to be adjusted for multi-buffer support. Specifically, the way how HW Tx descriptors are produced and cleaned. Currently, XDP_TX works on strict ring boundaries, meaning it sets RS bit (on producer side) / looks up DD bit (on consumer/cleaning side) every quarter of the ring. It means that if for example multi buffer frame would span across the ring quarter boundary (say that frame consists of 4 frames and we start from 62 descriptor where ring is sized to 256 entries), RS bit would be produced in the middle of multi buffer frame, which would be a broken behavior as it needs to be set on the last descriptor of the frame. To make it work, set RS bit at the last descriptor from the batch of frames that XDP_TX action was used on and make the first entry remember the index of last descriptor with RS bit set. This way, cleaning side can take the index of descriptor with RS bit, look up DD bit's presence and clean from first entry to last. In order to clean up the code base introduce the common ice_set_rs_bit() which will return index of descriptor that got RS bit produced on so that standard driver can store this within proper ice_tx_buf and ZC driver can simply ignore return value. Co-developed-by: Martyna Szapar-Mudlaw <martyna.szapar-mudlaw@linux.intel.com> Signed-off-by: Martyna Szapar-Mudlaw <martyna.szapar-mudlaw@linux.intel.com> Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Alexander Lobakin <alexandr.lobakin@intel.com> Link: https://lore.kernel.org/bpf/20230131204506.219292-12-maciej.fijalkowski@intel.com
2023-01-31 21:45:04 +01:00
ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
if (xsk_uses_need_wakeup(xsk_pool)) {
/* ntu could have changed when allocating entries above, so
* use rx_ring value instead of stack based one
*/
if (failure || ntc == rx_ring->next_to_use)
xsk_set_rx_need_wakeup(xsk_pool);
else
xsk_clear_rx_need_wakeup(xsk_pool);
return (int)total_rx_packets;
}
return failure ? budget : (int)total_rx_packets;
}
/**
* ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
* @xdp_ring: XDP ring to produce the HW Tx descriptor on
* @desc: AF_XDP descriptor to pull the DMA address and length from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
unsigned int *total_bytes)
{
struct ice_tx_desc *tx_desc;
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
0, desc->len, 0);
*total_bytes += desc->len;
}
/**
* ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
unsigned int *total_bytes)
{
u16 ntu = xdp_ring->next_to_use;
struct ice_tx_desc *tx_desc;
u32 i;
loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
dma_addr_t dma;
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
0, descs[i].len, 0);
*total_bytes += descs[i].len;
}
xdp_ring->next_to_use = ntu;
}
/**
* ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
* @nb_pkts: count of packets to be send
* @total_bytes: bytes accumulator that will be used for stats update
*/
static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
u32 nb_pkts, unsigned int *total_bytes)
{
u32 batched, leftover, i;
batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
leftover = nb_pkts & (PKTS_PER_BATCH - 1);
for (i = 0; i < batched; i += PKTS_PER_BATCH)
ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
for (; i < batched + leftover; i++)
ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
ice: xsk: change batched Tx descriptor cleaning AF_XDP Tx descriptor cleaning in ice driver currently works in a "lazy" way - descriptors are not cleaned immediately after send. We rather hold on with cleaning until we see that free space in ring drops below particular threshold. This was supposed to reduce the amount of unnecessary work related to cleaning and instead of keeping the ring empty, ring was rather saturated. In AF_XDP realm cleaning Tx descriptors implies producing them to CQ. This is a way of letting know user space that particular descriptor has been sent, as John points out in [0]. We tried to implement serial descriptor cleaning which would be used in conjunction with batched cleaning but it made code base more convoluted and probably harder to maintain in future. Therefore we step away from batched cleaning in a current form in favor of an approach where we set RS bit on every last descriptor from a batch and clean always at the beginning of ice_xmit_zc(). This means that we give up a bit of Tx performance, but this doesn't hurt l2fwd scenario which is way more meaningful than txonly as this can be treaten as AF_XDP based packet generator. l2fwd is not hurt due to the fact that Tx side is much faster than Rx and Rx is the one that has to catch Tx up. FWIW Tx descriptors are still produced in a batched way. [0]: https://lore.kernel.org/bpf/62b0a20232920_3573208ab@john.notmuch/ Fixes: 126cdfe1007a ("ice: xsk: Improve AF_XDP ZC Tx and use batching API") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-09-01 12:40:39 +02:00
}
/**
* ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
*
* Returns true if there is no more work that needs to be done, false otherwise
*/
ice: xsk: change batched Tx descriptor cleaning AF_XDP Tx descriptor cleaning in ice driver currently works in a "lazy" way - descriptors are not cleaned immediately after send. We rather hold on with cleaning until we see that free space in ring drops below particular threshold. This was supposed to reduce the amount of unnecessary work related to cleaning and instead of keeping the ring empty, ring was rather saturated. In AF_XDP realm cleaning Tx descriptors implies producing them to CQ. This is a way of letting know user space that particular descriptor has been sent, as John points out in [0]. We tried to implement serial descriptor cleaning which would be used in conjunction with batched cleaning but it made code base more convoluted and probably harder to maintain in future. Therefore we step away from batched cleaning in a current form in favor of an approach where we set RS bit on every last descriptor from a batch and clean always at the beginning of ice_xmit_zc(). This means that we give up a bit of Tx performance, but this doesn't hurt l2fwd scenario which is way more meaningful than txonly as this can be treaten as AF_XDP based packet generator. l2fwd is not hurt due to the fact that Tx side is much faster than Rx and Rx is the one that has to catch Tx up. FWIW Tx descriptors are still produced in a batched way. [0]: https://lore.kernel.org/bpf/62b0a20232920_3573208ab@john.notmuch/ Fixes: 126cdfe1007a ("ice: xsk: Improve AF_XDP ZC Tx and use batching API") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-09-01 12:40:39 +02:00
bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
{
struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
u32 nb_pkts, nb_processed = 0;
unsigned int total_bytes = 0;
ice: xsk: change batched Tx descriptor cleaning AF_XDP Tx descriptor cleaning in ice driver currently works in a "lazy" way - descriptors are not cleaned immediately after send. We rather hold on with cleaning until we see that free space in ring drops below particular threshold. This was supposed to reduce the amount of unnecessary work related to cleaning and instead of keeping the ring empty, ring was rather saturated. In AF_XDP realm cleaning Tx descriptors implies producing them to CQ. This is a way of letting know user space that particular descriptor has been sent, as John points out in [0]. We tried to implement serial descriptor cleaning which would be used in conjunction with batched cleaning but it made code base more convoluted and probably harder to maintain in future. Therefore we step away from batched cleaning in a current form in favor of an approach where we set RS bit on every last descriptor from a batch and clean always at the beginning of ice_xmit_zc(). This means that we give up a bit of Tx performance, but this doesn't hurt l2fwd scenario which is way more meaningful than txonly as this can be treaten as AF_XDP based packet generator. l2fwd is not hurt due to the fact that Tx side is much faster than Rx and Rx is the one that has to catch Tx up. FWIW Tx descriptors are still produced in a batched way. [0]: https://lore.kernel.org/bpf/62b0a20232920_3573208ab@john.notmuch/ Fixes: 126cdfe1007a ("ice: xsk: Improve AF_XDP ZC Tx and use batching API") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-09-01 12:40:39 +02:00
int budget;
ice: xsk: change batched Tx descriptor cleaning AF_XDP Tx descriptor cleaning in ice driver currently works in a "lazy" way - descriptors are not cleaned immediately after send. We rather hold on with cleaning until we see that free space in ring drops below particular threshold. This was supposed to reduce the amount of unnecessary work related to cleaning and instead of keeping the ring empty, ring was rather saturated. In AF_XDP realm cleaning Tx descriptors implies producing them to CQ. This is a way of letting know user space that particular descriptor has been sent, as John points out in [0]. We tried to implement serial descriptor cleaning which would be used in conjunction with batched cleaning but it made code base more convoluted and probably harder to maintain in future. Therefore we step away from batched cleaning in a current form in favor of an approach where we set RS bit on every last descriptor from a batch and clean always at the beginning of ice_xmit_zc(). This means that we give up a bit of Tx performance, but this doesn't hurt l2fwd scenario which is way more meaningful than txonly as this can be treaten as AF_XDP based packet generator. l2fwd is not hurt due to the fact that Tx side is much faster than Rx and Rx is the one that has to catch Tx up. FWIW Tx descriptors are still produced in a batched way. [0]: https://lore.kernel.org/bpf/62b0a20232920_3573208ab@john.notmuch/ Fixes: 126cdfe1007a ("ice: xsk: Improve AF_XDP ZC Tx and use batching API") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-09-01 12:40:39 +02:00
ice_clean_xdp_irq_zc(xdp_ring);
budget = ICE_DESC_UNUSED(xdp_ring);
budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
if (!nb_pkts)
return true;
if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
nb_processed = xdp_ring->count - xdp_ring->next_to_use;
ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
xdp_ring->next_to_use = 0;
}
ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
&total_bytes);
ice: xsk: change batched Tx descriptor cleaning AF_XDP Tx descriptor cleaning in ice driver currently works in a "lazy" way - descriptors are not cleaned immediately after send. We rather hold on with cleaning until we see that free space in ring drops below particular threshold. This was supposed to reduce the amount of unnecessary work related to cleaning and instead of keeping the ring empty, ring was rather saturated. In AF_XDP realm cleaning Tx descriptors implies producing them to CQ. This is a way of letting know user space that particular descriptor has been sent, as John points out in [0]. We tried to implement serial descriptor cleaning which would be used in conjunction with batched cleaning but it made code base more convoluted and probably harder to maintain in future. Therefore we step away from batched cleaning in a current form in favor of an approach where we set RS bit on every last descriptor from a batch and clean always at the beginning of ice_xmit_zc(). This means that we give up a bit of Tx performance, but this doesn't hurt l2fwd scenario which is way more meaningful than txonly as this can be treaten as AF_XDP based packet generator. l2fwd is not hurt due to the fact that Tx side is much faster than Rx and Rx is the one that has to catch Tx up. FWIW Tx descriptors are still produced in a batched way. [0]: https://lore.kernel.org/bpf/62b0a20232920_3573208ab@john.notmuch/ Fixes: 126cdfe1007a ("ice: xsk: Improve AF_XDP ZC Tx and use batching API") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-09-01 12:40:39 +02:00
ice_set_rs_bit(xdp_ring);
ice_xdp_ring_update_tail(xdp_ring);
ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
return nb_pkts < budget;
}
/**
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
* @netdev: net_device
* @queue_id: queue to wake up
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
*
* Returns negative on error, zero otherwise.
*/
int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
u32 __always_unused flags)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_q_vector *q_vector;
struct ice_vsi *vsi = np->vsi;
struct ice_tx_ring *ring;
if (test_bit(ICE_VSI_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -EINVAL;
ice: xsk: use Rx ring's XDP ring when picking NAPI context Ice driver allocates per cpu XDP queues so that redirect path can safely use smp_processor_id() as an index to the array. At the same time though, XDP rings are used to pick NAPI context to call napi_schedule() or set NAPIF_STATE_MISSED. When user reduces queue count, say to 8, and num_possible_cpus() of underlying platform is 44, then this means queue vectors with correlated NAPI contexts will carry several XDP queues. This in turn can result in a broken behavior where NAPI context of interest will never be scheduled and AF_XDP socket will not process any traffic. To fix this, let us change the way how XDP rings are assigned to Rx rings and use this information later on when setting ice_tx_ring::xsk_pool pointer. For each Rx ring, grab the associated queue vector and walk through Tx ring's linked list. Once we stumble upon XDP ring in it, assign this ring to ice_rx_ring::xdp_ring. Previous [0] approach of fixing this issue was for txonly scenario because of the described grouping of XDP rings across queue vectors. So, relying on Rx ring meant that NAPI context could be scheduled with a queue vector without XDP ring with associated XSK pool. [0]: https://lore.kernel.org/netdev/20220707161128.54215-1-maciej.fijalkowski@intel.com/ Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Fixes: 22bf877e528f ("ice: introduce XDP_TX fallback path") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:49 +02:00
if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
return -EINVAL;
ice: xsk: use Rx ring's XDP ring when picking NAPI context Ice driver allocates per cpu XDP queues so that redirect path can safely use smp_processor_id() as an index to the array. At the same time though, XDP rings are used to pick NAPI context to call napi_schedule() or set NAPIF_STATE_MISSED. When user reduces queue count, say to 8, and num_possible_cpus() of underlying platform is 44, then this means queue vectors with correlated NAPI contexts will carry several XDP queues. This in turn can result in a broken behavior where NAPI context of interest will never be scheduled and AF_XDP socket will not process any traffic. To fix this, let us change the way how XDP rings are assigned to Rx rings and use this information later on when setting ice_tx_ring::xsk_pool pointer. For each Rx ring, grab the associated queue vector and walk through Tx ring's linked list. Once we stumble upon XDP ring in it, assign this ring to ice_rx_ring::xdp_ring. Previous [0] approach of fixing this issue was for txonly scenario because of the described grouping of XDP rings across queue vectors. So, relying on Rx ring meant that NAPI context could be scheduled with a queue vector without XDP ring with associated XSK pool. [0]: https://lore.kernel.org/netdev/20220707161128.54215-1-maciej.fijalkowski@intel.com/ Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Fixes: 22bf877e528f ("ice: introduce XDP_TX fallback path") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:49 +02:00
ring = vsi->rx_rings[queue_id]->xdp_ring;
ice: xsk: use Rx ring's XDP ring when picking NAPI context Ice driver allocates per cpu XDP queues so that redirect path can safely use smp_processor_id() as an index to the array. At the same time though, XDP rings are used to pick NAPI context to call napi_schedule() or set NAPIF_STATE_MISSED. When user reduces queue count, say to 8, and num_possible_cpus() of underlying platform is 44, then this means queue vectors with correlated NAPI contexts will carry several XDP queues. This in turn can result in a broken behavior where NAPI context of interest will never be scheduled and AF_XDP socket will not process any traffic. To fix this, let us change the way how XDP rings are assigned to Rx rings and use this information later on when setting ice_tx_ring::xsk_pool pointer. For each Rx ring, grab the associated queue vector and walk through Tx ring's linked list. Once we stumble upon XDP ring in it, assign this ring to ice_rx_ring::xdp_ring. Previous [0] approach of fixing this issue was for txonly scenario because of the described grouping of XDP rings across queue vectors. So, relying on Rx ring meant that NAPI context could be scheduled with a queue vector without XDP ring with associated XSK pool. [0]: https://lore.kernel.org/netdev/20220707161128.54215-1-maciej.fijalkowski@intel.com/ Fixes: 2d4238f55697 ("ice: Add support for AF_XDP") Fixes: 22bf877e528f ("ice: introduce XDP_TX fallback path") Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Tested-by: George Kuruvinakunnel <george.kuruvinakunnel@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-08-11 20:21:49 +02:00
if (!ring->xsk_pool)
return -EINVAL;
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
q_vector = ring->q_vector;
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
return 0;
}
/**
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
* @vsi: VSI to be checked
*
* Returns true if any of the Rx rings has an AF_XDP buff pool attached
*/
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
{
int i;
ice_for_each_rxq(vsi, i) {
if (xsk_get_pool_from_qid(vsi->netdev, i))
return true;
}
return false;
}
/**
* ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
* @rx_ring: ring to be cleaned
*/
void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
{
u16 ntc = rx_ring->next_to_clean;
u16 ntu = rx_ring->next_to_use;
while (ntc != ntu) {
struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
xsk_buff_free(xdp);
ntc++;
if (ntc >= rx_ring->count)
ntc = 0;
}
}
/**
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
* @xdp_ring: XDP_Tx ring
*/
void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
u32 xsk_frames = 0;
while (ntc != ntu) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
ice: Robustify cleaning/completing XDP Tx buffers When queueing frames from a Page Pool for redirecting to a device backed by the ice driver, `perf top` shows heavy load on page_alloc() and page_frag_free(), despite that on a properly working system it must be fully or at least almost zero-alloc. The problem is in fact a bit deeper and raises from how ice cleans up completed Tx buffers. The story so far: when cleaning/freeing the resources related to a particular completed Tx frame (skbs, DMA mappings etc.), ice uses some heuristics only without setting any type explicitly (except for dummy Flow Director packets, which are marked via ice_tx_buf::tx_flags). This kinda works, but only up to some point. For example, currently ice assumes that each frame coming to __ice_xmit_xdp_ring(), is backed by either plain order-0 page or plain page frag, while it may also be backed by Page Pool or any other possible memory models introduced in future. This means any &xdp_frame must be freed properly via xdp_return_frame() family with no assumptions. In order to do that, the whole heuristics must be replaced with setting the Tx buffer/frame type explicitly, just how it's always been done via an enum. Let us reuse 16 bits from ::tx_flags -- 1 bit-and instr won't hurt much -- especially given that sometimes there was a check for %ICE_TX_FLAGS_DUMMY_PKT, which is now turned from a flag to an enum member. The rest of the changes is straightforward and most of it is just a conversion to rely now on the type set in &ice_tx_buf rather than to some secondary properties. For now, no functional changes intended, the change only prepares the ground for starting freeing XDP frames properly next step. And it must be done atomically/synchronously to not break stuff. Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/20230210170618.1973430-5-alexandr.lobakin@intel.com
2023-02-10 18:06:16 +01:00
if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
tx_buf->type = ICE_TX_BUF_EMPTY;
xsk_buff_free(tx_buf->xdp);
ice: Robustify cleaning/completing XDP Tx buffers When queueing frames from a Page Pool for redirecting to a device backed by the ice driver, `perf top` shows heavy load on page_alloc() and page_frag_free(), despite that on a properly working system it must be fully or at least almost zero-alloc. The problem is in fact a bit deeper and raises from how ice cleans up completed Tx buffers. The story so far: when cleaning/freeing the resources related to a particular completed Tx frame (skbs, DMA mappings etc.), ice uses some heuristics only without setting any type explicitly (except for dummy Flow Director packets, which are marked via ice_tx_buf::tx_flags). This kinda works, but only up to some point. For example, currently ice assumes that each frame coming to __ice_xmit_xdp_ring(), is backed by either plain order-0 page or plain page frag, while it may also be backed by Page Pool or any other possible memory models introduced in future. This means any &xdp_frame must be freed properly via xdp_return_frame() family with no assumptions. In order to do that, the whole heuristics must be replaced with setting the Tx buffer/frame type explicitly, just how it's always been done via an enum. Let us reuse 16 bits from ::tx_flags -- 1 bit-and instr won't hurt much -- especially given that sometimes there was a check for %ICE_TX_FLAGS_DUMMY_PKT, which is now turned from a flag to an enum member. The rest of the changes is straightforward and most of it is just a conversion to rely now on the type set in &ice_tx_buf rather than to some secondary properties. For now, no functional changes intended, the change only prepares the ground for starting freeing XDP frames properly next step. And it must be done atomically/synchronously to not break stuff. Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/20230210170618.1973430-5-alexandr.lobakin@intel.com
2023-02-10 18:06:16 +01:00
} else {
xsk_frames++;
ice: Robustify cleaning/completing XDP Tx buffers When queueing frames from a Page Pool for redirecting to a device backed by the ice driver, `perf top` shows heavy load on page_alloc() and page_frag_free(), despite that on a properly working system it must be fully or at least almost zero-alloc. The problem is in fact a bit deeper and raises from how ice cleans up completed Tx buffers. The story so far: when cleaning/freeing the resources related to a particular completed Tx frame (skbs, DMA mappings etc.), ice uses some heuristics only without setting any type explicitly (except for dummy Flow Director packets, which are marked via ice_tx_buf::tx_flags). This kinda works, but only up to some point. For example, currently ice assumes that each frame coming to __ice_xmit_xdp_ring(), is backed by either plain order-0 page or plain page frag, while it may also be backed by Page Pool or any other possible memory models introduced in future. This means any &xdp_frame must be freed properly via xdp_return_frame() family with no assumptions. In order to do that, the whole heuristics must be replaced with setting the Tx buffer/frame type explicitly, just how it's always been done via an enum. Let us reuse 16 bits from ::tx_flags -- 1 bit-and instr won't hurt much -- especially given that sometimes there was a check for %ICE_TX_FLAGS_DUMMY_PKT, which is now turned from a flag to an enum member. The rest of the changes is straightforward and most of it is just a conversion to rely now on the type set in &ice_tx_buf rather than to some secondary properties. For now, no functional changes intended, the change only prepares the ground for starting freeing XDP frames properly next step. And it must be done atomically/synchronously to not break stuff. Signed-off-by: Alexander Lobakin <alexandr.lobakin@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/20230210170618.1973430-5-alexandr.lobakin@intel.com
2023-02-10 18:06:16 +01:00
}
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
}