linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ras_eeprom.c

608 lines
16 KiB
C
Raw Normal View History

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu_ras_eeprom.h"
#include "amdgpu.h"
#include "amdgpu_ras.h"
#include <linux/bits.h>
#include "atom.h"
#include "amdgpu_eeprom.h"
#define EEPROM_I2C_MADDR_VEGA20 0x0
#define EEPROM_I2C_MADDR_ARCTURUS 0x40000
#define EEPROM_I2C_MADDR_ARCTURUS_D342 0x0
#define EEPROM_I2C_MADDR_SIENNA_CICHLID 0x0
#define EEPROM_I2C_MADDR_ALDEBARAN 0x0
/*
* The 2 macros bellow represent the actual size in bytes that
* those entities occupy in the EEPROM memory.
* RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
* uses uint64 to store 6b fields such as retired_page.
*/
#define RAS_TABLE_HEADER_SIZE 20
#define RAS_TABLE_RECORD_SIZE 24
/* Table hdr is 'AMDR' */
#define RAS_TABLE_HDR_VAL 0x414d4452
#define RAS_TABLE_VER 0x00010000
/* Bad GPU tag BADG */
#define RAS_TABLE_HDR_BAD 0x42414447
/* Assume 2-Mbit size EEPROM and take up the whole space. */
#define RAS_TBL_SIZE_BYTES (256 * 1024)
#define RAS_HDR_START 0
#define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
#define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
/ RAS_TABLE_RECORD_SIZE)
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
{
if ((adev->asic_type == CHIP_VEGA20) ||
(adev->asic_type == CHIP_ARCTURUS) ||
(adev->asic_type == CHIP_SIENNA_CICHLID) ||
(adev->asic_type == CHIP_ALDEBARAN))
return true;
return false;
}
static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev,
struct amdgpu_ras_eeprom_control *control)
{
struct atom_context *atom_ctx = adev->mode_info.atom_context;
if (!control || !atom_ctx)
return false;
if (strnstr(atom_ctx->vbios_version,
"D342",
sizeof(atom_ctx->vbios_version)))
control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS_D342;
else
control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS;
return true;
}
static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
struct amdgpu_ras_eeprom_control *control)
{
if (!control)
return false;
switch (adev->asic_type) {
case CHIP_VEGA20:
control->i2c_address = EEPROM_I2C_MADDR_VEGA20;
break;
case CHIP_ARCTURUS:
return __get_eeprom_i2c_addr_arct(adev, control);
case CHIP_SIENNA_CICHLID:
control->i2c_address = EEPROM_I2C_MADDR_SIENNA_CICHLID;
break;
case CHIP_ALDEBARAN:
control->i2c_address = EEPROM_I2C_MADDR_ALDEBARAN;
break;
default:
return false;
}
return true;
}
static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buff)
{
uint32_t *pp = (uint32_t *) buff;
pp[0] = cpu_to_le32(hdr->header);
pp[1] = cpu_to_le32(hdr->version);
pp[2] = cpu_to_le32(hdr->first_rec_offset);
pp[3] = cpu_to_le32(hdr->tbl_size);
pp[4] = cpu_to_le32(hdr->checksum);
}
static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr,
unsigned char *buff)
{
uint32_t *pp = (uint32_t *)buff;
hdr->header = le32_to_cpu(pp[0]);
hdr->version = le32_to_cpu(pp[1]);
hdr->first_rec_offset = le32_to_cpu(pp[2]);
hdr->tbl_size = le32_to_cpu(pp[3]);
hdr->checksum = le32_to_cpu(pp[4]);
}
static int __write_table_header(struct amdgpu_ras_eeprom_control *control,
unsigned char *buff)
{
int ret = 0;
struct amdgpu_device *adev = to_amdgpu_device(control);
__encode_table_header_to_buff(&control->tbl_hdr, buff);
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_sem);
ret = amdgpu_eeprom_write(&adev->pm.smu_i2c,
control->i2c_address + RAS_HDR_START,
buff, RAS_TABLE_HEADER_SIZE);
up_read(&adev->reset_sem);
if (ret < 1)
DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret);
return ret;
}
static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
{
int i;
u8 hdr_sum = 0;
u8 *p;
size_t sz;
/* Header checksum, skip checksum field in the calculation */
sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
p = (u8 *) &control->tbl_hdr;
for (i = 0; i < sz; i++, p++)
hdr_sum += *p;
return hdr_sum;
}
static u8 __calc_recs_byte_sum(const struct eeprom_table_record *record,
const int num)
{
int i, j;
u8 tbl_sum = 0;
if (!record)
return 0;
/* Records checksum */
for (i = 0; i < num; i++) {
u8 *p = (u8 *) &record[i];
for (j = 0; j < sizeof(*record); j++, p++)
tbl_sum += *p;
}
return tbl_sum;
}
static inline u8
__calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records, int num)
{
return __calc_hdr_byte_sum(control) +
__calc_recs_byte_sum(records, num);
}
static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records, int num)
{
u8 v;
control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
/* Avoid 32-bit sign extension. */
v = -control->tbl_byte_sum;
control->tbl_hdr.checksum = v;
}
static bool __verify_tbl_checksum(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records,
int num)
{
u8 result;
control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num);
result = (u8)control->tbl_hdr.checksum + control->tbl_byte_sum;
if (result) {
DRM_WARN("RAS table checksum mismatch: stored:0x%02X wants:0x%02hhX",
control->tbl_hdr.checksum,
-control->tbl_byte_sum);
return false;
}
return true;
}
static int amdgpu_ras_eeprom_correct_header_tag(
struct amdgpu_ras_eeprom_control *control,
uint32_t header)
{
unsigned char buff[RAS_TABLE_HEADER_SIZE];
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
int ret = 0;
memset(buff, 0, RAS_TABLE_HEADER_SIZE);
mutex_lock(&control->tbl_mutex);
hdr->header = header;
ret = __write_table_header(control, buff);
mutex_unlock(&control->tbl_mutex);
return ret;
}
int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
{
unsigned char buff[RAS_TABLE_HEADER_SIZE] = { 0 };
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
int ret = 0;
mutex_lock(&control->tbl_mutex);
hdr->header = RAS_TABLE_HDR_VAL;
hdr->version = RAS_TABLE_VER;
hdr->first_rec_offset = RAS_RECORD_START;
hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
__update_tbl_checksum(control, NULL, 0);
control->next_addr = RAS_RECORD_START;
ret = __write_table_header(control, buff);
mutex_unlock(&control->tbl_mutex);
return ret;
}
int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
bool *exceed_err_limit)
{
int ret = 0;
struct amdgpu_device *adev = to_amdgpu_device(control);
unsigned char buff[RAS_TABLE_HEADER_SIZE] = { 0 };
struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
*exceed_err_limit = false;
if (!__is_ras_eeprom_supported(adev))
return 0;
/* Verify i2c adapter is initialized */
if (!adev->pm.smu_i2c.algo)
return -ENOENT;
if (!__get_eeprom_i2c_addr(adev, control))
return -EINVAL;
mutex_init(&control->tbl_mutex);
/* Read/Create table header from EEPROM address 0 */
ret = amdgpu_eeprom_read(&adev->pm.smu_i2c,
control->i2c_address + RAS_HDR_START,
buff, RAS_TABLE_HEADER_SIZE);
if (ret < 1) {
DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret);
return ret;
}
__decode_table_header_from_buff(hdr, buff);
if (hdr->header == RAS_TABLE_HDR_VAL) {
control->num_recs = (hdr->tbl_size - RAS_TABLE_HEADER_SIZE) /
RAS_TABLE_RECORD_SIZE;
control->tbl_byte_sum = __calc_hdr_byte_sum(control);
control->next_addr = RAS_RECORD_START;
DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
control->num_recs);
} else if ((hdr->header == RAS_TABLE_HDR_BAD) &&
(amdgpu_bad_page_threshold != 0)) {
if (ras->bad_page_cnt_threshold > control->num_recs) {
dev_info(adev->dev, "Using one valid bigger bad page "
"threshold and correcting eeprom header tag.\n");
ret = amdgpu_ras_eeprom_correct_header_tag(control,
RAS_TABLE_HDR_VAL);
} else {
*exceed_err_limit = true;
dev_err(adev->dev, "Exceeding the bad_page_threshold parameter, "
"disabling the GPU.\n");
}
} else {
DRM_INFO("Creating new EEPROM table");
ret = amdgpu_ras_eeprom_reset_table(control);
}
return ret > 0 ? 0 : -EIO;
}
static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buff)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
buff[i++] = record->err_type;
buff[i++] = record->bank;
tmp = cpu_to_le64(record->ts);
memcpy(buff + i, &tmp, 8);
i += 8;
tmp = cpu_to_le64((record->offset & 0xffffffffffff));
memcpy(buff + i, &tmp, 6);
i += 6;
buff[i++] = record->mem_channel;
buff[i++] = record->mcumc_id;
tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
memcpy(buff + i, &tmp, 6);
}
static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *record,
unsigned char *buff)
{
__le64 tmp = 0;
int i = 0;
/* Next are all record fields according to EEPROM page spec in LE foramt */
record->err_type = buff[i++];
record->bank = buff[i++];
memcpy(&tmp, buff + i, 8);
record->ts = le64_to_cpu(tmp);
i += 8;
memcpy(&tmp, buff + i, 6);
record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
i += 6;
record->mem_channel = buff[i++];
record->mcumc_id = buff[i++];
memcpy(&tmp, buff + i, 6);
record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
}
/*
* When reaching end of EEPROM memory jump back to 0 record address
*/
static uint32_t __correct_eeprom_dest_address(uint32_t curr_address)
{
u32 next_address = curr_address + RAS_TABLE_RECORD_SIZE;
/* When all EEPROM memory used jump back to 0 address */
if (next_address >= RAS_TBL_SIZE_BYTES) {
DRM_INFO("Reached end of EEPROM memory, wrap around to 0.");
return RAS_RECORD_START;
}
return curr_address;
}
bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
{
struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
if (!__is_ras_eeprom_supported(adev))
return false;
/* skip check eeprom table for VEGA20 Gaming */
if (!con)
return false;
else
if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
return false;
if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
dev_warn(adev->dev, "This GPU is in BAD status.");
dev_warn(adev->dev, "Please retire it or setting one bigger "
"threshold value when reloading driver.\n");
return true;
}
return false;
}
static int amdgpu_ras_eeprom_xfer(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records,
const u32 num, bool write)
{
int i, ret = 0;
unsigned char *buffs, *buff;
struct eeprom_table_record *record;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
if (!__is_ras_eeprom_supported(adev))
return 0;
buffs = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
if (!buffs)
return -ENOMEM;
mutex_lock(&control->tbl_mutex);
/*
* If saved bad pages number exceeds the bad page threshold for
* the whole VRAM, update table header to mark the BAD GPU tag
* and schedule one ras recovery after eeprom write is done,
* this can avoid the missing for latest records.
*
* This new header will be picked up and checked in the bootup
* by ras recovery, which may break bootup process to notify
* user this GPU is in bad state and to retire such GPU for
* further check.
*/
if (write && (amdgpu_bad_page_threshold != 0) &&
((control->num_recs + num) >= ras->bad_page_cnt_threshold)) {
dev_warn(adev->dev,
"Saved bad pages(%d) reaches threshold value(%d).\n",
control->num_recs + num, ras->bad_page_cnt_threshold);
control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
}
/* In case of overflow just start from beginning to not lose newest records */
if (write &&
(control->next_addr +
RAS_TABLE_RECORD_SIZE * num >= RAS_TBL_SIZE_BYTES))
control->next_addr = RAS_RECORD_START;
/*
* TODO Currently makes EEPROM writes for each record, this creates
* internal fragmentation. Optimized the code to do full page write of
* 256b
*/
for (i = 0; i < num; i++) {
buff = &buffs[i * RAS_TABLE_RECORD_SIZE];
record = &records[i];
control->next_addr = __correct_eeprom_dest_address(control->next_addr);
/* EEPROM table content is stored in LE format */
if (write)
__encode_table_record_to_buff(control, record, buff);
/* i2c may be unstable in gpu reset */
down_read(&adev->reset_sem);
ret = amdgpu_eeprom_xfer(&adev->pm.smu_i2c,
control->i2c_address + control->next_addr,
buff, RAS_TABLE_RECORD_SIZE, !write);
up_read(&adev->reset_sem);
if (ret < 1) {
DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret);
/* TODO Restore prev next EEPROM address ? */
goto free_buff;
}
/*
* The destination EEPROM address might need to be corrected to account
* for page or entire memory wrapping
*/
control->next_addr += RAS_TABLE_RECORD_SIZE;
}
if (!write) {
for (i = 0; i < num; i++) {
buff = &buffs[i * RAS_TABLE_RECORD_SIZE];
record = &records[i];
__decode_table_record_from_buff(control, record, buff);
}
}
if (write) {
/*
* Update table header with size and CRC and account for table
* wrap around where the assumption is that we treat it as empty
* table
*
* TODO - Check the assumption is correct
*/
control->num_recs += num;
control->num_recs %= RAS_MAX_RECORD_COUNT;
control->tbl_hdr.tbl_size += RAS_TABLE_RECORD_SIZE * num;
if (control->tbl_hdr.tbl_size > RAS_TBL_SIZE_BYTES)
control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
control->num_recs * RAS_TABLE_RECORD_SIZE;
__update_tbl_checksum(control, records, num);
__write_table_header(control, buffs);
} else if (!__verify_tbl_checksum(control, records, num)) {
DRM_WARN("EEPROM Table checksum mismatch!");
/* TODO Uncomment when EEPROM read/write is relliable */
/* ret = -EIO; */
}
free_buff:
kfree(buffs);
mutex_unlock(&control->tbl_mutex);
return ret == num ? 0 : -EIO;
}
int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records,
const u32 num)
{
return amdgpu_ras_eeprom_xfer(control, records, num, false);
}
int amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
struct eeprom_table_record *records,
const u32 num)
{
return amdgpu_ras_eeprom_xfer(control, records, num, true);
}
inline uint32_t amdgpu_ras_eeprom_max_record_count(void)
{
return RAS_MAX_RECORD_COUNT;
}
/* Used for testing if bugs encountered */
#if 0
void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control)
{
int i;
struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL);
if (!recs)
return;
for (i = 0; i < 1 ; i++) {
recs[i].address = 0xdeadbeef;
recs[i].retired_page = i;
}
if (!amdgpu_ras_eeprom_write(control, recs, 1)) {
memset(recs, 0, sizeof(*recs) * 1);
control->next_addr = RAS_RECORD_START;
if (!amdgpu_ras_eeprom_read(control, recs)) {
for (i = 0; i < 1; i++)
DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu",
recs[i].address, recs[i].retired_page);
} else
DRM_ERROR("Failed in reading from table");
} else
DRM_ERROR("Failed in writing to table");
}
#endif