linux/arch/x86/kernel/cpu/microcode/amd.c

1197 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD CPU Microcode Update Driver for Linux
*
* This driver allows to upgrade microcode on F10h AMD
* CPUs and later.
*
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
* 2013-2018 Borislav Petkov <bp@alien8.de>
*
* Author: Peter Oruba <peter.oruba@amd.com>
*
* Based on work by:
* Tigran Aivazian <aivazian.tigran@gmail.com>
*
* early loader:
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
* Fixes: Borislav Petkov <bp@suse.de>
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/bsearch.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <crypto/sha2.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/cmdline.h>
#include <asm/setup.h>
#include <asm/cpu.h>
#include <asm/msr.h>
#include <asm/tlb.h>
#include "internal.h"
struct ucode_patch {
struct list_head plist;
void *data;
unsigned int size;
u32 patch_id;
u16 equiv_cpu;
};
static LIST_HEAD(microcode_cache);
#define UCODE_MAGIC 0x00414d44
#define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000
#define UCODE_UCODE_TYPE 0x00000001
#define SECTION_HDR_SIZE 8
#define CONTAINER_HDR_SZ 12
struct equiv_cpu_entry {
u32 installed_cpu;
u32 fixed_errata_mask;
u32 fixed_errata_compare;
u16 equiv_cpu;
u16 res;
} __packed;
struct microcode_header_amd {
u32 data_code;
u32 patch_id;
u16 mc_patch_data_id;
u8 mc_patch_data_len;
u8 init_flag;
u32 mc_patch_data_checksum;
u32 nb_dev_id;
u32 sb_dev_id;
u16 processor_rev_id;
u8 nb_rev_id;
u8 sb_rev_id;
u8 bios_api_rev;
u8 reserved1[3];
u32 match_reg[8];
} __packed;
struct microcode_amd {
struct microcode_header_amd hdr;
unsigned int mpb[];
};
static struct equiv_cpu_table {
unsigned int num_entries;
struct equiv_cpu_entry *entry;
} equiv_table;
union zen_patch_rev {
struct {
__u32 rev : 8,
stepping : 4,
model : 4,
__reserved : 4,
ext_model : 4,
ext_fam : 8;
};
__u32 ucode_rev;
};
union cpuid_1_eax {
struct {
__u32 stepping : 4,
model : 4,
family : 4,
__reserved0 : 4,
ext_model : 4,
ext_fam : 8,
__reserved1 : 4;
};
__u32 full;
};
/*
* This points to the current valid container of microcode patches which we will
* save from the initrd/builtin before jettisoning its contents. @mc is the
* microcode patch we found to match.
*/
x86/microcode/AMD: Remove AP scanning optimization The idea was to not scan the microcode blob on each AP (Application Processor) during boot and thus save us some milliseconds. However, on architectures where the microcode engine is shared between threads, this doesn't work. Here's why: The microcode on CPU0, i.e., the first thread, gets updated. The second thread, i.e., CPU1, i.e., the first AP walks into load_ucode_amd_ap(), sees that there's no container cached and goes and scans for the proper blob. It finds it and as a last step of apply_microcode_early_amd(), it tries to apply the patch but that core has already the updated microcode revision which it has received through CPU0's update. So it returns false and we do desc->size = -1 to prevent other APs from scanning. However, the next AP, CPU2, has a different microcode engine which hasn't been updated yet. The desc->size == -1 test prevents it from scanning the blob anew and we fail to update it. The fix is much more straight-forward than it looks: the BSP (BootStrapping Processor), i.e., CPU0, caches the microcode patch in amd_ucode_patch. We use that on the AP and try to apply it. In the 99.9999% of cases where we have homogeneous cores - *not* mixed-steppings - the application will be successful and we're good to go. In the remaining small set of systems, we will simply rescan the blob and find (or not, if none present) the proper patch and apply it then. Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170120202955.4091-16-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-01-20 21:29:54 +01:00
struct cont_desc {
struct microcode_amd *mc;
u32 psize;
u8 *data;
size_t size;
x86/microcode/AMD: Remove AP scanning optimization The idea was to not scan the microcode blob on each AP (Application Processor) during boot and thus save us some milliseconds. However, on architectures where the microcode engine is shared between threads, this doesn't work. Here's why: The microcode on CPU0, i.e., the first thread, gets updated. The second thread, i.e., CPU1, i.e., the first AP walks into load_ucode_amd_ap(), sees that there's no container cached and goes and scans for the proper blob. It finds it and as a last step of apply_microcode_early_amd(), it tries to apply the patch but that core has already the updated microcode revision which it has received through CPU0's update. So it returns false and we do desc->size = -1 to prevent other APs from scanning. However, the next AP, CPU2, has a different microcode engine which hasn't been updated yet. The desc->size == -1 test prevents it from scanning the blob anew and we fail to update it. The fix is much more straight-forward than it looks: the BSP (BootStrapping Processor), i.e., CPU0, caches the microcode patch in amd_ucode_patch. We use that on the AP and try to apply it. In the 99.9999% of cases where we have homogeneous cores - *not* mixed-steppings - the application will be successful and we're good to go. In the remaining small set of systems, we will simply rescan the blob and find (or not, if none present) the proper patch and apply it then. Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170120202955.4091-16-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-01-20 21:29:54 +01:00
};
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
/*
* Microcode patch container file is prepended to the initrd in cpio
* format. See Documentation/arch/x86/microcode.rst
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
*/
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
/*
* This is CPUID(1).EAX on the BSP. It is used in two ways:
*
* 1. To ignore the equivalence table on Zen1 and newer.
*
* 2. To match which patches to load because the patch revision ID
* already contains the f/m/s for which the microcode is destined
* for.
*/
static u32 bsp_cpuid_1_eax __ro_after_init;
static bool sha_check = true;
struct patch_digest {
u32 patch_id;
u8 sha256[SHA256_DIGEST_SIZE];
};
#include "amd_shas.c"
static int cmp_id(const void *key, const void *elem)
{
struct patch_digest *pd = (struct patch_digest *)elem;
u32 patch_id = *(u32 *)key;
if (patch_id == pd->patch_id)
return 0;
else if (patch_id < pd->patch_id)
return -1;
else
return 1;
}
static bool need_sha_check(u32 cur_rev)
{
switch (cur_rev >> 8) {
case 0x80012: return cur_rev <= 0x800126f; break;
case 0x80082: return cur_rev <= 0x800820f; break;
case 0x83010: return cur_rev <= 0x830107c; break;
case 0x86001: return cur_rev <= 0x860010e; break;
case 0x86081: return cur_rev <= 0x8608108; break;
case 0x87010: return cur_rev <= 0x8701034; break;
case 0x8a000: return cur_rev <= 0x8a0000a; break;
case 0xa0010: return cur_rev <= 0xa00107a; break;
case 0xa0011: return cur_rev <= 0xa0011da; break;
case 0xa0012: return cur_rev <= 0xa001243; break;
case 0xa0082: return cur_rev <= 0xa00820e; break;
case 0xa1011: return cur_rev <= 0xa101153; break;
case 0xa1012: return cur_rev <= 0xa10124e; break;
case 0xa1081: return cur_rev <= 0xa108109; break;
case 0xa2010: return cur_rev <= 0xa20102f; break;
case 0xa2012: return cur_rev <= 0xa201212; break;
case 0xa4041: return cur_rev <= 0xa404109; break;
case 0xa5000: return cur_rev <= 0xa500013; break;
case 0xa6012: return cur_rev <= 0xa60120a; break;
case 0xa7041: return cur_rev <= 0xa704109; break;
case 0xa7052: return cur_rev <= 0xa705208; break;
case 0xa7080: return cur_rev <= 0xa708009; break;
case 0xa70c0: return cur_rev <= 0xa70C009; break;
case 0xaa001: return cur_rev <= 0xaa00116; break;
case 0xaa002: return cur_rev <= 0xaa00218; break;
default: break;
}
pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
return true;
}
static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
{
struct patch_digest *pd = NULL;
u8 digest[SHA256_DIGEST_SIZE];
struct sha256_state s;
int i;
if (x86_family(bsp_cpuid_1_eax) < 0x17 ||
x86_family(bsp_cpuid_1_eax) > 0x19)
return true;
if (!need_sha_check(cur_rev))
return true;
if (!sha_check)
return true;
pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
if (!pd) {
pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
return false;
}
sha256_init(&s);
sha256_update(&s, data, len);
sha256_final(&s, digest);
if (memcmp(digest, pd->sha256, sizeof(digest))) {
pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
for (i = 0; i < SHA256_DIGEST_SIZE; i++)
pr_cont("0x%x ", digest[i]);
pr_info("\n");
return false;
}
return true;
}
static u32 get_patch_level(void)
{
u32 rev, dummy __always_unused;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
return rev;
}
static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
{
union zen_patch_rev p;
union cpuid_1_eax c;
p.ucode_rev = val;
c.full = 0;
c.stepping = p.stepping;
c.model = p.model;
c.ext_model = p.ext_model;
c.family = 0xf;
c.ext_fam = p.ext_fam;
return c;
}
static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
{
unsigned int i;
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return 0;
if (!et || !et->num_entries)
return 0;
for (i = 0; i < et->num_entries; i++) {
struct equiv_cpu_entry *e = &et->entry[i];
if (sig == e->installed_cpu)
return e->equiv_cpu;
}
return 0;
}
/*
* Check whether there is a valid microcode container file at the beginning
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
* of @buf of size @buf_size.
*/
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
static bool verify_container(const u8 *buf, size_t buf_size)
{
u32 cont_magic;
if (buf_size <= CONTAINER_HDR_SZ) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Truncated microcode container header.\n");
return false;
}
cont_magic = *(const u32 *)buf;
if (cont_magic != UCODE_MAGIC) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
return false;
}
return true;
}
/*
* Check whether there is a valid, non-truncated CPU equivalence table at the
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
* beginning of @buf of size @buf_size.
*/
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
{
const u32 *hdr = (const u32 *)buf;
u32 cont_type, equiv_tbl_len;
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
if (!verify_container(buf, buf_size))
return false;
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return true;
cont_type = hdr[1];
if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Wrong microcode container equivalence table type: %u.\n",
cont_type);
return false;
}
buf_size -= CONTAINER_HDR_SZ;
equiv_tbl_len = hdr[2];
if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
buf_size < equiv_tbl_len) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Truncated equivalence table.\n");
return false;
}
return true;
}
/*
* Check whether there is a valid, non-truncated microcode patch section at the
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
* beginning of @buf of size @buf_size.
*
* On success, @sh_psize returns the patch size according to the section header,
* to the caller.
*/
static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
{
u32 p_type, p_size;
const u32 *hdr;
if (buf_size < SECTION_HDR_SIZE) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Truncated patch section.\n");
return false;
}
hdr = (const u32 *)buf;
p_type = hdr[0];
p_size = hdr[1];
if (p_type != UCODE_UCODE_TYPE) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Invalid type field (0x%x) in container file section header.\n",
p_type);
return false;
}
if (p_size < sizeof(struct microcode_header_amd)) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Patch of size %u too short.\n", p_size);
return false;
}
*sh_psize = p_size;
return true;
}
/*
* Check whether the passed remaining file @buf_size is large enough to contain
* a patch of the indicated @sh_psize (and also whether this size does not
* exceed the per-family maximum). @sh_psize is the size read from the section
* header.
*/
static bool __verify_patch_size(u32 sh_psize, size_t buf_size)
{
u8 family = x86_family(bsp_cpuid_1_eax);
u32 max_size;
if (family >= 0x15)
goto ret;
#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
switch (family) {
case 0x10 ... 0x12:
max_size = F1XH_MPB_MAX_SIZE;
break;
case 0x14:
max_size = F14H_MPB_MAX_SIZE;
break;
default:
WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
return false;
}
if (sh_psize > max_size)
return false;
ret:
/* Working with the whole buffer so < is ok. */
return sh_psize <= buf_size;
}
/*
* Verify the patch in @buf.
*
* Returns:
* negative: on error
* positive: patch is not for this family, skip it
* 0: success
*/
static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
{
u8 family = x86_family(bsp_cpuid_1_eax);
struct microcode_header_amd *mc_hdr;
u32 sh_psize;
u16 proc_id;
u8 patch_fam;
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
if (!__verify_patch_section(buf, buf_size, &sh_psize))
return -1;
/*
* The section header length is not included in this indicated size
* but is present in the leftover file length so we need to subtract
* it before passing this value to the function below.
*/
buf_size -= SECTION_HDR_SIZE;
/*
* Check if the remaining buffer is big enough to contain a patch of
* size sh_psize, as the section claims.
*/
if (buf_size < sh_psize) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Patch of size %u truncated.\n", sh_psize);
return -1;
}
if (!__verify_patch_size(sh_psize, buf_size)) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_debug("Per-family patch size mismatch.\n");
return -1;
}
*patch_size = sh_psize;
mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
return -1;
}
proc_id = mc_hdr->processor_rev_id;
patch_fam = 0xf + (proc_id >> 12);
if (patch_fam != family)
return 1;
return 0;
}
static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
{
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
else
return eq_id == mc->hdr.processor_rev_id;
}
/*
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
* This scans the ucode blob for the proper container as we can have multiple
* containers glued together.
*
* Returns the amount of bytes consumed while scanning. @desc contains all the
* data we're going to use in later stages of the application.
*/
static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
{
struct equiv_cpu_table table;
size_t orig_size = size;
u32 *hdr = (u32 *)ucode;
u16 eq_id;
u8 *buf;
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
if (!verify_equivalence_table(ucode, size))
return 0;
buf = ucode;
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
/*
* Find the equivalence ID of our CPU in this table. Even if this table
* doesn't contain a patch for the CPU, scan through the whole container
* so that it can be skipped in case there are other containers appended.
*/
eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
buf += hdr[2] + CONTAINER_HDR_SZ;
size -= hdr[2] + CONTAINER_HDR_SZ;
/*
* Scan through the rest of the container to find where it ends. We do
* some basic sanity-checking too.
*/
while (size > 0) {
struct microcode_amd *mc;
u32 patch_size;
int ret;
ret = verify_patch(buf, size, &patch_size);
if (ret < 0) {
/*
x86/microcode/AMD: Handle multiple glued containers properly It can happen that - especially during testing - the microcode blobs of all families are all glued together in the initrd. The current code doesn't check whether the current container matched a microcode patch and continues to the next one, which leads to save_microcode_in_initrd_amd() to look at the next and thus wrong one: microcode: parse_container: ucode: 0xffff88807e9d9082 microcode: verify_patch: buf: 0xffff88807e9d90ce, buf_size: 26428 microcode: verify_patch: proc_id: 0x8082, patch_fam: 0x17, this family: 0x17 microcode: verify_patch: buf: 0xffff88807e9d9d56, buf_size: 23220 microcode: verify_patch: proc_id: 0x8012, patch_fam: 0x17, this family: 0x17 microcode: parse_container: MATCH: eq_id: 0x8012, patch proc_rev_id: 0x8012 <-- matching patch found microcode: verify_patch: buf: 0xffff88807e9da9de, buf_size: 20012 microcode: verify_patch: proc_id: 0x8310, patch_fam: 0x17, this family: 0x17 microcode: verify_patch: buf: 0xffff88807e9db666, buf_size: 16804 microcode: Invalid type field (0x414d44) in container file section header. microcode: Patch section fail <-- checking chokes on the microcode magic value of the next container. microcode: parse_container: saving container 0xffff88807e9d9082 microcode: save_microcode_in_initrd_amd: scanned containers, data: 0xffff88807e9d9082, size: 9700a and now if there's a next (and last container) it'll use that in save_microcode_in_initrd_amd() and not find a proper patch, ofc. Fix that by moving the out: label up, before the desc->mc check which jots down the pointer of the matching patch and is used to signal to the caller that it has found a matching patch in the current container. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20221219210656.5140-2-bp@alien8.de
2022-12-19 22:06:56 +01:00
* Patch verification failed, skip to the next container, if
* there is one. Before exit, check whether that container has
* found a patch already. If so, use it.
*/
goto out;
} else if (ret > 0) {
goto skip;
}
mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
if (mc_patch_matches(mc, eq_id)) {
desc->psize = patch_size;
desc->mc = mc;
}
skip:
/* Skip patch section header too: */
buf += patch_size + SECTION_HDR_SIZE;
size -= patch_size + SECTION_HDR_SIZE;
}
x86/microcode/AMD: Handle multiple glued containers properly It can happen that - especially during testing - the microcode blobs of all families are all glued together in the initrd. The current code doesn't check whether the current container matched a microcode patch and continues to the next one, which leads to save_microcode_in_initrd_amd() to look at the next and thus wrong one: microcode: parse_container: ucode: 0xffff88807e9d9082 microcode: verify_patch: buf: 0xffff88807e9d90ce, buf_size: 26428 microcode: verify_patch: proc_id: 0x8082, patch_fam: 0x17, this family: 0x17 microcode: verify_patch: buf: 0xffff88807e9d9d56, buf_size: 23220 microcode: verify_patch: proc_id: 0x8012, patch_fam: 0x17, this family: 0x17 microcode: parse_container: MATCH: eq_id: 0x8012, patch proc_rev_id: 0x8012 <-- matching patch found microcode: verify_patch: buf: 0xffff88807e9da9de, buf_size: 20012 microcode: verify_patch: proc_id: 0x8310, patch_fam: 0x17, this family: 0x17 microcode: verify_patch: buf: 0xffff88807e9db666, buf_size: 16804 microcode: Invalid type field (0x414d44) in container file section header. microcode: Patch section fail <-- checking chokes on the microcode magic value of the next container. microcode: parse_container: saving container 0xffff88807e9d9082 microcode: save_microcode_in_initrd_amd: scanned containers, data: 0xffff88807e9d9082, size: 9700a and now if there's a next (and last container) it'll use that in save_microcode_in_initrd_amd() and not find a proper patch, ofc. Fix that by moving the out: label up, before the desc->mc check which jots down the pointer of the matching patch and is used to signal to the caller that it has found a matching patch in the current container. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20221219210656.5140-2-bp@alien8.de
2022-12-19 22:06:56 +01:00
out:
/*
* If we have found a patch (desc->mc), it means we're looking at the
* container which has a patch for this CPU so return 0 to mean, @ucode
* already points to the proper container. Otherwise, we return the size
* we scanned so that we can advance to the next container in the
* buffer.
*/
if (desc->mc) {
desc->data = ucode;
desc->size = orig_size - size;
return 0;
}
return orig_size - size;
}
/*
* Scan the ucode blob for the proper container as we can have multiple
* containers glued together.
*/
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
while (size) {
size_t s = parse_container(ucode, size, desc);
if (!s)
return;
/* catch wraparound */
if (size >= s) {
ucode += s;
size -= s;
} else {
return;
}
}
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
}
static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
unsigned int psize)
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
{
unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
return -1;
native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
if (x86_family(bsp_cpuid_1_eax) == 0x17) {
unsigned long p_addr_end = p_addr + psize - 1;
invlpg(p_addr);
/*
* Flush next page too if patch image is crossing a page
* boundary.
*/
if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
invlpg(p_addr_end);
}
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
/* verify patch application was successful */
*cur_rev = get_patch_level();
if (*cur_rev != mc->hdr.patch_id)
return false;
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
return true;
x86/microcode: Rework microcode loading Yeah, I know, I know, this is a huuge patch and reviewing it is hard. Sorry but this is the only way I could think of in which I can rewrite the microcode patches loading procedure without breaking (knowingly) the driver. So maybe this patch is easier to review if one looks at the files after the patch has been applied instead at the diff. Because then it becomes pretty obvious: * The BSP-loading path - load_ucode_bsp() is working independently from the AP path now and it doesn't save any pointers or patches anymore - it solely parses the builtin or initrd microcode and applies the patch. That's it. This fixes the CONFIG_RANDOMIZE_MEMORY offset fun more solidly. * The AP-loading path - load_ucode_ap() then goes and scans builtin/initrd *again* for the microcode patches but it caches them this time so that we don't have to do that scan on each AP but only once. This simplifies the code considerably. Then, when we save the microcode from the initrd/builtin, we go and add the relevant patches to our own cache. The AMD side did do that and now the Intel side does it too. So no more pointer copying and blabla, we save the microcode patches ourselves and are independent from initrd/builtin. This whole conversion gives us other benefits like unifying the initrd parsing into a single function: find_microcode_in_initrd() is used by both. The diffstat speaks for itself: 456 insertions(+), 695 deletions(-) Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161025095522.11964-12-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-25 11:55:21 +02:00
}
static bool get_builtin_microcode(struct cpio_data *cp)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
u8 family = x86_family(bsp_cpuid_1_eax);
struct firmware fw;
if (IS_ENABLED(CONFIG_X86_32))
return false;
if (family >= 0x15)
snprintf(fw_name, sizeof(fw_name),
"amd-ucode/microcode_amd_fam%02hhxh.bin", family);
if (firmware_request_builtin(&fw, fw_name)) {
cp->size = fw.size;
cp->data = (void *)fw.data;
return true;
}
return false;
}
static bool __init find_blobs_in_containers(struct cpio_data *ret)
{
struct cpio_data cp;
bool found;
if (!get_builtin_microcode(&cp))
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
cp = find_microcode_in_initrd(ucode_path);
found = cp.data && cp.size;
if (found)
*ret = cp;
return found;
}
/*
* Early load occurs before we can vmalloc(). So we look for the microcode
* patch container file in initrd, traverse equivalent cpu table, look for a
* matching microcode patch, and update, all in initrd memory in place.
* When vmalloc() is available for use later -- on 64-bit during first AP load,
* and on 32-bit during save_microcode_in_initrd() -- we can call
* load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory.
*/
void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
{
struct cont_desc desc = { };
struct microcode_amd *mc;
struct cpio_data cp = { };
char buf[4];
u32 rev;
if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
if (!strncmp(buf, "off", 3)) {
sha_check = false;
pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
}
}
bsp_cpuid_1_eax = cpuid_1_eax;
rev = get_patch_level();
ed->old_rev = rev;
/* Needed in load_microcode_amd() */
ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
if (!find_blobs_in_containers(&cp))
return;
scan_containers(cp.data, cp.size, &desc);
mc = desc.mc;
if (!mc)
return;
/*
* Allow application of the same revision to pick up SMT-specific
* changes even if the revision of the other SMT thread is already
* up-to-date.
*/
if (ed->old_rev > mc->hdr.patch_id)
return;
if (__apply_microcode_amd(mc, &rev, desc.psize))
ed->new_rev = rev;
}
static inline bool patch_cpus_equivalent(struct ucode_patch *p,
struct ucode_patch *n,
bool ignore_stepping)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
if (ignore_stepping) {
p_cid.stepping = 0;
n_cid.stepping = 0;
}
return p_cid.full == n_cid.full;
} else {
return p->equiv_cpu == n->equiv_cpu;
}
}
/*
* a small, trivial cache of per-family ucode patches
*/
static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
{
struct ucode_patch *p;
struct ucode_patch n;
n.equiv_cpu = equiv_cpu;
n.patch_id = uci->cpu_sig.rev;
WARN_ON_ONCE(!n.patch_id);
list_for_each_entry(p, &microcode_cache, plist)
if (patch_cpus_equivalent(p, &n, false))
return p;
return NULL;
}
static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
union zen_patch_rev zp, zn;
zp.ucode_rev = p->patch_id;
zn.ucode_rev = n->patch_id;
if (zn.stepping != zp.stepping)
return -1;
return zn.rev > zp.rev;
} else {
return n->patch_id > p->patch_id;
}
}
static void update_cache(struct ucode_patch *new_patch)
{
struct ucode_patch *p;
int ret;
list_for_each_entry(p, &microcode_cache, plist) {
if (patch_cpus_equivalent(p, new_patch, true)) {
ret = patch_newer(p, new_patch);
if (ret < 0)
continue;
else if (!ret) {
/* we already have the latest patch */
kfree(new_patch->data);
kfree(new_patch);
return;
}
list_replace(&p->plist, &new_patch->plist);
kfree(p->data);
kfree(p);
return;
}
}
/* no patch found, add it */
list_add_tail(&new_patch->plist, &microcode_cache);
}
static void free_cache(void)
{
struct ucode_patch *p, *tmp;
list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
__list_del(p->plist.prev, p->plist.next);
kfree(p->data);
kfree(p);
}
}
static struct ucode_patch *find_patch(unsigned int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
u16 equiv_id = 0;
uci->cpu_sig.rev = get_patch_level();
if (x86_family(bsp_cpuid_1_eax) < 0x17) {
equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
if (!equiv_id)
return NULL;
}
return cache_find_patch(uci, equiv_id);
}
void reload_ucode_amd(unsigned int cpu)
{
u32 rev, dummy __always_unused;
struct microcode_amd *mc;
struct ucode_patch *p;
p = find_patch(cpu);
if (!p)
return;
mc = p->data;
rev = get_patch_level();
if (rev < mc->hdr.patch_id) {
if (__apply_microcode_amd(mc, &rev, p->size))
pr_info_once("reload revision: 0x%08x\n", rev);
}
}
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct ucode_patch *p;
csig->sig = cpuid_eax(0x00000001);
csig->rev = get_patch_level();
/*
* a patch could have been loaded early, set uci->mc so that
* mc_bp_resume() can call apply_microcode()
*/
p = find_patch(cpu);
if (p && (p->patch_id == csig->rev))
uci->mc = p->data;
return 0;
}
static enum ucode_state apply_microcode_amd(int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct microcode_amd *mc_amd;
struct ucode_cpu_info *uci;
struct ucode_patch *p;
enum ucode_state ret;
u32 rev;
BUG_ON(raw_smp_processor_id() != cpu);
uci = ucode_cpu_info + cpu;
p = find_patch(cpu);
if (!p)
return UCODE_NFOUND;
rev = uci->cpu_sig.rev;
mc_amd = p->data;
uci->mc = p->data;
/* need to apply patch? */
if (rev > mc_amd->hdr.patch_id) {
ret = UCODE_OK;
goto out;
}
if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
cpu, mc_amd->hdr.patch_id);
return UCODE_ERROR;
}
rev = mc_amd->hdr.patch_id;
ret = UCODE_UPDATED;
out:
uci->cpu_sig.rev = rev;
c->microcode = rev;
x86: microcode: use smp_call_function_single instead of set_cpus_allowed, cleanup of synchronization logic * Solve issues described in 6f66cbc63081fd70e3191b4dbb796746780e5ae1 in a way that doesn't resort to set_cpus_allowed(); * in fact, only collect_cpu_info and apply_microcode callbacks must run on a target cpu, others will do just fine on any other. smp_call_function_single() (as suggested by Ingo) is used to run these callbacks on a target cpu. * cleanup of synchronization logic of the 'microcode_core' part The generic 'microcode_core' part guarantees that only a single cpu (be it a full-fledged cpu, one of the cores or HT) is being updated at any particular moment of time. In general, there is no need for any additional sync. mechanism in arch-specific parts (the patch removes existing spinlocks). See also the "Synchronization" section in microcode_core.c. * return -EINVAL instead of -1 (which is translated into -EPERM) in microcode_write(), reload_cpu() and mc_sysdev_add(). Other suggestions for an error code? * use 'enum ucode_state' as return value of request_microcode_{fw, user} to gain more flexibility by distinguishing between real error cases and situations when an appropriate ucode was not found (which is not an error per-se). * some minor cleanups Thanks a lot to Hugh Dickins for review/suggestions/testing! Reference: http://marc.info/?l=linux-kernel&m=124025889012541&w=2 [ Impact: refactor and clean up microcode driver locking code ] Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com> Acked-by: Hugh Dickins <hugh@veritas.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Peter Oruba <peter.oruba@amd.com> Cc: Arjan van de Ven <arjan@infradead.org> LKML-Reference: <1242078507.5560.9.camel@earth> [ did some more cleanups ] Signed-off-by: Ingo Molnar <mingo@elte.hu> arch/x86/include/asm/microcode.h | 25 ++ arch/x86/kernel/microcode_amd.c | 58 ++---- arch/x86/kernel/microcode_core.c | 326 +++++++++++++++++++++----------------- arch/x86/kernel/microcode_intel.c | 92 +++------- 4 files changed, 261 insertions(+), 240 deletions(-) (~20 new comment lines)
2009-05-11 23:48:27 +02:00
/* Update boot_cpu_data's revision too, if we're on the BSP: */
if (c->cpu_index == boot_cpu_data.cpu_index)
boot_cpu_data.microcode = rev;
return ret;
}
void load_ucode_amd_ap(unsigned int cpuid_1_eax)
{
unsigned int cpu = smp_processor_id();
ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
apply_microcode_amd(cpu);
}
static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
{
u32 equiv_tbl_len;
const u32 *hdr;
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
if (!verify_equivalence_table(buf, buf_size))
return 0;
hdr = (const u32 *)buf;
equiv_tbl_len = hdr[2];
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
goto out;
equiv_table.entry = vmalloc(equiv_tbl_len);
if (!equiv_table.entry) {
pr_err("failed to allocate equivalent CPU table\n");
return 0;
}
memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
out:
/* add header length */
return equiv_tbl_len + CONTAINER_HDR_SZ;
}
static void free_equiv_cpu_table(void)
{
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return;
vfree(equiv_table.entry);
memset(&equiv_table, 0, sizeof(equiv_table));
}
static void cleanup(void)
{
free_equiv_cpu_table();
free_cache();
}
/*
* Return a non-negative value even if some of the checks failed so that
* we can skip over the next patch. If we return a negative value, we
* signal a grave error like a memory allocation has failed and the
* driver cannot continue functioning normally. In such cases, we tear
* down everything we've used up so far and exit.
*/
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
unsigned int *patch_size)
{
struct microcode_header_amd *mc_hdr;
struct ucode_patch *patch;
u16 proc_id;
int ret;
ret = verify_patch(fw, leftover, patch_size);
if (ret)
return ret;
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
if (!patch->data) {
pr_err("Patch data allocation failure.\n");
kfree(patch);
return -EINVAL;
}
patch->size = *patch_size;
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
proc_id = mc_hdr->processor_rev_id;
INIT_LIST_HEAD(&patch->plist);
patch->patch_id = mc_hdr->patch_id;
patch->equiv_cpu = proc_id;
pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
__func__, patch->patch_id, proc_id);
/* ... and add to cache. */
update_cache(patch);
return 0;
}
/* Scan the blob in @data and add microcode patches to the cache. */
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
{
u8 *fw = (u8 *)data;
size_t offset;
offset = install_equiv_cpu_table(data, size);
if (!offset)
return UCODE_ERROR;
fw += offset;
size -= offset;
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
pr_err("invalid type field in container file section header\n");
free_equiv_cpu_table();
return UCODE_ERROR;
}
while (size > 0) {
unsigned int crnt_size = 0;
int ret;
ret = verify_and_add_patch(family, fw, size, &crnt_size);
if (ret < 0)
return UCODE_ERROR;
fw += crnt_size + SECTION_HDR_SIZE;
size -= (crnt_size + SECTION_HDR_SIZE);
}
return UCODE_OK;
}
static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
{
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
cleanup();
return ret;
}
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
{
struct cpuinfo_x86 *c;
unsigned int nid, cpu;
struct ucode_patch *p;
enum ucode_state ret;
ret = _load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
return ret;
x86/microcode/AMD: Fix out-of-bounds on systems with CPU-less NUMA nodes Currently, load_microcode_amd() iterates over all NUMA nodes, retrieves their CPU masks and unconditionally accesses per-CPU data for the first CPU of each mask. According to Documentation/admin-guide/mm/numaperf.rst: "Some memory may share the same node as a CPU, and others are provided as memory only nodes." Therefore, some node CPU masks may be empty and wouldn't have a "first CPU". On a machine with far memory (and therefore CPU-less NUMA nodes): - cpumask_of_node(nid) is 0 - cpumask_first(0) is CONFIG_NR_CPUS - cpu_data(CONFIG_NR_CPUS) accesses the cpu_info per-CPU array at an index that is 1 out of bounds This does not have any security implications since flashing microcode is a privileged operation but I believe this has reliability implications by potentially corrupting memory while flashing a microcode update. When booting with CONFIG_UBSAN_BOUNDS=y on an AMD machine that flashes a microcode update. I get the following splat: UBSAN: array-index-out-of-bounds in arch/x86/kernel/cpu/microcode/amd.c:X:Y index 512 is out of range for type 'unsigned long[512]' [...] Call Trace: dump_stack __ubsan_handle_out_of_bounds load_microcode_amd request_microcode_amd reload_store kernfs_fop_write_iter vfs_write ksys_write do_syscall_64 entry_SYSCALL_64_after_hwframe Change the loop to go over only NUMA nodes which have CPUs before determining whether the first CPU on the respective node needs microcode update. [ bp: Massage commit message, fix typo. ] Fixes: 7ff6edf4fef3 ("x86/microcode/AMD: Fix mixed steppings support") Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250310144243.861978-1-revest@chromium.org
2025-03-10 15:42:43 +01:00
for_each_node_with_cpus(nid) {
cpu = cpumask_first(cpumask_of_node(nid));
c = &cpu_data(cpu);
p = find_patch(cpu);
if (!p)
continue;
if (c->microcode >= p->patch_id)
continue;
ret = UCODE_NEW;
}
return ret;
}
static int __init save_microcode_in_initrd(void)
{
unsigned int cpuid_1_eax = native_cpuid_eax(1);
struct cpuinfo_x86 *c = &boot_cpu_data;
struct cont_desc desc = { 0 };
enum ucode_state ret;
struct cpio_data cp;
if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
return 0;
if (!find_blobs_in_containers(&cp))
return -EINVAL;
scan_containers(cp.data, cp.size, &desc);
if (!desc.mc)
return -EINVAL;
ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
if (ret > UCODE_UPDATED)
return -EINVAL;
return 0;
}
early_initcall(save_microcode_in_initrd);
/*
* AMD microcode firmware naming convention, up to family 15h they are in
* the legacy file:
*
* amd-ucode/microcode_amd.bin
*
* This legacy file is always smaller than 2K in size.
*
* Beginning with family 15h, they are in family-specific firmware files:
*
* amd-ucode/microcode_amd_fam15h.bin
* amd-ucode/microcode_amd_fam16h.bin
* ...
*
* These might be larger than 2K.
*/
static enum ucode_state request_microcode_amd(int cpu, struct device *device)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
struct cpuinfo_x86 *c = &cpu_data(cpu);
enum ucode_state ret = UCODE_NFOUND;
const struct firmware *fw;
if (force_minrev)
return UCODE_NFOUND;
if (c->x86 >= 0x15)
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
pr_debug("failed to load file %s\n", fw_name);
goto out;
}
ret = UCODE_ERROR;
x86/microcode/32: Move early loading after paging enable 32-bit loads microcode before paging is enabled. The commit which introduced that has zero justification in the changelog. The cover letter has slightly more content, but it does not give any technical justification either: "The problem in current microcode loading method is that we load a microcode way, way too late; ideally we should load it before turning paging on. This may only be practical on 32 bits since we can't get to 64-bit mode without paging on, but we should still do it as early as at all possible." Handwaving word salad with zero technical content. Someone claimed in an offlist conversation that this is required for curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires an microcode update in order to make the usage of PSE safe. But during early boot, PSE is completely irrelevant and it is evaluated way later. Neither is it relevant for the AP on single core HT enabled CPUs as the microcode loading on the AP is not doing anything. On dual core CPUs there is a theoretical problem if a split of an executable large page between enabling paging including PSE and loading the microcode happens. But that's only theoretical, it's practically irrelevant because the affected dual core CPUs are 64bit enabled and therefore have paging and PSE enabled before loading the microcode on the second core. So why would it work on 64-bit but not on 32-bit? The erratum: "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is Split Into 4-Kbyte Pages Problem: If software clears the PS (page size) bit in a present PDE (page directory entry), that will cause linear addresses mapped through this PDE to use 4-KByte pages instead of using a large page after old TLB entries are invalidated. Due to this erratum, if a code fetch uses this PDE before the TLB entry for the large page is invalidated then it may fetch from a different physical address than specified by either the old large page translation or the new 4-KByte page translation. This erratum may also cause speculative code fetches from incorrect addresses." The practical relevance for this is exactly zero because there is no splitting of large text pages during early boot-time, i.e. between paging enable and microcode loading, and neither during CPU hotplug. IOW, this load microcode before paging enable is yet another voodoo programming solution in search of a problem. What's worse is that it causes at least two serious problems: 1) When stackprotector is enabled, the microcode loader code has the stackprotector mechanics enabled. The read from the per CPU variable __stack_chk_guard is always accessing the virtual address either directly on UP or via %fs on SMP. In physical address mode this results in an access to memory above 3GB. So this works by chance as the hardware returns the same value when there is no RAM at this physical address. When there is RAM populated above 3G then the read is by chance the same as nothing changes that memory during the very early boot stage. That's not necessarily true during runtime CPU hotplug. 2) When function tracing is enabled, the relevant microcode loader functions and the functions invoked from there will call into the tracing code and evaluate global and per CPU variables in physical address mode. What could potentially go wrong? Cure this and move the microcode loading after the early paging enable, use the new temporary initrd mapping and remove the gunk in the microcode loader which is required to handle physical address mode. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-17 23:23:32 +02:00
if (!verify_container(fw->data, fw->size))
goto fw_release;
ret = load_microcode_amd(c->x86, fw->data, fw->size);
fw_release:
release_firmware(fw);
out:
return ret;
}
static void microcode_fini_cpu_amd(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->mc = NULL;
}
static struct microcode_ops microcode_amd_ops = {
.request_microcode_fw = request_microcode_amd,
.collect_cpu_info = collect_cpu_info_amd,
.apply_microcode = apply_microcode_amd,
.microcode_fini_cpu = microcode_fini_cpu_amd,
.nmi_safe = true,
};
struct microcode_ops * __init init_amd_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
return NULL;
}
return &microcode_amd_ops;
}
void __exit exit_amd_microcode(void)
{
cleanup();
}