linux/arch/parisc/include/asm/floppy.h

260 lines
6 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Architecture specific parts of the Floppy driver
*
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
* Copyright (C) 2000 Matthew Wilcox (willy a debian . org)
* Copyright (C) 2000 Dave Kennedy
*/
#ifndef __ASM_PARISC_FLOPPY_H
#define __ASM_PARISC_FLOPPY_H
#include <linux/vmalloc.h>
/*
* The DMA channel used by the floppy controller cannot access data at
* addresses >= 16MB
*
* Went back to the 1MB limit, as some people had problems with the floppy
* driver otherwise. It doesn't matter much for performance anyway, as most
* floppy accesses go through the track buffer.
*/
#define _CROSS_64KB(a,s,vdma) \
(!(vdma) && ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64))
#define CROSS_64KB(a,s) _CROSS_64KB(a,s,use_virtual_dma & 1)
#define SW fd_routine[use_virtual_dma&1]
#define CSW fd_routine[can_use_virtual_dma & 1]
floppy: split the base port from the register in I/O accesses Currently we have architecture-specific fd_inb() and fd_outb() functions or macros, taking just a port which is in fact made of a base address and a register. The base address is FDC-specific and derived from the local or global "fdc" variable through the FD_IOPORT macro used in the base address calculation. This change splits this by explicitly passing the FDC's base address and the register separately to fd_outb() and fd_inb(). It affects the following archs: - x86, alpha, mips, powerpc, parisc, arm, m68k: simple remap of port -> base+reg - sparc32: use of reg only, since the base address was already masked out and the FDC controller is known from a static struct. - sparc64: like x86 for PCI, like sparc32 for 82077 Some archs use inline functions and others macros. This was not unified in order to minimize the number of changes to review. For the same reason checkpatch still spews a few warnings about things that were already there before. The parisc still uses hard-coded register values and could be cleaned up by taking the register definitions. The sparc per-controller inb/outb functions could further be refined to explicitly take an FDC register instead of a port in argument but it was not needed yet and may be cleaned later. Link: https://lore.kernel.org/r/20200331094054.24441-2-w@1wt.eu Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Matt Turner <mattst88@gmail.com> Cc: Ian Molton <spyro@f2s.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: x86@kernel.org Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Denis Efremov <efremov@linux.com>
2020-03-31 11:40:32 +02:00
#define fd_inb(base, reg) readb((base) + (reg))
#define fd_outb(value, base, reg) writeb(value, (base) + (reg))
#define fd_request_dma() CSW._request_dma(FLOPPY_DMA,"floppy")
#define fd_free_dma() CSW._free_dma(FLOPPY_DMA)
#define fd_enable_irq() enable_irq(FLOPPY_IRQ)
#define fd_disable_irq() disable_irq(FLOPPY_IRQ)
#define fd_free_irq() free_irq(FLOPPY_IRQ, NULL)
#define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA)
#define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size)
#define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io)
#define FLOPPY_CAN_FALLBACK_ON_NODMA
static int virtual_dma_count=0;
static int virtual_dma_residue=0;
static char *virtual_dma_addr=0;
static int virtual_dma_mode=0;
static int doing_pdma=0;
static void floppy_hardint(int irq, void *dev_id, struct pt_regs * regs)
{
register unsigned char st;
#undef TRACE_FLPY_INT
#ifdef TRACE_FLPY_INT
static int calls=0;
static int bytes=0;
static int dma_wait=0;
#endif
if (!doing_pdma) {
floppy_interrupt(irq, dev_id, regs);
return;
}
#ifdef TRACE_FLPY_INT
if(!calls)
bytes = virtual_dma_count;
#endif
{
register int lcount;
register char *lptr = virtual_dma_addr;
for (lcount = virtual_dma_count; lcount; lcount--) {
st = fd_inb(virtual_dma_port, FD_STATUS);
st &= STATUS_DMA | STATUS_READY;
if (st != (STATUS_DMA | STATUS_READY))
break;
if (virtual_dma_mode) {
fd_outb(*lptr, virtual_dma_port, FD_DATA);
} else {
*lptr = fd_inb(virtual_dma_port, FD_DATA);
}
lptr++;
}
virtual_dma_count = lcount;
virtual_dma_addr = lptr;
st = fd_inb(virtual_dma_port, FD_STATUS);
}
#ifdef TRACE_FLPY_INT
calls++;
#endif
if (st == STATUS_DMA)
return;
if (!(st & STATUS_DMA)) {
virtual_dma_residue += virtual_dma_count;
virtual_dma_count = 0;
#ifdef TRACE_FLPY_INT
printk("count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n",
virtual_dma_count, virtual_dma_residue, calls, bytes,
dma_wait);
calls = 0;
dma_wait=0;
#endif
doing_pdma = 0;
floppy_interrupt(irq, dev_id, regs);
return;
}
#ifdef TRACE_FLPY_INT
if (!virtual_dma_count)
dma_wait++;
#endif
}
static void fd_disable_dma(void)
{
if(! (can_use_virtual_dma & 1))
disable_dma(FLOPPY_DMA);
doing_pdma = 0;
virtual_dma_residue += virtual_dma_count;
virtual_dma_count=0;
}
static int vdma_request_dma(unsigned int dmanr, const char * device_id)
{
return 0;
}
static void vdma_nop(unsigned int dummy)
{
}
static int vdma_get_dma_residue(unsigned int dummy)
{
return virtual_dma_count + virtual_dma_residue;
}
static int fd_request_irq(void)
{
if(can_use_virtual_dma)
return request_irq(FLOPPY_IRQ, floppy_hardint,
0, "floppy", NULL);
else
return request_irq(FLOPPY_IRQ, floppy_interrupt,
0, "floppy", NULL);
}
static unsigned long dma_mem_alloc(unsigned long size)
{
return __get_dma_pages(GFP_KERNEL, get_order(size));
}
static unsigned long vdma_mem_alloc(unsigned long size)
{
return (unsigned long) vmalloc(size);
}
#define nodma_mem_alloc(size) vdma_mem_alloc(size)
static void _fd_dma_mem_free(unsigned long addr, unsigned long size)
{
if((unsigned int) addr >= (unsigned int) high_memory)
return vfree((void *)addr);
else
free_pages(addr, get_order(size));
}
#define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size)
static void _fd_chose_dma_mode(char *addr, unsigned long size)
{
if(can_use_virtual_dma == 2) {
if((unsigned int) addr >= (unsigned int) high_memory ||
virt_to_bus(addr) >= 0x1000000 ||
_CROSS_64KB(addr, size, 0))
use_virtual_dma = 1;
else
use_virtual_dma = 0;
} else {
use_virtual_dma = can_use_virtual_dma & 1;
}
}
#define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size)
static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io)
{
doing_pdma = 1;
virtual_dma_port = io;
virtual_dma_mode = (mode == DMA_MODE_WRITE);
virtual_dma_addr = addr;
virtual_dma_count = size;
virtual_dma_residue = 0;
return 0;
}
static int hard_dma_setup(char *addr, unsigned long size, int mode, int io)
{
#ifdef FLOPPY_SANITY_CHECK
if (CROSS_64KB(addr, size)) {
printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size);
return -1;
}
#endif
/* actual, physical DMA */
doing_pdma = 0;
clear_dma_ff(FLOPPY_DMA);
set_dma_mode(FLOPPY_DMA,mode);
set_dma_addr(FLOPPY_DMA,virt_to_bus(addr));
set_dma_count(FLOPPY_DMA,size);
enable_dma(FLOPPY_DMA);
return 0;
}
static struct fd_routine_l {
int (*_request_dma)(unsigned int dmanr, const char * device_id);
void (*_free_dma)(unsigned int dmanr);
int (*_get_dma_residue)(unsigned int dummy);
unsigned long (*_dma_mem_alloc) (unsigned long size);
int (*_dma_setup)(char *addr, unsigned long size, int mode, int io);
} fd_routine[] = {
{
request_dma,
free_dma,
get_dma_residue,
dma_mem_alloc,
hard_dma_setup
},
{
vdma_request_dma,
vdma_nop,
vdma_get_dma_residue,
vdma_mem_alloc,
vdma_dma_setup
}
};
static int FDC1 = 0x3f0; /* Lies. Floppy controller is memory mapped, not io mapped */
static int FDC2 = -1;
#define FLOPPY0_TYPE 0
#define FLOPPY1_TYPE 0
#define N_FDC 1
#define N_DRIVE 8
#define EXTRA_FLOPPY_PARAMS
#endif /* __ASM_PARISC_FLOPPY_H */