linux/tools/testing/selftests/resctrl/cmt_test.c

191 lines
4.6 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Cache Monitoring Technology (CMT) test
*
* Copyright (C) 2018 Intel Corporation
*
* Authors:
* Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
* Fenghua Yu <fenghua.yu@intel.com>
*/
#include "resctrl.h"
#include <unistd.h>
#define RESULT_FILE_NAME "result_cmt"
#define NUM_OF_RUNS 5
#define MAX_DIFF 2000000
#define MAX_DIFF_PERCENT 15
#define CON_MON_LCC_OCCUP_PATH \
"%s/%s/mon_data/mon_L3_%02d/llc_occupancy"
static int cmt_init(const struct resctrl_val_param *param, int domain_id)
{
sprintf(llc_occup_path, CON_MON_LCC_OCCUP_PATH, RESCTRL_PATH,
param->ctrlgrp, domain_id);
return 0;
}
static int cmt_setup(const struct resctrl_test *test,
const struct user_params *uparams,
struct resctrl_val_param *p)
{
/* Run NUM_OF_RUNS times */
if (p->num_of_runs >= NUM_OF_RUNS)
return END_OF_TESTS;
p->num_of_runs++;
return 0;
}
static int cmt_measure(const struct user_params *uparams,
struct resctrl_val_param *param, pid_t bm_pid)
{
sleep(1);
return measure_llc_resctrl(param->filename, bm_pid);
}
static int show_results_info(unsigned long sum_llc_val, int no_of_bits,
unsigned long cache_span, unsigned long max_diff,
unsigned long max_diff_percent, unsigned long num_of_runs,
bool platform)
{
unsigned long avg_llc_val = 0;
float diff_percent;
long avg_diff = 0;
int ret;
avg_llc_val = sum_llc_val / num_of_runs;
avg_diff = (long)(cache_span - avg_llc_val);
diff_percent = ((float)cache_span - avg_llc_val) / cache_span * 100;
ret = platform && abs((int)diff_percent) > max_diff_percent &&
labs(avg_diff) > max_diff;
ksft_print_msg("%s Check cache miss rate within %lu%%\n",
ret ? "Fail:" : "Pass:", max_diff_percent);
ksft_print_msg("Percent diff=%d\n", abs((int)diff_percent));
show_cache_info(no_of_bits, avg_llc_val, cache_span, false);
return ret;
}
static int check_results(struct resctrl_val_param *param, size_t span, int no_of_bits)
{
char *token_array[8], temp[512];
unsigned long sum_llc_occu_resc = 0;
int runs = 0;
FILE *fp;
ksft_print_msg("Checking for pass/fail\n");
fp = fopen(param->filename, "r");
if (!fp) {
ksft_perror("Error in opening file");
return -1;
}
selftests/resctrl: Enable gcc checks to detect buffer overflows David reported a buffer overflow error in the check_results() function of the cmt unit test and he suggested enabling _FORTIFY_SOURCE gcc compiler option to automatically detect any such errors. Feature Test Macros man page describes_FORTIFY_SOURCE as below "Defining this macro causes some lightweight checks to be performed to detect some buffer overflow errors when employing various string and memory manipulation functions (for example, memcpy, memset, stpcpy, strcpy, strncpy, strcat, strncat, sprintf, snprintf, vsprintf, vsnprintf, gets, and wide character variants thereof). For some functions, argument consistency is checked; for example, a check is made that open has been supplied with a mode argument when the specified flags include O_CREAT. Not all problems are detected, just some common cases. If _FORTIFY_SOURCE is set to 1, with compiler optimization level 1 (gcc -O1) and above, checks that shouldn't change the behavior of conforming programs are performed. With _FORTIFY_SOURCE set to 2, some more checking is added, but some conforming programs might fail. Some of the checks can be performed at compile time (via macros logic implemented in header files), and result in compiler warnings; other checks take place at run time, and result in a run-time error if the check fails. Use of this macro requires compiler support, available with gcc since version 4.0." Fix the buffer overflow error in the check_results() function of the cmt unit test and enable _FORTIFY_SOURCE gcc check to catch any future buffer overflow errors. Reported-by: David Binderman <dcb314@hotmail.com> Suggested-by: David Binderman <dcb314@hotmail.com> Tested-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2021-03-17 02:22:35 +00:00
while (fgets(temp, sizeof(temp), fp)) {
char *token = strtok(temp, ":\t");
int fields = 0;
while (token) {
token_array[fields++] = token;
token = strtok(NULL, ":\t");
}
/* Field 3 is llc occ resc value */
sum_llc_occu_resc += strtoul(token_array[3], NULL, 0);
runs++;
}
fclose(fp);
return show_results_info(sum_llc_occu_resc, no_of_bits, span,
MAX_DIFF, MAX_DIFF_PERCENT, runs, true);
}
static void cmt_test_cleanup(void)
{
remove(RESULT_FILE_NAME);
}
static int cmt_run_test(const struct resctrl_test *test, const struct user_params *uparams)
{
selftests/resctrl: Make benchmark parameter passing robust The benchmark used during the CMT, MBM, and MBA tests can be provided by the user via (-b) parameter, if not provided the default "fill_buf" benchmark is used. The user is additionally able to override any of the "fill_buf" default parameters when running the tests with "-b fill_buf <fill_buf parameters>". The "fill_buf" parameters are managed as an array of strings. Using an array of strings is complex because it requires transformations to/from strings at every producer and consumer. This is made worse for the individual tests where the default benchmark parameters values may not be appropriate and additional data wrangling is required. For example, the CMT test duplicates the entire array of strings in order to replace one of the parameters. More issues appear when combining the usage of an array of strings with the use case of user overriding default parameters by specifying "-b fill_buf <parameters>". This use case is fragile with opportunities to trigger a SIGSEGV because of opportunities for NULL pointers to exist in the array of strings. For example, by running below (thus by specifying "fill_buf" should be used but all parameters are NULL): $ sudo resctrl_tests -t mbm -b fill_buf Replace the "array of strings" parameters used for "fill_buf" with new struct fill_buf_param that contains the "fill_buf" parameters that can be used directly without transformations to/from strings. Two instances of struct fill_buf_param may exist at any point in time: * If the user provides new parameters to "fill_buf", the user parameter structure (struct user_params) will point to a fully initialized and immutable struct fill_buf_param containing the user provided parameters. * If "fill_buf" is the benchmark that should be used by a test, then the test parameter structure (struct resctrl_val_param) will point to a fully initialized struct fill_buf_param. The latter may contain (a) the user provided parameters verbatim, (b) user provided parameters adjusted to be appropriate for the test, or (c) the default parameters for "fill_buf" that is appropriate for the test if the user did not provide "fill_buf" parameters nor an alternate benchmark. The existing behavior of CMT test is to use test defined value for the buffer size even if the user provides another value via command line. This behavior is maintained since the test requires that the buffer size matches the size of the cache allocated, and the amount of cache allocated can instead be changed by the user with the "-n" command line parameter. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-10-24 14:18:47 -07:00
struct fill_buf_param fill_buf = {};
unsigned long cache_total_size = 0;
int n = uparams->bits ? : 5;
unsigned long long_mask;
int count_of_bits;
size_t span;
selftests/resctrl: Make benchmark parameter passing robust The benchmark used during the CMT, MBM, and MBA tests can be provided by the user via (-b) parameter, if not provided the default "fill_buf" benchmark is used. The user is additionally able to override any of the "fill_buf" default parameters when running the tests with "-b fill_buf <fill_buf parameters>". The "fill_buf" parameters are managed as an array of strings. Using an array of strings is complex because it requires transformations to/from strings at every producer and consumer. This is made worse for the individual tests where the default benchmark parameters values may not be appropriate and additional data wrangling is required. For example, the CMT test duplicates the entire array of strings in order to replace one of the parameters. More issues appear when combining the usage of an array of strings with the use case of user overriding default parameters by specifying "-b fill_buf <parameters>". This use case is fragile with opportunities to trigger a SIGSEGV because of opportunities for NULL pointers to exist in the array of strings. For example, by running below (thus by specifying "fill_buf" should be used but all parameters are NULL): $ sudo resctrl_tests -t mbm -b fill_buf Replace the "array of strings" parameters used for "fill_buf" with new struct fill_buf_param that contains the "fill_buf" parameters that can be used directly without transformations to/from strings. Two instances of struct fill_buf_param may exist at any point in time: * If the user provides new parameters to "fill_buf", the user parameter structure (struct user_params) will point to a fully initialized and immutable struct fill_buf_param containing the user provided parameters. * If "fill_buf" is the benchmark that should be used by a test, then the test parameter structure (struct resctrl_val_param) will point to a fully initialized struct fill_buf_param. The latter may contain (a) the user provided parameters verbatim, (b) user provided parameters adjusted to be appropriate for the test, or (c) the default parameters for "fill_buf" that is appropriate for the test if the user did not provide "fill_buf" parameters nor an alternate benchmark. The existing behavior of CMT test is to use test defined value for the buffer size even if the user provides another value via command line. This behavior is maintained since the test requires that the buffer size matches the size of the cache allocated, and the amount of cache allocated can instead be changed by the user with the "-n" command line parameter. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-10-24 14:18:47 -07:00
int ret;
ret = get_full_cbm("L3", &long_mask);
if (ret)
return ret;
ret = get_cache_size(uparams->cpu, "L3", &cache_total_size);
if (ret)
return ret;
ksft_print_msg("Cache size :%lu\n", cache_total_size);
count_of_bits = count_bits(long_mask);
if (n < 1 || n > count_of_bits) {
ksft_print_msg("Invalid input value for numbr_of_bits n!\n");
ksft_print_msg("Please enter value in range 1 to %d\n", count_of_bits);
return -1;
}
struct resctrl_val_param param = {
.ctrlgrp = "c1",
.filename = RESULT_FILE_NAME,
.mask = ~(long_mask << n) & long_mask,
.num_of_runs = 0,
.init = cmt_init,
.setup = cmt_setup,
.measure = cmt_measure,
};
span = cache_portion_size(cache_total_size, param.mask, long_mask);
selftests/resctrl: Make benchmark parameter passing robust The benchmark used during the CMT, MBM, and MBA tests can be provided by the user via (-b) parameter, if not provided the default "fill_buf" benchmark is used. The user is additionally able to override any of the "fill_buf" default parameters when running the tests with "-b fill_buf <fill_buf parameters>". The "fill_buf" parameters are managed as an array of strings. Using an array of strings is complex because it requires transformations to/from strings at every producer and consumer. This is made worse for the individual tests where the default benchmark parameters values may not be appropriate and additional data wrangling is required. For example, the CMT test duplicates the entire array of strings in order to replace one of the parameters. More issues appear when combining the usage of an array of strings with the use case of user overriding default parameters by specifying "-b fill_buf <parameters>". This use case is fragile with opportunities to trigger a SIGSEGV because of opportunities for NULL pointers to exist in the array of strings. For example, by running below (thus by specifying "fill_buf" should be used but all parameters are NULL): $ sudo resctrl_tests -t mbm -b fill_buf Replace the "array of strings" parameters used for "fill_buf" with new struct fill_buf_param that contains the "fill_buf" parameters that can be used directly without transformations to/from strings. Two instances of struct fill_buf_param may exist at any point in time: * If the user provides new parameters to "fill_buf", the user parameter structure (struct user_params) will point to a fully initialized and immutable struct fill_buf_param containing the user provided parameters. * If "fill_buf" is the benchmark that should be used by a test, then the test parameter structure (struct resctrl_val_param) will point to a fully initialized struct fill_buf_param. The latter may contain (a) the user provided parameters verbatim, (b) user provided parameters adjusted to be appropriate for the test, or (c) the default parameters for "fill_buf" that is appropriate for the test if the user did not provide "fill_buf" parameters nor an alternate benchmark. The existing behavior of CMT test is to use test defined value for the buffer size even if the user provides another value via command line. This behavior is maintained since the test requires that the buffer size matches the size of the cache allocated, and the amount of cache allocated can instead be changed by the user with the "-n" command line parameter. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-10-24 14:18:47 -07:00
if (uparams->fill_buf) {
fill_buf.buf_size = span;
fill_buf.memflush = uparams->fill_buf->memflush;
param.fill_buf = &fill_buf;
} else if (!uparams->benchmark_cmd[0]) {
fill_buf.buf_size = span;
fill_buf.memflush = true;
param.fill_buf = &fill_buf;
}
remove(RESULT_FILE_NAME);
selftests/resctrl: Make benchmark parameter passing robust The benchmark used during the CMT, MBM, and MBA tests can be provided by the user via (-b) parameter, if not provided the default "fill_buf" benchmark is used. The user is additionally able to override any of the "fill_buf" default parameters when running the tests with "-b fill_buf <fill_buf parameters>". The "fill_buf" parameters are managed as an array of strings. Using an array of strings is complex because it requires transformations to/from strings at every producer and consumer. This is made worse for the individual tests where the default benchmark parameters values may not be appropriate and additional data wrangling is required. For example, the CMT test duplicates the entire array of strings in order to replace one of the parameters. More issues appear when combining the usage of an array of strings with the use case of user overriding default parameters by specifying "-b fill_buf <parameters>". This use case is fragile with opportunities to trigger a SIGSEGV because of opportunities for NULL pointers to exist in the array of strings. For example, by running below (thus by specifying "fill_buf" should be used but all parameters are NULL): $ sudo resctrl_tests -t mbm -b fill_buf Replace the "array of strings" parameters used for "fill_buf" with new struct fill_buf_param that contains the "fill_buf" parameters that can be used directly without transformations to/from strings. Two instances of struct fill_buf_param may exist at any point in time: * If the user provides new parameters to "fill_buf", the user parameter structure (struct user_params) will point to a fully initialized and immutable struct fill_buf_param containing the user provided parameters. * If "fill_buf" is the benchmark that should be used by a test, then the test parameter structure (struct resctrl_val_param) will point to a fully initialized struct fill_buf_param. The latter may contain (a) the user provided parameters verbatim, (b) user provided parameters adjusted to be appropriate for the test, or (c) the default parameters for "fill_buf" that is appropriate for the test if the user did not provide "fill_buf" parameters nor an alternate benchmark. The existing behavior of CMT test is to use test defined value for the buffer size even if the user provides another value via command line. This behavior is maintained since the test requires that the buffer size matches the size of the cache allocated, and the amount of cache allocated can instead be changed by the user with the "-n" command line parameter. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-10-24 14:18:47 -07:00
ret = resctrl_val(test, uparams, &param);
if (ret)
selftests/resctrl: Make benchmark parameter passing robust The benchmark used during the CMT, MBM, and MBA tests can be provided by the user via (-b) parameter, if not provided the default "fill_buf" benchmark is used. The user is additionally able to override any of the "fill_buf" default parameters when running the tests with "-b fill_buf <fill_buf parameters>". The "fill_buf" parameters are managed as an array of strings. Using an array of strings is complex because it requires transformations to/from strings at every producer and consumer. This is made worse for the individual tests where the default benchmark parameters values may not be appropriate and additional data wrangling is required. For example, the CMT test duplicates the entire array of strings in order to replace one of the parameters. More issues appear when combining the usage of an array of strings with the use case of user overriding default parameters by specifying "-b fill_buf <parameters>". This use case is fragile with opportunities to trigger a SIGSEGV because of opportunities for NULL pointers to exist in the array of strings. For example, by running below (thus by specifying "fill_buf" should be used but all parameters are NULL): $ sudo resctrl_tests -t mbm -b fill_buf Replace the "array of strings" parameters used for "fill_buf" with new struct fill_buf_param that contains the "fill_buf" parameters that can be used directly without transformations to/from strings. Two instances of struct fill_buf_param may exist at any point in time: * If the user provides new parameters to "fill_buf", the user parameter structure (struct user_params) will point to a fully initialized and immutable struct fill_buf_param containing the user provided parameters. * If "fill_buf" is the benchmark that should be used by a test, then the test parameter structure (struct resctrl_val_param) will point to a fully initialized struct fill_buf_param. The latter may contain (a) the user provided parameters verbatim, (b) user provided parameters adjusted to be appropriate for the test, or (c) the default parameters for "fill_buf" that is appropriate for the test if the user did not provide "fill_buf" parameters nor an alternate benchmark. The existing behavior of CMT test is to use test defined value for the buffer size even if the user provides another value via command line. This behavior is maintained since the test requires that the buffer size matches the size of the cache allocated, and the amount of cache allocated can instead be changed by the user with the "-n" command line parameter. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-10-24 14:18:47 -07:00
return ret;
ret = check_results(&param, span, n);
if (ret && (get_vendor() == ARCH_INTEL) && !snc_kernel_support())
ksft_print_msg("Kernel doesn't support Sub-NUMA Clustering but it is enabled on the system.\n");
return ret;
}
static bool cmt_feature_check(const struct resctrl_test *test)
{
return test_resource_feature_check(test) &&
resctrl_mon_feature_exists("L3_MON", "llc_occupancy");
}
struct resctrl_test cmt_test = {
.name = "CMT",
.resource = "L3",
.feature_check = cmt_feature_check,
.run_test = cmt_run_test,
.cleanup = cmt_test_cleanup,
};