linux/tools/testing/selftests/kvm/x86/kvm_buslock_test.c

136 lines
3.3 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2024 Advanced Micro Devices, Inc.
*/
#include <linux/atomic.h>
#include "kvm_util.h"
#include "processor.h"
#include "svm_util.h"
#include "vmx.h"
#include "test_util.h"
#define NR_BUS_LOCKS_PER_LEVEL 100
#define CACHE_LINE_SIZE 64
/*
* To generate a bus lock, carve out a buffer that precisely occupies two cache
* lines and perform an atomic access that splits the two lines.
*/
static u8 buffer[CACHE_LINE_SIZE * 2] __aligned(CACHE_LINE_SIZE);
static atomic_t *val = (void *)&buffer[CACHE_LINE_SIZE - (sizeof(*val) / 2)];
static void guest_generate_buslocks(void)
{
for (int i = 0; i < NR_BUS_LOCKS_PER_LEVEL; i++)
atomic_inc(val);
}
#define L2_GUEST_STACK_SIZE 64
static void l2_guest_code(void)
{
guest_generate_buslocks();
GUEST_DONE();
}
static void l1_svm_code(struct svm_test_data *svm)
{
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
struct vmcb *vmcb = svm->vmcb;
generic_svm_setup(svm, l2_guest_code, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
run_guest(vmcb, svm->vmcb_gpa);
}
static void l1_vmx_code(struct vmx_pages *vmx)
{
unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
GUEST_ASSERT_EQ(prepare_for_vmx_operation(vmx), true);
GUEST_ASSERT_EQ(load_vmcs(vmx), true);
prepare_vmcs(vmx, NULL, &l2_guest_stack[L2_GUEST_STACK_SIZE]);
GUEST_ASSERT(!vmwrite(GUEST_RIP, (u64)l2_guest_code));
GUEST_ASSERT(!vmlaunch());
}
static void guest_code(void *test_data)
{
guest_generate_buslocks();
if (this_cpu_has(X86_FEATURE_SVM))
l1_svm_code(test_data);
else if (this_cpu_has(X86_FEATURE_VMX))
l1_vmx_code(test_data);
else
GUEST_DONE();
TEST_FAIL("L2 should have signaled 'done'");
}
int main(int argc, char *argv[])
{
const bool has_nested = kvm_cpu_has(X86_FEATURE_SVM) || kvm_cpu_has(X86_FEATURE_VMX);
vm_vaddr_t nested_test_data_gva;
struct kvm_vcpu *vcpu;
struct kvm_run *run;
struct kvm_vm *vm;
int i, bus_locks = 0;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_X86_BUS_LOCK_EXIT));
vm = vm_create(1);
vm_enable_cap(vm, KVM_CAP_X86_BUS_LOCK_EXIT, KVM_BUS_LOCK_DETECTION_EXIT);
vcpu = vm_vcpu_add(vm, 0, guest_code);
if (kvm_cpu_has(X86_FEATURE_SVM))
vcpu_alloc_svm(vm, &nested_test_data_gva);
else
vcpu_alloc_vmx(vm, &nested_test_data_gva);
vcpu_args_set(vcpu, 1, nested_test_data_gva);
run = vcpu->run;
for (i = 0; i <= NR_BUS_LOCKS_PER_LEVEL * (1 + has_nested); i++) {
struct ucall uc;
vcpu_run(vcpu);
if (run->exit_reason == KVM_EXIT_IO) {
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
goto done;
case UCALL_SYNC:
continue;
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
}
}
TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_X86_BUS_LOCK);
/*
* Verify the counter is actually getting incremented, e.g. that
* KVM isn't skipping the instruction. On Intel, the exit is
* trap-like, i.e. the counter should already have been
* incremented. On AMD, it's fault-like, i.e. the counter will
* be incremented when the guest re-executes the instruction.
*/
sync_global_from_guest(vm, *val);
TEST_ASSERT_EQ(atomic_read(val), bus_locks + host_cpu_is_intel);
bus_locks++;
}
TEST_FAIL("Didn't receive UCALL_DONE, took %u bus lock exits\n", bus_locks);
done:
TEST_ASSERT_EQ(i, bus_locks);
kvm_vm_free(vm);
return 0;
}