linux/tools/testing/selftests/kvm/lib/arm64/ucall.c

35 lines
872 B
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* ucall support. A ucall is a "hypercall to userspace".
*
* Copyright (C) 2018, Red Hat, Inc.
*/
#include "kvm_util.h"
vm_vaddr_t *ucall_exit_mmio_addr;
KVM: selftests: Automatically do init_ucall() for non-barebones VMs Do init_ucall() automatically during VM creation to kill two (three?) birds with one stone. First, initializing ucall immediately after VM creations allows forcing aarch64's MMIO ucall address to immediately follow memslot0. This is still somewhat fragile as tests could clobber the MMIO address with a new memslot, but it's safe-ish since tests have to be conversative when accounting for memslot0. And this can be hardened in the future by creating a read-only memslot for the MMIO page (KVM ARM exits with MMIO if the guest writes to a read-only memslot). Add a TODO to document that selftests can and should use a memslot for the ucall MMIO (doing so requires yet more rework because tests assumes thay can use all memslots except memslot0). Second, initializing ucall for all VMs prepares for making ucall initialization meaningful on all architectures. aarch64 is currently the only arch that needs to do any setup, but that will change in the future by switching to a pool-based implementation (instead of the current stack-based approach). Lastly, defining the ucall MMIO address from common code will simplify switching all architectures (except s390) to a common MMIO-based ucall implementation (if there's ever sufficient motivation to do so). Cc: Oliver Upton <oliver.upton@linux.dev> Reviewed-by: Andrew Jones <andrew.jones@linux.dev> Tested-by: Peter Gonda <pgonda@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20221006003409.649993-4-seanjc@google.com
2022-10-06 00:34:05 +00:00
void ucall_arch_init(struct kvm_vm *vm, vm_paddr_t mmio_gpa)
{
vm_vaddr_t mmio_gva = vm_vaddr_unused_gap(vm, vm->page_size, KVM_UTIL_MIN_VADDR);
virt_map(vm, mmio_gva, mmio_gpa, 1);
vm->ucall_mmio_addr = mmio_gpa;
write_guest_global(vm, ucall_exit_mmio_addr, (vm_vaddr_t *)mmio_gva);
}
void *ucall_arch_get_ucall(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
if (run->exit_reason == KVM_EXIT_MMIO &&
run->mmio.phys_addr == vcpu->vm->ucall_mmio_addr) {
TEST_ASSERT(run->mmio.is_write && run->mmio.len == sizeof(uint64_t),
"Unexpected ucall exit mmio address access");
return (void *)(*((uint64_t *)run->mmio.data));
}
return NULL;
}