linux/tools/testing/selftests/bpf/test_xsk.sh

245 lines
5.3 KiB
Bash
Raw Permalink Normal View History

#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright(c) 2020 Intel Corporation, Weqaar Janjua <weqaar.a.janjua@intel.com>
# AF_XDP selftests based on veth
#
# End-to-end AF_XDP over Veth test
#
# Topology:
# ---------
# -----------
# _ | Process | _
# / ----------- \
# / | \
# / | \
# ----------- | -----------
# | Thread1 | | | Thread2 |
# ----------- | -----------
# | | |
# ----------- | -----------
# | xskX | | | xskY |
# ----------- | -----------
# | | |
# ----------- | ----------
# | vethX | --------- | vethY |
# ----------- peer ----------
#
# AF_XDP is an address family optimized for high performance packet processing,
# it is XDPs user-space interface.
#
# An AF_XDP socket is linked to a single UMEM which is a region of virtual
# contiguous memory, divided into equal-sized frames.
#
# Refer to AF_XDP Kernel Documentation for detailed information:
# https://www.kernel.org/doc/html/latest/networking/af_xdp.html
#
# Prerequisites setup by script:
#
# Set up veth interfaces as per the topology shown ^^:
# * setup two veth interfaces
# ** veth<xxxx>
# ** veth<yyyy>
# *** xxxx and yyyy are randomly generated 4 digit numbers used to avoid
# conflict with any existing interface
# * tests the veth and xsk layers of the topology
#
# See the source xskxceiver.c for information on each test
#
# Kernel configuration:
# ---------------------
# See "config" file for recommended kernel config options.
#
# Turn on XDP sockets and veth support when compiling i.e.
# Networking support -->
# Networking options -->
# [ * ] XDP sockets
#
# Executing Tests:
# ----------------
# Must run with CAP_NET_ADMIN capability.
#
# Run:
# sudo ./test_xsk.sh
#
# If running from kselftests:
# sudo make run_tests
#
# Run with verbose output:
# sudo ./test_xsk.sh -v
#
# Set up veth interfaces and leave them up so xskxceiver can be launched in a debugger:
# sudo ./test_xsk.sh -d
#
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
# Run test suite for physical device in loopback mode
# sudo ./test_xsk.sh -i IFACE
#
# Run test suite in a specific mode only [skb,drv,zc]
# sudo ./test_xsk.sh -m MODE
#
# List available tests
# ./test_xsk.sh -l
#
# Run a specific test from the test suite
# sudo ./test_xsk.sh -t TEST_NAME
#
# Display the available command line options
# ./test_xsk.sh -h
. xsk_prereqs.sh
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
ETH=""
while getopts "vi:dm:lt:h" flag
do
case "${flag}" in
v) verbose=1;;
d) debug=1;;
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
i) ETH=${OPTARG};;
m) MODE=${OPTARG};;
l) list=1;;
t) TEST=${OPTARG};;
h) help=1;;
esac
done
TEST_NAME="PREREQUISITES"
URANDOM=/dev/urandom
[ ! -e "${URANDOM}" ] && { echo "${URANDOM} not found. Skipping tests."; test_exit $ksft_fail; }
VETH0_POSTFIX=$(cat ${URANDOM} | tr -dc '0-9' | fold -w 256 | head -n 1 | head --bytes 4)
VETH0=ve${VETH0_POSTFIX}
VETH1_POSTFIX=$(cat ${URANDOM} | tr -dc '0-9' | fold -w 256 | head -n 1 | head --bytes 4)
VETH1=ve${VETH1_POSTFIX}
MTU=1500
trap ctrl_c INT
function ctrl_c() {
cleanup_exit ${VETH0} ${VETH1}
exit 1
}
setup_vethPairs() {
if [[ $verbose -eq 1 ]]; then
echo "setting up ${VETH0}"
fi
ip link add ${VETH0} numtxqueues 4 numrxqueues 4 type veth peer name ${VETH1} numtxqueues 4 numrxqueues 4
if [ -f /proc/net/if_inet6 ]; then
echo 1 > /proc/sys/net/ipv6/conf/${VETH0}/disable_ipv6
echo 1 > /proc/sys/net/ipv6/conf/${VETH1}/disable_ipv6
fi
if [[ $verbose -eq 1 ]]; then
echo "setting up ${VETH1}"
fi
if [[ $busy_poll -eq 1 ]]; then
echo 2 > /sys/class/net/${VETH0}/napi_defer_hard_irqs
echo 200000 > /sys/class/net/${VETH0}/gro_flush_timeout
echo 2 > /sys/class/net/${VETH1}/napi_defer_hard_irqs
echo 200000 > /sys/class/net/${VETH1}/gro_flush_timeout
fi
ip link set ${VETH1} mtu ${MTU}
ip link set ${VETH0} mtu ${MTU}
ip link set ${VETH1} up
ip link set ${VETH0} up
}
if [[ $list -eq 1 ]]; then
./${XSKOBJ} -l
exit
fi
if [[ $help -eq 1 ]]; then
./${XSKOBJ}
exit
fi
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
if [ ! -z $ETH ]; then
VETH0=${ETH}
VETH1=${ETH}
else
validate_root_exec
validate_veth_support ${VETH0}
validate_ip_utility
setup_vethPairs
retval=$?
if [ $retval -ne 0 ]; then
test_status $retval "${TEST_NAME}"
cleanup_exit ${VETH0} ${VETH1}
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
exit $retval
fi
fi
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
if [[ $verbose -eq 1 ]]; then
ARGS+="-v "
fi
if [ -n "$MODE" ]; then
ARGS+="-m ${MODE} "
fi
if [ -n "$TEST" ]; then
ARGS+="-t ${TEST} "
fi
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
retval=$?
test_status $retval "${TEST_NAME}"
## START TESTS
statusList=()
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
TEST_NAME="XSK_SELFTESTS_${VETH0}_SOFTIRQ"
if [[ $debug -eq 1 ]]; then
echo "-i" ${VETH0} "-i" ${VETH1}
exit
fi
exec_xskxceiver
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
if [ -z $ETH ]; then
cleanup_exit ${VETH0} ${VETH1}
else
cleanup_iface ${ETH} ${MTU}
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
fi
if [[ $list -eq 1 ]]; then
exit
fi
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
TEST_NAME="XSK_SELFTESTS_${VETH0}_BUSY_POLL"
busy_poll=1
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
if [ -z $ETH ]; then
setup_vethPairs
fi
exec_xskxceiver
## END TESTS
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
if [ -z $ETH ]; then
cleanup_exit ${VETH0} ${VETH1}
else
cleanup_iface ${ETH} ${MTU}
selftests/xsk: Add support for executing tests on physical device Currently, architecture of xdpxceiver is designed strictly for conducting veth based tests. Veth pair is created together with a network namespace and one of the veth interfaces is moved to the mentioned netns. Then, separate threads for Tx and Rx are spawned which will utilize described setup. Infrastructure described in the paragraph above can not be used for testing AF_XDP support on physical devices. That testing will be conducted on a single network interface and same queue. Xskxceiver needs to be extended to distinguish between veth tests and physical interface tests. Since same iface/queue id pair will be used by both Tx/Rx threads for physical device testing, Tx thread, which happen to run after the Rx thread, is going to create XSK socket with shared umem flag. In order to track this setting throughout the lifetime of spawned threads, introduce 'shared_umem' boolean variable to struct ifobject and set it to true when xdpxceiver is run against physical device. In such case, UMEM size needs to be doubled, so half of it will be used by Rx thread and other half by Tx thread. For two step based test types, value of XSKMAP element under key 0 has to be updated as there is now another socket for the second step. Also, to avoid race conditions when destroying XSK resources, move this activity to the main thread after spawned Rx and Tx threads have finished its job. This way it is possible to gracefully remove shared umem without introducing synchronization mechanisms. To run xsk selftests suite on physical device, append "-i $IFACE" when invoking test_xsk.sh. For veth based tests, simply skip it. When "-i $IFACE" is in place, under the hood test_xsk.sh will use $IFACE for both interfaces supplied to xdpxceiver, which in turn will interpret that this execution of test suite is for a physical device. Note that currently this makes it possible only to test SKB and DRV mode (in case underlying device has native XDP support). ZC testing support is added in a later patch. Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Magnus Karlsson <magnus.karlsson@intel.com> Link: https://lore.kernel.org/bpf/20220901114813.16275-5-maciej.fijalkowski@intel.com
2022-09-01 13:48:11 +02:00
fi
failures=0
echo -e "\nSummary:"
for i in "${!statusList[@]}"
do
if [ ${statusList[$i]} -ne 0 ]; then
test_status ${statusList[$i]} ${nameList[$i]}
failures=1
fi
done
if [ $failures -eq 0 ]; then
echo "All tests successful!"
fi