linux/rust/kernel/opp.rs

1147 lines
37 KiB
Rust
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
//! Operating performance points.
//!
//! This module provides rust abstractions for interacting with the OPP subsystem.
//!
//! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
//!
//! Reference: <https://docs.kernel.org/power/opp.html>
use crate::{
clk::Hertz,
cpumask::{Cpumask, CpumaskVar},
device::Device,
error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR},
ffi::c_ulong,
prelude::*,
str::CString,
types::{ARef, AlwaysRefCounted, Opaque},
};
#[cfg(CONFIG_CPU_FREQ)]
/// Frequency table implementation.
mod freq {
use super::*;
use crate::cpufreq;
use core::ops::Deref;
/// OPP frequency table.
///
/// A [`cpufreq::Table`] created from [`Table`].
pub struct FreqTable {
dev: ARef<Device>,
ptr: *mut bindings::cpufreq_frequency_table,
}
impl FreqTable {
/// Creates a new instance of [`FreqTable`] from [`Table`].
pub(crate) fn new(table: &Table) -> Result<Self> {
let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe {
bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
})?;
Ok(Self {
dev: table.dev.clone(),
ptr,
})
}
/// Returns a reference to the underlying [`cpufreq::Table`].
#[inline]
fn table(&self) -> &cpufreq::Table {
// SAFETY: The `ptr` is guaranteed by the C code to be valid.
unsafe { cpufreq::Table::from_raw(self.ptr) }
}
}
impl Deref for FreqTable {
type Target = cpufreq::Table;
#[inline]
fn deref(&self) -> &Self::Target {
self.table()
}
}
impl Drop for FreqTable {
fn drop(&mut self) {
// SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
// freed here.
unsafe {
bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
};
}
}
}
#[cfg(CONFIG_CPU_FREQ)]
pub use freq::FreqTable;
use core::{marker::PhantomData, ptr};
use macros::vtable;
/// Creates a null-terminated slice of pointers to [`Cstring`]s.
fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
// Allocated a null-terminated vector of pointers.
let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;
for name in names.iter() {
rust: enable `clippy::ptr_as_ptr` lint In Rust 1.51.0, Clippy introduced the `ptr_as_ptr` lint [1]: > Though `as` casts between raw pointers are not terrible, > `pointer::cast` is safer because it cannot accidentally change the > pointer's mutability, nor cast the pointer to other types like `usize`. There are a few classes of changes required: - Modules generated by bindgen are marked `#[allow(clippy::ptr_as_ptr)]`. - Inferred casts (` as _`) are replaced with `.cast()`. - Ascribed casts (` as *... T`) are replaced with `.cast::<T>()`. - Multistep casts from references (` as *const _ as *const T`) are replaced with `core::ptr::from_ref(&x).cast()` with or without `::<T>` according to the previous rules. The `core::ptr::from_ref` call is required because `(x as *const _).cast::<T>()` results in inference failure. - Native literal C strings are replaced with `c_str!().as_char_ptr()`. - `*mut *mut T as _` is replaced with `let *mut *const T = (*mut *mut T)`.cast();` since pointer to pointer can be confusing. Apply these changes and enable the lint -- no functional change intended. Link: https://rust-lang.github.io/rust-clippy/master/index.html#ptr_as_ptr [1] Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tamir Duberstein <tamird@gmail.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Danilo Krummrich <dakr@kernel.org> Link: https://lore.kernel.org/r/20250615-ptr-as-ptr-v12-1-f43b024581e8@gmail.com [ Added `.cast()` for `opp`. - Miguel ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2025-06-15 16:55:05 -04:00
list.push(name.as_ptr().cast(), GFP_KERNEL)?;
}
list.push(ptr::null(), GFP_KERNEL)?;
Ok(list)
}
/// The voltage unit.
///
/// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
///
/// # Examples
///
/// ```
/// use kernel::opp::MicroVolt;
///
/// let raw = 90500;
/// let volt = MicroVolt(raw);
///
/// assert_eq!(usize::from(volt), raw);
/// assert_eq!(volt, MicroVolt(raw));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct MicroVolt(pub c_ulong);
impl From<MicroVolt> for c_ulong {
#[inline]
fn from(volt: MicroVolt) -> Self {
volt.0
}
}
/// The power unit.
///
/// Represents power in microwatts, wrapping a [`c_ulong`] value.
///
/// # Examples
///
/// ```
/// use kernel::opp::MicroWatt;
///
/// let raw = 1000000;
/// let power = MicroWatt(raw);
///
/// assert_eq!(usize::from(power), raw);
/// assert_eq!(power, MicroWatt(raw));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct MicroWatt(pub c_ulong);
impl From<MicroWatt> for c_ulong {
#[inline]
fn from(power: MicroWatt) -> Self {
power.0
}
}
/// Handle for a dynamically created [`OPP`].
///
/// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
///
/// # Examples
///
/// The following example demonstrates how to create an [`OPP`] dynamically.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Data, MicroVolt, Token};
/// use kernel::types::ARef;
///
/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
/// let data = Data::new(freq, volt, level, false);
///
/// // OPP is removed once token goes out of scope.
/// data.add_opp(dev)
/// }
/// ```
pub struct Token {
dev: ARef<Device>,
freq: Hertz,
}
impl Token {
/// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
Ok(Self {
dev: dev.clone(),
freq: data.freq(),
})
}
}
impl Drop for Token {
fn drop(&mut self) {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
}
}
/// OPP data.
///
/// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
/// points (OPPs) dynamically.
///
/// # Examples
///
/// The following example demonstrates how to create an [`OPP`] with [`Data`].
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Data, MicroVolt, Token};
/// use kernel::types::ARef;
///
/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
/// let data = Data::new(freq, volt, level, false);
///
/// // OPP is removed once token goes out of scope.
/// data.add_opp(dev)
/// }
/// ```
#[repr(transparent)]
pub struct Data(bindings::dev_pm_opp_data);
impl Data {
/// Creates a new instance of [`Data`].
///
/// This can be used to define a dynamic OPP to be added to a device.
pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
Self(bindings::dev_pm_opp_data {
turbo,
freq: freq.into(),
u_volt: volt.into(),
level,
})
}
/// Adds an [`OPP`] dynamically.
///
/// Returns a [`Token`] that ensures the OPP is automatically removed
/// when it goes out of scope.
#[inline]
pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
Token::new(dev, self)
}
/// Returns the frequency associated with this OPP data.
#[inline]
fn freq(&self) -> Hertz {
Hertz(self.0.freq)
}
}
/// [`OPP`] search options.
///
/// # Examples
///
/// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::error::Result;
/// use kernel::opp::{OPP, SearchType, Table};
/// use kernel::types::ARef;
///
/// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
///
/// pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
/// pr_info!("OPP voltage is: {:?}\n", opp.voltage());
/// pr_info!("OPP level is: {}\n", opp.level());
/// pr_info!("OPP power is: {:?}\n", opp.power());
///
/// Ok(opp)
/// }
/// ```
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SearchType {
/// Match the exact frequency.
Exact,
/// Find the highest frequency less than or equal to the given value.
Floor,
/// Find the lowest frequency greater than or equal to the given value.
Ceil,
}
/// OPP configuration callbacks.
///
/// Implement this trait to customize OPP clock and regulator setup for your device.
#[vtable]
pub trait ConfigOps {
/// This is typically used to scale clocks when transitioning between OPPs.
#[inline]
fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
/// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
#[inline]
fn config_regulators(
_dev: &Device,
_opp_old: &OPP,
_opp_new: &OPP,
_data: *mut *mut bindings::regulator,
_count: u32,
) -> Result {
build_error!(VTABLE_DEFAULT_ERROR)
}
}
/// OPP configuration token.
///
/// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
/// configuration is automatically cleared when the token is dropped.
pub struct ConfigToken(i32);
impl Drop for ConfigToken {
fn drop(&mut self) {
// SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
unsafe { bindings::dev_pm_opp_clear_config(self.0) };
}
}
/// OPP configurations.
///
/// Rust abstraction for the C `struct dev_pm_opp_config`.
///
/// # Examples
///
/// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
///
/// ```
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Config, ConfigOps, ConfigToken};
/// use kernel::str::CString;
/// use kernel::types::ARef;
/// use kernel::macros::vtable;
///
/// #[derive(Default)]
/// struct Driver;
///
/// #[vtable]
/// impl ConfigOps for Driver {}
///
/// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
/// let name = CString::try_from_fmt(fmt!("slow"))?;
///
/// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
/// Config::<Driver>::new()
/// .set_prop_name(name)?
/// .set(dev)
/// }
/// ```
#[derive(Default)]
pub struct Config<T: ConfigOps>
where
T: Default,
{
clk_names: Option<KVec<CString>>,
prop_name: Option<CString>,
regulator_names: Option<KVec<CString>>,
supported_hw: Option<KVec<u32>>,
// Tuple containing (required device, index)
required_dev: Option<(ARef<Device>, u32)>,
_data: PhantomData<T>,
}
impl<T: ConfigOps + Default> Config<T> {
/// Creates a new instance of [`Config`].
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Initializes clock names.
pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
if self.clk_names.is_some() {
return Err(EBUSY);
}
if names.is_empty() {
return Err(EINVAL);
}
self.clk_names = Some(names);
Ok(self)
}
/// Initializes property name.
pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
if self.prop_name.is_some() {
return Err(EBUSY);
}
self.prop_name = Some(name);
Ok(self)
}
/// Initializes regulator names.
pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
if self.regulator_names.is_some() {
return Err(EBUSY);
}
if names.is_empty() {
return Err(EINVAL);
}
self.regulator_names = Some(names);
Ok(self)
}
/// Initializes required devices.
pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
if self.required_dev.is_some() {
return Err(EBUSY);
}
self.required_dev = Some((dev, index));
Ok(self)
}
/// Initializes supported hardware.
pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
if self.supported_hw.is_some() {
return Err(EBUSY);
}
if hw.is_empty() {
return Err(EINVAL);
}
self.supported_hw = Some(hw);
Ok(self)
}
/// Sets the configuration with the OPP core.
///
/// The returned [`ConfigToken`] will remove the configuration when dropped.
pub fn set(self, dev: &Device) -> Result<ConfigToken> {
let (_clk_list, clk_names) = match &self.clk_names {
Some(x) => {
let list = to_c_str_array(x)?;
let ptr = list.as_ptr();
(Some(list), ptr)
}
None => (None, ptr::null()),
};
let (_regulator_list, regulator_names) = match &self.regulator_names {
Some(x) => {
let list = to_c_str_array(x)?;
let ptr = list.as_ptr();
(Some(list), ptr)
}
None => (None, ptr::null()),
};
let prop_name = self
.prop_name
.as_ref()
.map_or(ptr::null(), |p| p.as_char_ptr());
let (supported_hw, supported_hw_count) = self
.supported_hw
.as_ref()
.map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));
let (required_dev, required_dev_index) = self
.required_dev
.as_ref()
.map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));
let mut config = bindings::dev_pm_opp_config {
clk_names,
config_clks: if T::HAS_CONFIG_CLKS {
Some(Self::config_clks)
} else {
None
},
prop_name,
regulator_names,
config_regulators: if T::HAS_CONFIG_REGULATORS {
Some(Self::config_regulators)
} else {
None
},
supported_hw,
supported_hw_count,
required_dev,
required_dev_index,
};
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The OPP core guarantees not to access fields of [`Config`] after this call
// and so we don't need to save a copy of them for future use.
let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
if ret < 0 {
Err(Error::from_errno(ret))
} else {
Ok(ConfigToken(ret))
}
}
/// Config's clk callback.
///
/// SAFETY: Called from C. Inputs must be valid pointers.
extern "C" fn config_clks(
dev: *mut bindings::device,
opp_table: *mut bindings::opp_table,
opp: *mut bindings::dev_pm_opp,
_data: *mut c_void,
scaling_down: bool,
) -> c_int {
from_result(|| {
// SAFETY: 'dev' is guaranteed by the C code to be valid.
let dev = unsafe { Device::get_device(dev) };
T::config_clks(
&dev,
// SAFETY: 'opp_table' is guaranteed by the C code to be valid.
&unsafe { Table::from_raw_table(opp_table, &dev) },
// SAFETY: 'opp' is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp(opp)? },
scaling_down,
)
.map(|()| 0)
})
}
/// Config's regulator callback.
///
/// SAFETY: Called from C. Inputs must be valid pointers.
extern "C" fn config_regulators(
dev: *mut bindings::device,
old_opp: *mut bindings::dev_pm_opp,
new_opp: *mut bindings::dev_pm_opp,
regulators: *mut *mut bindings::regulator,
count: c_uint,
) -> c_int {
from_result(|| {
// SAFETY: 'dev' is guaranteed by the C code to be valid.
let dev = unsafe { Device::get_device(dev) };
T::config_regulators(
&dev,
// SAFETY: 'old_opp' is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp(old_opp)? },
// SAFETY: 'new_opp' is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp(new_opp)? },
regulators,
count,
)
.map(|()| 0)
})
}
}
/// A reference-counted OPP table.
///
/// Rust abstraction for the C `struct opp_table`.
///
/// # Invariants
///
/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
///
/// Instances of this type are reference-counted.
///
/// # Examples
///
/// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
/// frequency.
///
/// ```
/// # #![cfg(CONFIG_OF)]
/// use kernel::clk::Hertz;
/// use kernel::cpumask::Cpumask;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::Table;
/// use kernel::types::ARef;
///
/// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
/// let mut opp_table = Table::from_of_cpumask(dev, mask)?;
///
/// if opp_table.opp_count()? == 0 {
/// return Err(EINVAL);
/// }
///
/// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
/// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
///
/// opp_table.set_rate(freq)?;
/// Ok(opp_table)
/// }
/// ```
pub struct Table {
ptr: *mut bindings::opp_table,
dev: ARef<Device>,
#[allow(dead_code)]
em: bool,
#[allow(dead_code)]
of: bool,
cpus: Option<CpumaskVar>,
}
/// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
unsafe impl Send for Table {}
/// SAFETY: It is okay to access [`Table`] through shared references from other threads because
/// we're either accessing properties that don't change or that are properly synchronised by C code.
unsafe impl Sync for Table {}
impl Table {
/// Creates a new reference-counted [`Table`] from a raw pointer.
///
/// # Safety
///
/// Callers must ensure that `ptr` is valid and non-null.
unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
// SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
//
// INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };
Self {
ptr,
dev: dev.clone(),
em: false,
of: false,
cpus: None,
}
}
/// Creates a new reference-counted [`Table`] instance for a [`Device`].
pub fn from_dev(dev: &Device) -> Result<Self> {
// SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
// requirements.
//
// INVARIANT: The reference-count is incremented by the C code and is decremented when
// [`Table`] goes out of scope.
let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;
Ok(Self {
ptr,
dev: dev.into(),
em: false,
of: false,
cpus: None,
})
}
/// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
/// entries.
#[cfg(CONFIG_OF)]
pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
// SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
// requirements.
//
// INVARIANT: The reference-count is incremented by the C code and is decremented when
// [`Table`] goes out of scope.
to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;
// Get the newly created [`Table`].
let mut table = Self::from_dev(dev)?;
table.of = true;
Ok(table)
}
/// Remove device tree based [`Table`].
#[cfg(CONFIG_OF)]
#[inline]
fn remove_of(&self) {
// SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
// requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
// same now.
unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
}
/// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
/// entries.
#[cfg(CONFIG_OF)]
pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
// SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
// instance.
//
// INVARIANT: The reference-count is incremented by the C code and is decremented when
// [`Table`] goes out of scope.
to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;
// Fetch the newly created table.
let mut table = Self::from_dev(dev)?;
table.cpus = Some(CpumaskVar::try_clone(cpumask)?);
Ok(table)
}
/// Remove device tree based [`Table`] for a [`Cpumask`].
#[cfg(CONFIG_OF)]
#[inline]
fn remove_of_cpumask(&self, cpumask: &Cpumask) {
// SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
// it is safe to drop the same now.
unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
}
/// Returns the number of [`OPP`]s in the [`Table`].
pub fn opp_count(&self) -> Result<u32> {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
if ret < 0 {
Err(Error::from_errno(ret))
} else {
Ok(ret as u32)
}
}
/// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
#[inline]
pub fn max_clock_latency_ns(&self) -> usize {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
}
/// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
#[inline]
pub fn max_volt_latency_ns(&self) -> usize {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
}
/// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
#[inline]
pub fn max_transition_latency_ns(&self) -> usize {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
}
/// Returns the suspend [`OPP`]'s frequency.
#[inline]
pub fn suspend_freq(&self) -> Hertz {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
}
/// Synchronizes regulators used by the [`Table`].
#[inline]
pub fn sync_regulators(&self) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
}
/// Gets sharing CPUs.
#[inline]
pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
}
/// Sets sharing CPUs.
pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe {
bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
})?;
if let Some(mask) = self.cpus.as_mut() {
// Update the cpumask as this will be used while removing the table.
cpumask.copy(mask);
}
Ok(())
}
/// Gets sharing CPUs from device tree.
#[cfg(CONFIG_OF)]
#[inline]
pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe {
bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
})
}
/// Updates the voltage value for an [`OPP`].
#[inline]
pub fn adjust_voltage(
&self,
freq: Hertz,
volt: MicroVolt,
volt_min: MicroVolt,
volt_max: MicroVolt,
) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe {
bindings::dev_pm_opp_adjust_voltage(
self.dev.as_raw(),
freq.into(),
volt.into(),
volt_min.into(),
volt_max.into(),
)
})
}
/// Creates [`FreqTable`] from [`Table`].
#[cfg(CONFIG_CPU_FREQ)]
#[inline]
pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
FreqTable::new(self)
}
/// Configures device with [`OPP`] matching the frequency value.
#[inline]
pub fn set_rate(&self, freq: Hertz) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
}
/// Configures device with [`OPP`].
#[inline]
pub fn set_opp(&self, opp: &OPP) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
}
/// Finds [`OPP`] based on frequency.
pub fn opp_from_freq(
&self,
freq: Hertz,
available: Option<bool>,
index: Option<u32>,
stype: SearchType,
) -> Result<ARef<OPP>> {
let raw_dev = self.dev.as_raw();
let index = index.unwrap_or(0);
let mut rate = freq.into();
let ptr = from_err_ptr(match stype {
SearchType::Exact => {
if let Some(available) = available {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and
// its safety requirements. The returned pointer will be owned by the new
// [`OPP`] instance.
unsafe {
bindings::dev_pm_opp_find_freq_exact_indexed(
raw_dev, rate, index, available,
)
}
} else {
return Err(EINVAL);
}
}
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Ceil => unsafe {
bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
},
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Floor => unsafe {
bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
},
})?;
// SAFETY: The `ptr` is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp_owned(ptr) }
}
/// Finds [`OPP`] based on level.
pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
let raw_dev = self.dev.as_raw();
let ptr = from_err_ptr(match stype {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Ceil => unsafe {
bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
},
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Floor => unsafe {
bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
},
})?;
// SAFETY: The `ptr` is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp_owned(ptr) }
}
/// Finds [`OPP`] based on bandwidth.
pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
let raw_dev = self.dev.as_raw();
let ptr = from_err_ptr(match stype {
// The OPP core doesn't support this yet.
SearchType::Exact => return Err(EINVAL),
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Ceil => unsafe {
bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
},
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. The returned pointer will be owned by the new [`OPP`] instance.
SearchType::Floor => unsafe {
bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
},
})?;
// SAFETY: The `ptr` is guaranteed by the C code to be valid.
unsafe { OPP::from_raw_opp_owned(ptr) }
}
/// Enables the [`OPP`].
#[inline]
pub fn enable_opp(&self, freq: Hertz) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
}
/// Disables the [`OPP`].
#[inline]
pub fn disable_opp(&self, freq: Hertz) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
}
/// Registers with the Energy model.
#[cfg(CONFIG_OF)]
pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements.
to_result(unsafe {
bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
})?;
self.em = true;
Ok(())
}
/// Unregisters with the Energy model.
#[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
#[inline]
fn of_unregister_em(&self) {
// SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
// requirements. We registered with the EM framework earlier, it is safe to unregister now.
unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
}
}
impl Drop for Table {
fn drop(&mut self) {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
// to relinquish it now.
unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };
#[cfg(CONFIG_OF)]
{
#[cfg(CONFIG_ENERGY_MODEL)]
if self.em {
self.of_unregister_em();
}
if self.of {
self.remove_of();
} else if let Some(cpumask) = self.cpus.take() {
self.remove_of_cpumask(&cpumask);
}
}
}
}
/// A reference-counted Operating performance point (OPP).
///
/// Rust abstraction for the C `struct dev_pm_opp`.
///
/// # Invariants
///
/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
///
/// Instances of this type are reference-counted. The reference count is incremented by the
/// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
/// represents a pointer that owns a reference count on the [`OPP`].
///
/// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
///
/// # Examples
///
/// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
/// configure the device with it.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::error::Result;
/// use kernel::opp::{SearchType, Table};
///
/// fn configure_opp(table: &Table, freq: Hertz) -> Result {
/// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
///
/// if opp.freq(None) != freq {
/// return Err(EINVAL);
/// }
///
/// table.set_opp(&opp)
/// }
/// ```
#[repr(transparent)]
pub struct OPP(Opaque<bindings::dev_pm_opp>);
/// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
unsafe impl Send for OPP {}
/// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
/// either accessing properties that don't change or that are properly synchronised by C code.
unsafe impl Sync for OPP {}
/// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
unsafe impl AlwaysRefCounted for OPP {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
unsafe { bindings::dev_pm_opp_get(self.0.get()) };
}
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
}
}
impl OPP {
/// Creates an owned reference to a [`OPP`] from a valid pointer.
///
/// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
/// [`ARef`] object is dropped.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
/// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
/// the returned [`ARef`] object takes over the refcount increment on the underlying object and
/// the same will be dropped along with it.
pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;
// SAFETY: The safety requirements guarantee the validity of the pointer.
//
// INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
Ok(unsafe { ARef::from_raw(ptr.cast()) })
}
/// Creates a reference to a [`OPP`] from a valid pointer.
///
/// The refcount is not updated by the Rust API unless the returned reference is converted to
/// an [`ARef`] object.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
#[inline]
pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
// SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
// duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
Ok(unsafe { &*ptr.cast() })
}
#[inline]
fn as_raw(&self) -> *mut bindings::dev_pm_opp {
self.0.get()
}
/// Returns the frequency of an [`OPP`].
pub fn freq(&self, index: Option<u32>) -> Hertz {
let index = index.unwrap_or(0);
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
}
/// Returns the voltage of an [`OPP`].
#[inline]
pub fn voltage(&self) -> MicroVolt {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
}
/// Returns the level of an [`OPP`].
#[inline]
pub fn level(&self) -> u32 {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
}
/// Returns the power of an [`OPP`].
#[inline]
pub fn power(&self) -> MicroWatt {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
}
/// Returns the required pstate of an [`OPP`].
#[inline]
pub fn required_pstate(&self, index: u32) -> u32 {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
}
/// Returns true if the [`OPP`] is turbo.
#[inline]
pub fn is_turbo(&self) -> bool {
// SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
// use it.
unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
}
}