linux/mm/mmap_lock.c

407 lines
10 KiB
C
Raw Permalink Normal View History

mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
// SPDX-License-Identifier: GPL-2.0
#define CREATE_TRACE_POINTS
#include <trace/events/mmap_lock.h>
#include <linux/mm.h>
#include <linux/cgroup.h>
#include <linux/memcontrol.h>
#include <linux/mmap_lock.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/smp.h>
#include <linux/trace_events.h>
#include <linux/local_lock.h>
mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
EXPORT_TRACEPOINT_SYMBOL(mmap_lock_start_locking);
EXPORT_TRACEPOINT_SYMBOL(mmap_lock_acquire_returned);
EXPORT_TRACEPOINT_SYMBOL(mmap_lock_released);
mm/mmap_lock: remove dead code for !CONFIG_TRACING configurations make W=1 generates the following warning in mmap_lock.c for allnoconfig mm/mmap_lock.c:213:6: warning: no previous prototype for `__mmap_lock_do_trace_start_locking' [-Wmissing-prototypes] void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:219:6: warning: no previous prototype for `__mmap_lock_do_trace_acquire_returned' [-Wmissing-prototypes] void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:226:6: warning: no previous prototype for `__mmap_lock_do_trace_released' [-Wmissing-prototypes] void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write) On !CONFIG_TRACING configurations, the code is dead so put it behind an #ifdef. [cuibixuan@huawei.com: fix warning when CONFIG_TRACING is not defined] Link: https://lkml.kernel.org/r/20210531033426.74031-1-cuibixuan@huawei.com Link: https://lkml.kernel.org/r/20210520084809.8576-13-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Bixuan Cui <cuibixuan@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 18:53:50 -07:00
#ifdef CONFIG_TRACING
mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
/*
* Trace calls must be in a separate file, as otherwise there's a circular
* dependency between linux/mmap_lock.h and trace/events/mmap_lock.h.
*/
void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write)
{
trace_mmap_lock_start_locking(mm, write);
mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
}
EXPORT_SYMBOL(__mmap_lock_do_trace_start_locking);
void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write,
bool success)
{
trace_mmap_lock_acquire_returned(mm, write, success);
mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
}
EXPORT_SYMBOL(__mmap_lock_do_trace_acquire_returned);
void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write)
{
trace_mmap_lock_released(mm, write);
mm: mmap_lock: add tracepoints around lock acquisition The goal of these tracepoints is to be able to debug lock contention issues. This lock is acquired on most (all?) mmap / munmap / page fault operations, so a multi-threaded process which does a lot of these can experience significant contention. We trace just before we start acquisition, when the acquisition returns (whether it succeeded or not), and when the lock is released (or downgraded). The events are broken out by lock type (read / write). The events are also broken out by memcg path. For container-based workloads, users often think of several processes in a memcg as a single logical "task", so collecting statistics at this level is useful. The end goal is to get latency information. This isn't directly included in the trace events. Instead, users are expected to compute the time between "start locking" and "acquire returned", using e.g. synthetic events or BPF. The benefit we get from this is simpler code. Because we use tracepoint_enabled() to decide whether or not to trace, this patch has effectively no overhead unless tracepoints are enabled at runtime. If tracepoints are enabled, there is a performance impact, but how much depends on exactly what e.g. the BPF program does. [axelrasmussen@google.com: fix use-after-free race and css ref leak in tracepoints] Link: https://lkml.kernel.org/r/20201130233504.3725241-1-axelrasmussen@google.com [axelrasmussen@google.com: v3] Link: https://lkml.kernel.org/r/20201207213358.573750-1-axelrasmussen@google.com [rostedt@goodmis.org: in-depth examples of tracepoint_enabled() usage, and per-cpu-per-context buffer design] Link: https://lkml.kernel.org/r/20201105211739.568279-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-14 19:07:55 -08:00
}
EXPORT_SYMBOL(__mmap_lock_do_trace_released);
mm/mmap_lock: remove dead code for !CONFIG_TRACING configurations make W=1 generates the following warning in mmap_lock.c for allnoconfig mm/mmap_lock.c:213:6: warning: no previous prototype for `__mmap_lock_do_trace_start_locking' [-Wmissing-prototypes] void __mmap_lock_do_trace_start_locking(struct mm_struct *mm, bool write) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:219:6: warning: no previous prototype for `__mmap_lock_do_trace_acquire_returned' [-Wmissing-prototypes] void __mmap_lock_do_trace_acquire_returned(struct mm_struct *mm, bool write, ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/mmap_lock.c:226:6: warning: no previous prototype for `__mmap_lock_do_trace_released' [-Wmissing-prototypes] void __mmap_lock_do_trace_released(struct mm_struct *mm, bool write) On !CONFIG_TRACING configurations, the code is dead so put it behind an #ifdef. [cuibixuan@huawei.com: fix warning when CONFIG_TRACING is not defined] Link: https://lkml.kernel.org/r/20210531033426.74031-1-cuibixuan@huawei.com Link: https://lkml.kernel.org/r/20210520084809.8576-13-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Bixuan Cui <cuibixuan@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 18:53:50 -07:00
#endif /* CONFIG_TRACING */
#ifdef CONFIG_MMU
#ifdef CONFIG_PER_VMA_LOCK
static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching)
{
unsigned int tgt_refcnt = VMA_LOCK_OFFSET;
/* Additional refcnt if the vma is attached. */
if (!detaching)
tgt_refcnt++;
/*
* If vma is detached then only vma_mark_attached() can raise the
* vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached().
*/
if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt))
return false;
rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_);
rcuwait_wait_event(&vma->vm_mm->vma_writer_wait,
refcount_read(&vma->vm_refcnt) == tgt_refcnt,
TASK_UNINTERRUPTIBLE);
lock_acquired(&vma->vmlock_dep_map, _RET_IP_);
return true;
}
static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached)
{
*detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt);
rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
}
void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq)
{
bool locked;
/*
* __vma_enter_locked() returns false immediately if the vma is not
* attached, otherwise it waits until refcnt is indicating that vma
* is attached with no readers.
*/
locked = __vma_enter_locked(vma, false);
/*
* We should use WRITE_ONCE() here because we can have concurrent reads
* from the early lockless pessimistic check in vma_start_read().
* We don't really care about the correctness of that early check, but
* we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
*/
WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
if (locked) {
bool detached;
__vma_exit_locked(vma, &detached);
WARN_ON_ONCE(detached); /* vma should remain attached */
}
}
EXPORT_SYMBOL_GPL(__vma_start_write);
void vma_mark_detached(struct vm_area_struct *vma)
{
vma_assert_write_locked(vma);
vma_assert_attached(vma);
/*
* We are the only writer, so no need to use vma_refcount_put().
* The condition below is unlikely because the vma has been already
* write-locked and readers can increment vm_refcnt only temporarily
* before they check vm_lock_seq, realize the vma is locked and drop
* back the vm_refcnt. That is a narrow window for observing a raised
* vm_refcnt.
*/
if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
/* Wait until vma is detached with no readers. */
if (__vma_enter_locked(vma, true)) {
bool detached;
__vma_exit_locked(vma, &detached);
WARN_ON_ONCE(!detached);
}
}
}
/*
* Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
* stable and not isolated. If the VMA is not found or is being modified the
* function returns NULL.
*/
struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
unsigned long address)
{
MA_STATE(mas, &mm->mm_mt, address, address);
struct vm_area_struct *vma;
rcu_read_lock();
retry:
vma = mas_walk(&mas);
if (!vma)
goto inval;
vma = vma_start_read(mm, vma);
if (IS_ERR_OR_NULL(vma)) {
/* Check if the VMA got isolated after we found it */
if (PTR_ERR(vma) == -EAGAIN) {
count_vm_vma_lock_event(VMA_LOCK_MISS);
/* The area was replaced with another one */
goto retry;
}
/* Failed to lock the VMA */
goto inval;
}
/*
* At this point, we have a stable reference to a VMA: The VMA is
* locked and we know it hasn't already been isolated.
* From here on, we can access the VMA without worrying about which
* fields are accessible for RCU readers.
*/
/* Check if the vma we locked is the right one. */
mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped By inducing delays in the right places, Jann Horn created a reproducer for a hard to hit UAF issue that became possible after VMAs were allowed to be recycled by adding SLAB_TYPESAFE_BY_RCU to their cache. Race description is borrowed from Jann's discovery report: lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under rcu_read_lock(). At that point, the VMA may be concurrently freed, and it can be recycled by another process. vma_start_read() then increments the vma->vm_refcnt (if it is in an acceptable range), and if this succeeds, vma_start_read() can return a recycled VMA. In this scenario where the VMA has been recycled, lock_vma_under_rcu() will then detect the mismatching ->vm_mm pointer and drop the VMA through vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm. This is wrong: It implicitly assumes that the caller is keeping the VMA's mm alive, but in this scenario the caller has no relation to the VMA's mm, so the rcuwait_wake_up() can cause UAF. The diagram depicting the race: T1 T2 T3 == == == lock_vma_under_rcu mas_walk <VMA gets removed from mm> mmap <the same VMA is reallocated> vma_start_read __refcount_inc_not_zero_limited_acquire munmap __vma_enter_locked refcount_add_not_zero vma_end_read vma_refcount_put __refcount_dec_and_test rcuwait_wait_event <finish operation> rcuwait_wake_up [UAF] Note that rcuwait_wait_event() in T3 does not block because refcount was already dropped by T1. At this point T3 can exit and free the mm causing UAF in T1. To avoid this we move vma->vm_mm verification into vma_start_read() and grab vma->vm_mm to stabilize it before vma_refcount_put() operation. [surenb@google.com: v3] Link: https://lkml.kernel.org/r/20250729145709.2731370-1-surenb@google.com Link: https://lkml.kernel.org/r/20250728175355.2282375-1-surenb@google.com Fixes: 3104138517fc ("mm: make vma cache SLAB_TYPESAFE_BY_RCU") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/all/CAG48ez0-deFbVH=E3jbkWx=X3uVbd8nWeo6kbJPQ0KoUD+m2tA@mail.gmail.com/ Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-28 10:53:55 -07:00
if (unlikely(address < vma->vm_start || address >= vma->vm_end))
goto inval_end_read;
rcu_read_unlock();
return vma;
inval_end_read:
vma_end_read(vma);
inval:
rcu_read_unlock();
count_vm_vma_lock_event(VMA_LOCK_ABORT);
return NULL;
}
fs/proc/task_mmu: read proc/pid/maps under per-vma lock With maple_tree supporting vma tree traversal under RCU and per-vma locks, /proc/pid/maps can be read while holding individual vma locks instead of locking the entire address space. A completely lockless approach (walking vma tree under RCU) would be quite complex with the main issue being get_vma_name() using callbacks which might not work correctly with a stable vma copy, requiring original (unstable) vma - see special_mapping_name() for example. When per-vma lock acquisition fails, we take the mmap_lock for reading, lock the vma, release the mmap_lock and continue. This fallback to mmap read lock guarantees the reader to make forward progress even during lock contention. This will interfere with the writer but for a very short time while we are acquiring the per-vma lock and only when there was contention on the vma reader is interested in. We shouldn't see a repeated fallback to mmap read locks in practice, as this require a very unlikely series of lock contentions (for instance due to repeated vma split operations). However even if this did somehow happen, we would still progress. One case requiring special handling is when a vma changes between the time it was found and the time it got locked. A problematic case would be if a vma got shrunk so that its vm_start moved higher in the address space and a new vma was installed at the beginning: reader found: |--------VMA A--------| VMA is modified: |-VMA B-|----VMA A----| reader locks modified VMA A reader reports VMA A: | gap |----VMA A----| This would result in reporting a gap in the address space that does not exist. To prevent this we retry the lookup after locking the vma, however we do that only when we identify a gap and detect that the address space was changed after we found the vma. This change is designed to reduce mmap_lock contention and prevent a process reading /proc/pid/maps files (often a low priority task, such as monitoring/data collection services) from blocking address space updates. Note that this change has a userspace visible disadvantage: it allows for sub-page data tearing as opposed to the previous mechanism where data tearing could happen only between pages of generated output data. Since current userspace considers data tearing between pages to be acceptable, we assume is will be able to handle sub-page data tearing as well. Link: https://lkml.kernel.org/r/20250719182854.3166724-7-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jeongjun Park <aha310510@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: T.J. Mercier <tjmercier@google.com> Cc: Ye Bin <yebin10@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19 11:28:54 -07:00
static struct vm_area_struct *lock_next_vma_under_mmap_lock(struct mm_struct *mm,
struct vma_iterator *vmi,
unsigned long from_addr)
{
struct vm_area_struct *vma;
int ret;
ret = mmap_read_lock_killable(mm);
if (ret)
return ERR_PTR(ret);
/* Lookup the vma at the last position again under mmap_read_lock */
vma_iter_set(vmi, from_addr);
vma = vma_next(vmi);
if (vma) {
/* Very unlikely vma->vm_refcnt overflow case */
if (unlikely(!vma_start_read_locked(vma)))
vma = ERR_PTR(-EAGAIN);
}
mmap_read_unlock(mm);
return vma;
}
struct vm_area_struct *lock_next_vma(struct mm_struct *mm,
struct vma_iterator *vmi,
unsigned long from_addr)
{
struct vm_area_struct *vma;
unsigned int mm_wr_seq;
bool mmap_unlocked;
RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu read lock held");
retry:
/* Start mmap_lock speculation in case we need to verify the vma later */
mmap_unlocked = mmap_lock_speculate_try_begin(mm, &mm_wr_seq);
vma = vma_next(vmi);
if (!vma)
return NULL;
vma = vma_start_read(mm, vma);
if (IS_ERR_OR_NULL(vma)) {
/*
* Retry immediately if the vma gets detached from under us.
* Infinite loop should not happen because the vma we find will
* have to be constantly knocked out from under us.
*/
if (PTR_ERR(vma) == -EAGAIN) {
/* reset to search from the last address */
vma_iter_set(vmi, from_addr);
goto retry;
}
goto fallback;
}
mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped By inducing delays in the right places, Jann Horn created a reproducer for a hard to hit UAF issue that became possible after VMAs were allowed to be recycled by adding SLAB_TYPESAFE_BY_RCU to their cache. Race description is borrowed from Jann's discovery report: lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under rcu_read_lock(). At that point, the VMA may be concurrently freed, and it can be recycled by another process. vma_start_read() then increments the vma->vm_refcnt (if it is in an acceptable range), and if this succeeds, vma_start_read() can return a recycled VMA. In this scenario where the VMA has been recycled, lock_vma_under_rcu() will then detect the mismatching ->vm_mm pointer and drop the VMA through vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm. This is wrong: It implicitly assumes that the caller is keeping the VMA's mm alive, but in this scenario the caller has no relation to the VMA's mm, so the rcuwait_wake_up() can cause UAF. The diagram depicting the race: T1 T2 T3 == == == lock_vma_under_rcu mas_walk <VMA gets removed from mm> mmap <the same VMA is reallocated> vma_start_read __refcount_inc_not_zero_limited_acquire munmap __vma_enter_locked refcount_add_not_zero vma_end_read vma_refcount_put __refcount_dec_and_test rcuwait_wait_event <finish operation> rcuwait_wake_up [UAF] Note that rcuwait_wait_event() in T3 does not block because refcount was already dropped by T1. At this point T3 can exit and free the mm causing UAF in T1. To avoid this we move vma->vm_mm verification into vma_start_read() and grab vma->vm_mm to stabilize it before vma_refcount_put() operation. [surenb@google.com: v3] Link: https://lkml.kernel.org/r/20250729145709.2731370-1-surenb@google.com Link: https://lkml.kernel.org/r/20250728175355.2282375-1-surenb@google.com Fixes: 3104138517fc ("mm: make vma cache SLAB_TYPESAFE_BY_RCU") Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: Jann Horn <jannh@google.com> Closes: https://lore.kernel.org/all/CAG48ez0-deFbVH=E3jbkWx=X3uVbd8nWeo6kbJPQ0KoUD+m2tA@mail.gmail.com/ Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Jann Horn <jannh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-28 10:53:55 -07:00
/* Verify the vma is not behind the last search position. */
if (unlikely(from_addr >= vma->vm_end))
fs/proc/task_mmu: read proc/pid/maps under per-vma lock With maple_tree supporting vma tree traversal under RCU and per-vma locks, /proc/pid/maps can be read while holding individual vma locks instead of locking the entire address space. A completely lockless approach (walking vma tree under RCU) would be quite complex with the main issue being get_vma_name() using callbacks which might not work correctly with a stable vma copy, requiring original (unstable) vma - see special_mapping_name() for example. When per-vma lock acquisition fails, we take the mmap_lock for reading, lock the vma, release the mmap_lock and continue. This fallback to mmap read lock guarantees the reader to make forward progress even during lock contention. This will interfere with the writer but for a very short time while we are acquiring the per-vma lock and only when there was contention on the vma reader is interested in. We shouldn't see a repeated fallback to mmap read locks in practice, as this require a very unlikely series of lock contentions (for instance due to repeated vma split operations). However even if this did somehow happen, we would still progress. One case requiring special handling is when a vma changes between the time it was found and the time it got locked. A problematic case would be if a vma got shrunk so that its vm_start moved higher in the address space and a new vma was installed at the beginning: reader found: |--------VMA A--------| VMA is modified: |-VMA B-|----VMA A----| reader locks modified VMA A reader reports VMA A: | gap |----VMA A----| This would result in reporting a gap in the address space that does not exist. To prevent this we retry the lookup after locking the vma, however we do that only when we identify a gap and detect that the address space was changed after we found the vma. This change is designed to reduce mmap_lock contention and prevent a process reading /proc/pid/maps files (often a low priority task, such as monitoring/data collection services) from blocking address space updates. Note that this change has a userspace visible disadvantage: it allows for sub-page data tearing as opposed to the previous mechanism where data tearing could happen only between pages of generated output data. Since current userspace considers data tearing between pages to be acceptable, we assume is will be able to handle sub-page data tearing as well. Link: https://lkml.kernel.org/r/20250719182854.3166724-7-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: David Hildenbrand <david@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jeongjun Park <aha310510@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: T.J. Mercier <tjmercier@google.com> Cc: Ye Bin <yebin10@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-07-19 11:28:54 -07:00
goto fallback_unlock;
/*
* vma can be ahead of the last search position but we need to verify
* it was not shrunk after we found it and another vma has not been
* installed ahead of it. Otherwise we might observe a gap that should
* not be there.
*/
if (from_addr < vma->vm_start) {
/* Verify only if the address space might have changed since vma lookup. */
if (!mmap_unlocked || mmap_lock_speculate_retry(mm, mm_wr_seq)) {
vma_iter_set(vmi, from_addr);
if (vma != vma_next(vmi))
goto fallback_unlock;
}
}
return vma;
fallback_unlock:
vma_end_read(vma);
fallback:
rcu_read_unlock();
vma = lock_next_vma_under_mmap_lock(mm, vmi, from_addr);
rcu_read_lock();
/* Reinitialize the iterator after re-entering rcu read section */
vma_iter_set(vmi, IS_ERR_OR_NULL(vma) ? from_addr : vma->vm_end);
return vma;
}
#endif /* CONFIG_PER_VMA_LOCK */
#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
#include <linux/extable.h>
static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
if (likely(mmap_read_trylock(mm)))
return true;
if (regs && !user_mode(regs)) {
unsigned long ip = exception_ip(regs);
if (!search_exception_tables(ip))
return false;
}
return !mmap_read_lock_killable(mm);
}
static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
{
/*
* We don't have this operation yet.
*
* It should be easy enough to do: it's basically a
* atomic_long_try_cmpxchg_acquire()
* from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
* it also needs the proper lockdep magic etc.
*/
return false;
}
static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
mmap_read_unlock(mm);
if (regs && !user_mode(regs)) {
unsigned long ip = exception_ip(regs);
if (!search_exception_tables(ip))
return false;
}
return !mmap_write_lock_killable(mm);
}
/*
* Helper for page fault handling.
*
* This is kind of equivalent to "mmap_read_lock()" followed
* by "find_extend_vma()", except it's a lot more careful about
* the locking (and will drop the lock on failure).
*
* For example, if we have a kernel bug that causes a page
* fault, we don't want to just use mmap_read_lock() to get
* the mm lock, because that would deadlock if the bug were
* to happen while we're holding the mm lock for writing.
*
* So this checks the exception tables on kernel faults in
* order to only do this all for instructions that are actually
* expected to fault.
*
* We can also actually take the mm lock for writing if we
* need to extend the vma, which helps the VM layer a lot.
*/
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
unsigned long addr, struct pt_regs *regs)
{
struct vm_area_struct *vma;
if (!get_mmap_lock_carefully(mm, regs))
return NULL;
vma = find_vma(mm, addr);
if (likely(vma && (vma->vm_start <= addr)))
return vma;
/*
* Well, dang. We might still be successful, but only
* if we can extend a vma to do so.
*/
if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
mmap_read_unlock(mm);
return NULL;
}
/*
* We can try to upgrade the mmap lock atomically,
* in which case we can continue to use the vma
* we already looked up.
*
* Otherwise we'll have to drop the mmap lock and
* re-take it, and also look up the vma again,
* re-checking it.
*/
if (!mmap_upgrade_trylock(mm)) {
if (!upgrade_mmap_lock_carefully(mm, regs))
return NULL;
vma = find_vma(mm, addr);
if (!vma)
goto fail;
if (vma->vm_start <= addr)
goto success;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto fail;
}
if (expand_stack_locked(vma, addr))
goto fail;
success:
mmap_write_downgrade(mm);
return vma;
fail:
mmap_write_unlock(mm);
return NULL;
}
#endif /* CONFIG_LOCK_MM_AND_FIND_VMA */
#else /* CONFIG_MMU */
/*
* At least xtensa ends up having protection faults even with no
* MMU.. No stack expansion, at least.
*/
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
unsigned long addr, struct pt_regs *regs)
{
struct vm_area_struct *vma;
mmap_read_lock(mm);
vma = vma_lookup(mm, addr);
if (!vma)
mmap_read_unlock(mm);
return vma;
}
#endif /* CONFIG_MMU */