License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2015-04-14 15:44:57 -07:00
|
|
|
#ifndef __MM_CMA_H__
|
|
|
|
#define __MM_CMA_H__
|
|
|
|
|
2020-07-09 17:42:44 -07:00
|
|
|
#include <linux/debugfs.h>
|
2021-05-04 18:37:28 -07:00
|
|
|
#include <linux/kobject.h>
|
|
|
|
|
|
|
|
struct cma_kobject {
|
|
|
|
struct kobject kobj;
|
|
|
|
struct cma *cma;
|
|
|
|
};
|
2020-07-09 17:42:44 -07:00
|
|
|
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
/*
|
|
|
|
* Multi-range support. This can be useful if the size of the allocation
|
|
|
|
* is not expected to be larger than the alignment (like with hugetlb_cma),
|
|
|
|
* and the total amount of memory requested, while smaller than the total
|
|
|
|
* amount of memory available, is large enough that it doesn't fit in a
|
|
|
|
* single physical memory range because of memory holes.
|
2025-02-28 18:29:25 +00:00
|
|
|
*
|
|
|
|
* Fields:
|
|
|
|
* @base_pfn: physical address of range
|
|
|
|
* @early_pfn: first PFN not reserved through cma_reserve_early
|
|
|
|
* @count: size of range
|
|
|
|
* @bitmap: bitmap of allocated (1 << order_per_bit)-sized chunks.
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
*/
|
|
|
|
struct cma_memrange {
|
|
|
|
unsigned long base_pfn;
|
|
|
|
unsigned long count;
|
2025-05-09 16:35:28 +08:00
|
|
|
union {
|
|
|
|
unsigned long early_pfn;
|
|
|
|
unsigned long *bitmap;
|
|
|
|
};
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
#ifdef CONFIG_CMA_DEBUGFS
|
|
|
|
struct debugfs_u32_array dfs_bitmap;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
#define CMA_MAX_RANGES 8
|
|
|
|
|
2015-04-14 15:44:57 -07:00
|
|
|
struct cma {
|
|
|
|
unsigned long count;
|
mm/cma: export total and free number of pages for CMA areas
Patch series "hugetlb/CMA improvements for large systems", v5.
On large systems, we observed some issues with hugetlb and CMA:
1) When specifying a large number of hugetlb boot pages (hugepages= on
the commandline), the kernel may run out of memory before it even gets
to HVO. For example, if you have a 3072G system, and want to use 3024
1G hugetlb pages for VMs, that should leave you plenty of space for the
hypervisor, provided you have the hugetlb vmemmap optimization (HVO)
enabled. However, since the vmemmap pages are always allocated first,
and then later in boot freed, you will actually run yourself out of
memory before you can do HVO. This means not getting all the hugetlb
pages you want, and worse, failure to boot if there is an allocation
failure in the system from which it can't recover.
2) There is a system setup where you might want to use hugetlb_cma with
a large value (say, again, 3024 out of 3072G like above), and then
lower that if system usage allows it, to make room for non-hugetlb
processes. For this, a variation of the problem above applies: the
kernel runs out of unmovable space to allocate from before you finish
boot, since your CMA area takes up all the space.
3) CMA wants to use one big contiguous area for allocations. Which
fails if you have the aforementioned 3T system with a gap in the middle
of physical memory (like the < 40bits BIOS DMA area seen on some AMD
systems). You then won't be able to set up a CMA area for one of the
NUMA nodes, leading to loss of half of your hugetlb CMA area.
4) Under the scenario mentioned in 2), when trying to grow the number
of hugetlb pages after dropping it for a while, new CMA allocations may
fail occasionally. This is not unexpected, some transient references
on pages may prevent cma_alloc from succeeding under memory pressure.
However, the hugetlb code then falls back to a normal contiguous alloc,
which may end up succeeding. This is not always desired behavior. If
you have a large CMA area, then the kernel has a restricted amount of
memory it can do unmovable allocations from (a well known issue). A
normal contiguous alloc may eat further in to this space.
To resolve these issues, do the following:
* Add hooks to the section init code to do custom initialization of
memmap pages. Hugetlb bootmem (memblock) allocated pages can then be
pre-HVOed. This avoids allocating a large number of vmemmap pages early
in boot, only to have them be freed again later, and also avoids running
out of memory as described under 1). Using these hooks for hugetlb is
optional. It requires moving hugetlb bootmem allocation to an earlier
spot by the architecture. This has been enabled on x86.
* hugetlb_cma doesn't care about the CMA area it uses being one large
contiguous range. Multiple smaller ranges are fine. The only
requirements are that the areas should be on one NUMA node, and
individual gigantic pages should be allocatable from them. So,
implement multi-range support for CMA, avoiding issue 3).
* Introduce a hugetlb_cma_only option on the commandline. This only
allows allocations from CMA for gigantic pages, if hugetlb_cma= is also
specified.
* With hugetlb_cma_only active, it also makes sense to be able to
pre-allocate gigantic hugetlb pages at boot time from the CMA area(s).
Add a rudimentary early CMA allocation interface, that just grabs a
piece of memblock-allocated space from the CMA area, which gets marked
as allocated in the CMA bitmap when the CMA area is initialized. With
this, hugepages= can be supported with hugetlb_cma=, making scenario 2)
work.
Additionally, fix some minor bugs, with one worth mentioning: since
hugetlb gigantic bootmem pages are allocated by memblock, they may span
multiple zones, as memblock doesn't (and mostly can't) know about zones.
This can cause problems. A hugetlb page spanning multiple zones is bad,
and it's worse with HVO, when the de-HVO step effectively sneakily
re-assigns pages to a different zone than originally configured, since the
tail pages all inherit the zone from the first 60 tail pages. This
condition is not common, but can be easily reproduced using ZONE_MOVABLE.
To fix this, add checks to see if gigantic bootmem pages intersect with
multiple zones, and do not use them if they do, giving them back to the
page allocator instead.
The first patch is kind of along for the ride, except that maintaining an
available_count for a CMA area is convenient for the multiple range
support.
This patch (of 27):
In addition to the number of allocations and releases, system management
software may like to be aware of the size of CMA areas, and how many pages
are available in it. This information is currently not available, so
export it in total_page and available_pages, respectively.
The name 'available_pages' was picked over 'free_pages' because 'free'
implies that the pages are unused. But they might not be, they just
haven't been used by cma_alloc
The number of available pages is tracked regardless of CONFIG_CMA_SYSFS,
allowing for a few minor shortcuts in the code, avoiding bitmap
operations.
Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:02 +00:00
|
|
|
unsigned long available_count;
|
2015-04-14 15:44:57 -07:00
|
|
|
unsigned int order_per_bit; /* Order of pages represented by one bit */
|
2021-05-04 18:34:44 -07:00
|
|
|
spinlock_t lock;
|
2025-02-10 09:56:06 +08:00
|
|
|
struct mutex alloc_mutex;
|
2015-04-14 15:44:59 -07:00
|
|
|
#ifdef CONFIG_CMA_DEBUGFS
|
|
|
|
struct hlist_head mem_head;
|
|
|
|
spinlock_t mem_head_lock;
|
|
|
|
#endif
|
2020-08-11 18:31:57 -07:00
|
|
|
char name[CMA_MAX_NAME];
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
int nranges;
|
|
|
|
struct cma_memrange ranges[CMA_MAX_RANGES];
|
2021-05-04 18:37:28 -07:00
|
|
|
#ifdef CONFIG_CMA_SYSFS
|
|
|
|
/* the number of CMA page successful allocations */
|
|
|
|
atomic64_t nr_pages_succeeded;
|
|
|
|
/* the number of CMA page allocation failures */
|
|
|
|
atomic64_t nr_pages_failed;
|
2024-02-06 10:27:31 +05:30
|
|
|
/* the number of CMA page released */
|
|
|
|
atomic64_t nr_pages_released;
|
2021-05-04 18:37:28 -07:00
|
|
|
/* kobject requires dynamic object */
|
|
|
|
struct cma_kobject *cma_kobj;
|
|
|
|
#endif
|
2025-02-28 18:29:24 +00:00
|
|
|
unsigned long flags;
|
2025-02-28 18:29:23 +00:00
|
|
|
/* NUMA node (NUMA_NO_NODE if unspecified) */
|
|
|
|
int nid;
|
2015-04-14 15:44:57 -07:00
|
|
|
};
|
|
|
|
|
2025-02-28 18:29:24 +00:00
|
|
|
enum cma_flags {
|
|
|
|
CMA_RESERVE_PAGES_ON_ERROR,
|
|
|
|
CMA_ZONES_VALID,
|
|
|
|
CMA_ZONES_INVALID,
|
2025-02-28 18:29:25 +00:00
|
|
|
CMA_ACTIVATED,
|
2025-02-28 18:29:24 +00:00
|
|
|
};
|
|
|
|
|
2015-04-14 15:44:57 -07:00
|
|
|
extern struct cma cma_areas[MAX_CMA_AREAS];
|
2024-11-20 11:01:35 +00:00
|
|
|
extern unsigned int cma_area_count;
|
2015-04-14 15:44:57 -07:00
|
|
|
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
static inline unsigned long cma_bitmap_maxno(struct cma *cma,
|
|
|
|
struct cma_memrange *cmr)
|
2015-04-14 15:44:57 -07:00
|
|
|
{
|
mm, cma: support multiple contiguous ranges, if requested
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-28 18:29:03 +00:00
|
|
|
return cmr->count >> cma->order_per_bit;
|
2015-04-14 15:44:57 -07:00
|
|
|
}
|
|
|
|
|
2021-05-04 18:37:28 -07:00
|
|
|
#ifdef CONFIG_CMA_SYSFS
|
|
|
|
void cma_sysfs_account_success_pages(struct cma *cma, unsigned long nr_pages);
|
|
|
|
void cma_sysfs_account_fail_pages(struct cma *cma, unsigned long nr_pages);
|
2024-02-06 10:27:31 +05:30
|
|
|
void cma_sysfs_account_release_pages(struct cma *cma, unsigned long nr_pages);
|
2021-05-04 18:37:28 -07:00
|
|
|
#else
|
|
|
|
static inline void cma_sysfs_account_success_pages(struct cma *cma,
|
|
|
|
unsigned long nr_pages) {};
|
|
|
|
static inline void cma_sysfs_account_fail_pages(struct cma *cma,
|
|
|
|
unsigned long nr_pages) {};
|
2024-02-06 10:27:31 +05:30
|
|
|
static inline void cma_sysfs_account_release_pages(struct cma *cma,
|
|
|
|
unsigned long nr_pages) {};
|
2021-05-04 18:37:28 -07:00
|
|
|
#endif
|
2015-04-14 15:44:57 -07:00
|
|
|
#endif
|