mirror of
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-08-05 16:54:27 +00:00
266 lines
8.4 KiB
C
266 lines
8.4 KiB
C
![]() |
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
||
|
/* Copyright 2025 Google LLC */
|
||
|
|
||
|
/*
|
||
|
* This file is a "template" that generates a CRC function optimized using the
|
||
|
* RISC-V Zbc (scalar carryless multiplication) extension. The includer of this
|
||
|
* file must define the following parameters to specify the type of CRC:
|
||
|
*
|
||
|
* crc_t: the data type of the CRC, e.g. u32 for a 32-bit CRC
|
||
|
* LSB_CRC: 0 for a msb (most-significant-bit) first CRC, i.e. natural
|
||
|
* mapping between bits and polynomial coefficients
|
||
|
* 1 for a lsb (least-significant-bit) first CRC, i.e. reflected
|
||
|
* mapping between bits and polynomial coefficients
|
||
|
*/
|
||
|
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <linux/minmax.h>
|
||
|
|
||
|
#define CRC_BITS (8 * sizeof(crc_t)) /* a.k.a. 'n' */
|
||
|
|
||
|
static inline unsigned long clmul(unsigned long a, unsigned long b)
|
||
|
{
|
||
|
unsigned long res;
|
||
|
|
||
|
asm(".option push\n"
|
||
|
".option arch,+zbc\n"
|
||
|
"clmul %0, %1, %2\n"
|
||
|
".option pop\n"
|
||
|
: "=r" (res) : "r" (a), "r" (b));
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long clmulh(unsigned long a, unsigned long b)
|
||
|
{
|
||
|
unsigned long res;
|
||
|
|
||
|
asm(".option push\n"
|
||
|
".option arch,+zbc\n"
|
||
|
"clmulh %0, %1, %2\n"
|
||
|
".option pop\n"
|
||
|
: "=r" (res) : "r" (a), "r" (b));
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static inline unsigned long clmulr(unsigned long a, unsigned long b)
|
||
|
{
|
||
|
unsigned long res;
|
||
|
|
||
|
asm(".option push\n"
|
||
|
".option arch,+zbc\n"
|
||
|
"clmulr %0, %1, %2\n"
|
||
|
".option pop\n"
|
||
|
: "=r" (res) : "r" (a), "r" (b));
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* crc_load_long() loads one "unsigned long" of aligned data bytes, producing a
|
||
|
* polynomial whose bit order matches the CRC's bit order.
|
||
|
*/
|
||
|
#ifdef CONFIG_64BIT
|
||
|
# if LSB_CRC
|
||
|
# define crc_load_long(x) le64_to_cpup(x)
|
||
|
# else
|
||
|
# define crc_load_long(x) be64_to_cpup(x)
|
||
|
# endif
|
||
|
#else
|
||
|
# if LSB_CRC
|
||
|
# define crc_load_long(x) le32_to_cpup(x)
|
||
|
# else
|
||
|
# define crc_load_long(x) be32_to_cpup(x)
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
/* XOR @crc into the end of @msgpoly that represents the high-order terms. */
|
||
|
static inline unsigned long
|
||
|
crc_clmul_prep(crc_t crc, unsigned long msgpoly)
|
||
|
{
|
||
|
#if LSB_CRC
|
||
|
return msgpoly ^ crc;
|
||
|
#else
|
||
|
return msgpoly ^ ((unsigned long)crc << (BITS_PER_LONG - CRC_BITS));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Multiply the long-sized @msgpoly by x^n (a.k.a. x^CRC_BITS) and reduce it
|
||
|
* modulo the generator polynomial G. This gives the CRC of @msgpoly.
|
||
|
*/
|
||
|
static inline crc_t
|
||
|
crc_clmul_long(unsigned long msgpoly, const struct crc_clmul_consts *consts)
|
||
|
{
|
||
|
unsigned long tmp;
|
||
|
|
||
|
/*
|
||
|
* First step of Barrett reduction with integrated multiplication by
|
||
|
* x^n: calculate floor((msgpoly * x^n) / G). This is the value by
|
||
|
* which G needs to be multiplied to cancel out the x^n and higher terms
|
||
|
* of msgpoly * x^n. Do it using the following formula:
|
||
|
*
|
||
|
* msb-first:
|
||
|
* floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G)) / x^(BITS_PER_LONG-1))
|
||
|
* lsb-first:
|
||
|
* floor((msgpoly * floor(x^(BITS_PER_LONG-1+n) / G) * x) / x^BITS_PER_LONG)
|
||
|
*
|
||
|
* barrett_reduction_const_1 contains floor(x^(BITS_PER_LONG-1+n) / G),
|
||
|
* which fits a long exactly. Using any lower power of x there would
|
||
|
* not carry enough precision through the calculation, while using any
|
||
|
* higher power of x would require extra instructions to handle a wider
|
||
|
* multiplication. In the msb-first case, using this power of x results
|
||
|
* in needing a floored division by x^(BITS_PER_LONG-1), which matches
|
||
|
* what clmulr produces. In the lsb-first case, a factor of x gets
|
||
|
* implicitly introduced by each carryless multiplication (shown as
|
||
|
* '* x' above), and the floored division instead needs to be by
|
||
|
* x^BITS_PER_LONG which matches what clmul produces.
|
||
|
*/
|
||
|
#if LSB_CRC
|
||
|
tmp = clmul(msgpoly, consts->barrett_reduction_const_1);
|
||
|
#else
|
||
|
tmp = clmulr(msgpoly, consts->barrett_reduction_const_1);
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Second step of Barrett reduction:
|
||
|
*
|
||
|
* crc := (msgpoly * x^n) + (G * floor((msgpoly * x^n) / G))
|
||
|
*
|
||
|
* This reduces (msgpoly * x^n) modulo G by adding the appropriate
|
||
|
* multiple of G to it. The result uses only the x^0..x^(n-1) terms.
|
||
|
* HOWEVER, since the unreduced value (msgpoly * x^n) is zero in those
|
||
|
* terms in the first place, it is more efficient to do the equivalent:
|
||
|
*
|
||
|
* crc := ((G - x^n) * floor((msgpoly * x^n) / G)) mod x^n
|
||
|
*
|
||
|
* In the lsb-first case further modify it to the following which avoids
|
||
|
* a shift, as the crc ends up in the physically low n bits from clmulr:
|
||
|
*
|
||
|
* product := ((G - x^n) * x^(BITS_PER_LONG - n)) * floor((msgpoly * x^n) / G) * x
|
||
|
* crc := floor(product / x^(BITS_PER_LONG + 1 - n)) mod x^n
|
||
|
*
|
||
|
* barrett_reduction_const_2 contains the constant multiplier (G - x^n)
|
||
|
* or (G - x^n) * x^(BITS_PER_LONG - n) from the formulas above. The
|
||
|
* cast of the result to crc_t is essential, as it applies the mod x^n!
|
||
|
*/
|
||
|
#if LSB_CRC
|
||
|
return clmulr(tmp, consts->barrett_reduction_const_2);
|
||
|
#else
|
||
|
return clmul(tmp, consts->barrett_reduction_const_2);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Update @crc with the data from @msgpoly. */
|
||
|
static inline crc_t
|
||
|
crc_clmul_update_long(crc_t crc, unsigned long msgpoly,
|
||
|
const struct crc_clmul_consts *consts)
|
||
|
{
|
||
|
return crc_clmul_long(crc_clmul_prep(crc, msgpoly), consts);
|
||
|
}
|
||
|
|
||
|
/* Update @crc with 1 <= @len < sizeof(unsigned long) bytes of data. */
|
||
|
static inline crc_t
|
||
|
crc_clmul_update_partial(crc_t crc, const u8 *p, size_t len,
|
||
|
const struct crc_clmul_consts *consts)
|
||
|
{
|
||
|
unsigned long msgpoly;
|
||
|
size_t i;
|
||
|
|
||
|
#if LSB_CRC
|
||
|
msgpoly = (unsigned long)p[0] << (BITS_PER_LONG - 8);
|
||
|
for (i = 1; i < len; i++)
|
||
|
msgpoly = (msgpoly >> 8) ^ ((unsigned long)p[i] << (BITS_PER_LONG - 8));
|
||
|
#else
|
||
|
msgpoly = p[0];
|
||
|
for (i = 1; i < len; i++)
|
||
|
msgpoly = (msgpoly << 8) ^ p[i];
|
||
|
#endif
|
||
|
|
||
|
if (len >= sizeof(crc_t)) {
|
||
|
#if LSB_CRC
|
||
|
msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len);
|
||
|
#else
|
||
|
msgpoly ^= (unsigned long)crc << (8*len - CRC_BITS);
|
||
|
#endif
|
||
|
return crc_clmul_long(msgpoly, consts);
|
||
|
}
|
||
|
#if LSB_CRC
|
||
|
msgpoly ^= (unsigned long)crc << (BITS_PER_LONG - 8*len);
|
||
|
return crc_clmul_long(msgpoly, consts) ^ (crc >> (8*len));
|
||
|
#else
|
||
|
msgpoly ^= crc >> (CRC_BITS - 8*len);
|
||
|
return crc_clmul_long(msgpoly, consts) ^ (crc << (8*len));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static inline crc_t
|
||
|
crc_clmul(crc_t crc, const void *p, size_t len,
|
||
|
const struct crc_clmul_consts *consts)
|
||
|
{
|
||
|
size_t align;
|
||
|
|
||
|
/* This implementation assumes that the CRC fits in an unsigned long. */
|
||
|
BUILD_BUG_ON(sizeof(crc_t) > sizeof(unsigned long));
|
||
|
|
||
|
/* If the buffer is not long-aligned, align it. */
|
||
|
align = (unsigned long)p % sizeof(unsigned long);
|
||
|
if (align && len) {
|
||
|
align = min(sizeof(unsigned long) - align, len);
|
||
|
crc = crc_clmul_update_partial(crc, p, align, consts);
|
||
|
p += align;
|
||
|
len -= align;
|
||
|
}
|
||
|
|
||
|
if (len >= 4 * sizeof(unsigned long)) {
|
||
|
unsigned long m0, m1;
|
||
|
|
||
|
m0 = crc_clmul_prep(crc, crc_load_long(p));
|
||
|
m1 = crc_load_long(p + sizeof(unsigned long));
|
||
|
p += 2 * sizeof(unsigned long);
|
||
|
len -= 2 * sizeof(unsigned long);
|
||
|
/*
|
||
|
* Main loop. Each iteration starts with a message polynomial
|
||
|
* (x^BITS_PER_LONG)*m0 + m1, then logically extends it by two
|
||
|
* more longs of data to form x^(3*BITS_PER_LONG)*m0 +
|
||
|
* x^(2*BITS_PER_LONG)*m1 + x^BITS_PER_LONG*m2 + m3, then
|
||
|
* "folds" that back into a congruent (modulo G) value that uses
|
||
|
* just m0 and m1 again. This is done by multiplying m0 by the
|
||
|
* precomputed constant (x^(3*BITS_PER_LONG) mod G) and m1 by
|
||
|
* the precomputed constant (x^(2*BITS_PER_LONG) mod G), then
|
||
|
* adding the results to m2 and m3 as appropriate. Each such
|
||
|
* multiplication produces a result twice the length of a long,
|
||
|
* which in RISC-V is two instructions clmul and clmulh.
|
||
|
*
|
||
|
* This could be changed to fold across more than 2 longs at a
|
||
|
* time if there is a CPU that can take advantage of it.
|
||
|
*/
|
||
|
do {
|
||
|
unsigned long p0, p1, p2, p3;
|
||
|
|
||
|
p0 = clmulh(m0, consts->fold_across_2_longs_const_hi);
|
||
|
p1 = clmul(m0, consts->fold_across_2_longs_const_hi);
|
||
|
p2 = clmulh(m1, consts->fold_across_2_longs_const_lo);
|
||
|
p3 = clmul(m1, consts->fold_across_2_longs_const_lo);
|
||
|
m0 = (LSB_CRC ? p1 ^ p3 : p0 ^ p2) ^ crc_load_long(p);
|
||
|
m1 = (LSB_CRC ? p0 ^ p2 : p1 ^ p3) ^
|
||
|
crc_load_long(p + sizeof(unsigned long));
|
||
|
|
||
|
p += 2 * sizeof(unsigned long);
|
||
|
len -= 2 * sizeof(unsigned long);
|
||
|
} while (len >= 2 * sizeof(unsigned long));
|
||
|
|
||
|
crc = crc_clmul_long(m0, consts);
|
||
|
crc = crc_clmul_update_long(crc, m1, consts);
|
||
|
}
|
||
|
|
||
|
while (len >= sizeof(unsigned long)) {
|
||
|
crc = crc_clmul_update_long(crc, crc_load_long(p), consts);
|
||
|
p += sizeof(unsigned long);
|
||
|
len -= sizeof(unsigned long);
|
||
|
}
|
||
|
|
||
|
if (len)
|
||
|
crc = crc_clmul_update_partial(crc, p, len, consts);
|
||
|
|
||
|
return crc;
|
||
|
}
|