linux/fs/xfs/xfs_zone_gc.c

1179 lines
29 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2023-2025 Christoph Hellwig.
* Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_trans.h"
#include "xfs_icache.h"
#include "xfs_rmap.h"
#include "xfs_rtbitmap.h"
#include "xfs_rtrmap_btree.h"
#include "xfs_zone_alloc.h"
#include "xfs_zone_priv.h"
#include "xfs_zones.h"
#include "xfs_trace.h"
/*
* Implement Garbage Collection (GC) of partially used zoned.
*
* To support the purely sequential writes in each zone, zoned XFS needs to be
* able to move data remaining in a zone out of it to reset the zone to prepare
* for writing to it again.
*
* This is done by the GC thread implemented in this file. To support that a
* number of zones (XFS_GC_ZONES) is reserved from the user visible capacity to
* write the garbage collected data into.
*
* Whenever the available space is below the chosen threshold, the GC thread
* looks for potential non-empty but not fully used zones that are worth
* reclaiming. Once found the rmap for the victim zone is queried, and after
* a bit of sorting to reduce fragmentation, the still live extents are read
* into memory and written to the GC target zone, and the bmap btree of the
* files is updated to point to the new location. To avoid taking the IOLOCK
* and MMAPLOCK for the entire GC process and thus affecting the latency of
* user reads and writes to the files, the GC writes are speculative and the
* I/O completion checks that no other writes happened for the affected regions
* before remapping.
*
* Once a zone does not contain any valid data, be that through GC or user
* block removal, it is queued for for a zone reset. The reset operation
* carefully ensures that the RT device cache is flushed and all transactions
* referencing the rmap have been committed to disk.
*/
/*
* Size of each GC scratch pad. This is also the upper bound for each
* GC I/O, which helps to keep latency down.
*/
#define XFS_GC_CHUNK_SIZE SZ_1M
/*
* Scratchpad data to read GCed data into.
*
* The offset member tracks where the next allocation starts, and freed tracks
* the amount of space that is not used anymore.
*/
#define XFS_ZONE_GC_NR_SCRATCH 2
struct xfs_zone_scratch {
struct folio *folio;
unsigned int offset;
unsigned int freed;
};
/*
* Chunk that is read and written for each GC operation.
*
* Note that for writes to actual zoned devices, the chunk can be split when
* reaching the hardware limit.
*/
struct xfs_gc_bio {
struct xfs_zone_gc_data *data;
/*
* Entry into the reading/writing/resetting list. Only accessed from
* the GC thread, so no locking needed.
*/
struct list_head entry;
/*
* State of this gc_bio. Done means the current I/O completed.
* Set from the bio end I/O handler, read from the GC thread.
*/
enum {
XFS_GC_BIO_NEW,
XFS_GC_BIO_DONE,
} state;
/*
* Pointer to the inode and byte range in the inode that this
* GC chunk is operating on.
*/
struct xfs_inode *ip;
loff_t offset;
unsigned int len;
/*
* Existing startblock (in the zone to be freed) and newly assigned
* daddr in the zone GCed into.
*/
xfs_fsblock_t old_startblock;
xfs_daddr_t new_daddr;
struct xfs_zone_scratch *scratch;
/* Are we writing to a sequential write required zone? */
bool is_seq;
/* Open Zone being written to */
struct xfs_open_zone *oz;
/* Bio used for reads and writes, including the bvec used by it */
struct bio_vec bv;
struct bio bio; /* must be last */
};
#define XFS_ZONE_GC_RECS 1024
/* iterator, needs to be reinitialized for each victim zone */
struct xfs_zone_gc_iter {
struct xfs_rtgroup *victim_rtg;
unsigned int rec_count;
unsigned int rec_idx;
xfs_agblock_t next_startblock;
struct xfs_rmap_irec *recs;
};
/*
* Per-mount GC state.
*/
struct xfs_zone_gc_data {
struct xfs_mount *mp;
/* bioset used to allocate the gc_bios */
struct bio_set bio_set;
/*
* Scratchpad used, and index to indicated which one is used.
*/
struct xfs_zone_scratch scratch[XFS_ZONE_GC_NR_SCRATCH];
unsigned int scratch_idx;
/*
* List of bios currently being read, written and reset.
* These lists are only accessed by the GC thread itself, and must only
* be processed in order.
*/
struct list_head reading;
struct list_head writing;
struct list_head resetting;
/*
* Iterator for the victim zone.
*/
struct xfs_zone_gc_iter iter;
};
/*
* We aim to keep enough zones free in stock to fully use the open zone limit
* for data placement purposes. Additionally, the m_zonegc_low_space tunable
* can be set to make sure a fraction of the unused blocks are available for
* writing.
*/
bool
xfs_zoned_need_gc(
struct xfs_mount *mp)
{
s64 available, free, threshold;
s32 remainder;
if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_RECLAIMABLE))
return false;
available = xfs_estimate_freecounter(mp, XC_FREE_RTAVAILABLE);
if (available <
mp->m_groups[XG_TYPE_RTG].blocks *
(mp->m_max_open_zones - XFS_OPEN_GC_ZONES))
return true;
free = xfs_estimate_freecounter(mp, XC_FREE_RTEXTENTS);
threshold = div_s64_rem(free, 100, &remainder);
threshold = threshold * mp->m_zonegc_low_space +
remainder * div_s64(mp->m_zonegc_low_space, 100);
if (available < threshold)
return true;
return false;
}
static struct xfs_zone_gc_data *
xfs_zone_gc_data_alloc(
struct xfs_mount *mp)
{
struct xfs_zone_gc_data *data;
int i;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
data->iter.recs = kcalloc(XFS_ZONE_GC_RECS, sizeof(*data->iter.recs),
GFP_KERNEL);
if (!data->iter.recs)
goto out_free_data;
/*
* We actually only need a single bio_vec. It would be nice to have
* a flag that only allocates the inline bvecs and not the separate
* bvec pool.
*/
if (bioset_init(&data->bio_set, 16, offsetof(struct xfs_gc_bio, bio),
BIOSET_NEED_BVECS))
goto out_free_recs;
for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++) {
data->scratch[i].folio =
folio_alloc(GFP_KERNEL, get_order(XFS_GC_CHUNK_SIZE));
if (!data->scratch[i].folio)
goto out_free_scratch;
}
INIT_LIST_HEAD(&data->reading);
INIT_LIST_HEAD(&data->writing);
INIT_LIST_HEAD(&data->resetting);
data->mp = mp;
return data;
out_free_scratch:
while (--i >= 0)
folio_put(data->scratch[i].folio);
bioset_exit(&data->bio_set);
out_free_recs:
kfree(data->iter.recs);
out_free_data:
kfree(data);
return NULL;
}
static void
xfs_zone_gc_data_free(
struct xfs_zone_gc_data *data)
{
int i;
for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++)
folio_put(data->scratch[i].folio);
bioset_exit(&data->bio_set);
kfree(data->iter.recs);
kfree(data);
}
static void
xfs_zone_gc_iter_init(
struct xfs_zone_gc_iter *iter,
struct xfs_rtgroup *victim_rtg)
{
iter->next_startblock = 0;
iter->rec_count = 0;
iter->rec_idx = 0;
iter->victim_rtg = victim_rtg;
}
/*
* Query the rmap of the victim zone to gather the records to evacuate.
*/
static int
xfs_zone_gc_query_cb(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *irec,
void *private)
{
struct xfs_zone_gc_iter *iter = private;
ASSERT(!XFS_RMAP_NON_INODE_OWNER(irec->rm_owner));
ASSERT(!xfs_is_sb_inum(cur->bc_mp, irec->rm_owner));
ASSERT(!(irec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)));
iter->recs[iter->rec_count] = *irec;
if (++iter->rec_count == XFS_ZONE_GC_RECS) {
iter->next_startblock =
irec->rm_startblock + irec->rm_blockcount;
return 1;
}
return 0;
}
static int
xfs_zone_gc_rmap_rec_cmp(
const void *a,
const void *b)
{
const struct xfs_rmap_irec *reca = a;
const struct xfs_rmap_irec *recb = b;
int diff;
diff = cmp_int(reca->rm_owner, recb->rm_owner);
if (diff)
return diff;
return cmp_int(reca->rm_offset, recb->rm_offset);
}
static int
xfs_zone_gc_query(
struct xfs_mount *mp,
struct xfs_zone_gc_iter *iter)
{
struct xfs_rtgroup *rtg = iter->victim_rtg;
struct xfs_rmap_irec ri_low = { };
struct xfs_rmap_irec ri_high;
struct xfs_btree_cur *cur;
struct xfs_trans *tp;
int error;
ASSERT(iter->next_startblock <= rtg_blocks(rtg));
if (iter->next_startblock == rtg_blocks(rtg))
goto done;
ASSERT(iter->next_startblock < rtg_blocks(rtg));
ri_low.rm_startblock = iter->next_startblock;
memset(&ri_high, 0xFF, sizeof(ri_high));
iter->rec_idx = 0;
iter->rec_count = 0;
tp = xfs_trans_alloc_empty(mp);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
cur = xfs_rtrmapbt_init_cursor(tp, rtg);
error = xfs_rmap_query_range(cur, &ri_low, &ri_high,
xfs_zone_gc_query_cb, iter);
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
xfs_btree_del_cursor(cur, error < 0 ? error : 0);
xfs_trans_cancel(tp);
if (error < 0)
return error;
/*
* Sort the rmap records by inode number and increasing offset to
* defragment the mappings.
*
* This could be further enhanced by an even bigger look ahead window,
* but that's better left until we have better detection of changes to
* inode mapping to avoid the potential of GCing already dead data.
*/
sort(iter->recs, iter->rec_count, sizeof(iter->recs[0]),
xfs_zone_gc_rmap_rec_cmp, NULL);
if (error == 0) {
/*
* We finished iterating through the zone.
*/
iter->next_startblock = rtg_blocks(rtg);
if (iter->rec_count == 0)
goto done;
}
return 0;
done:
xfs_rtgroup_rele(iter->victim_rtg);
iter->victim_rtg = NULL;
return 0;
}
static bool
xfs_zone_gc_iter_next(
struct xfs_mount *mp,
struct xfs_zone_gc_iter *iter,
struct xfs_rmap_irec *chunk_rec,
struct xfs_inode **ipp)
{
struct xfs_rmap_irec *irec;
int error;
if (!iter->victim_rtg)
return false;
retry:
if (iter->rec_idx == iter->rec_count) {
error = xfs_zone_gc_query(mp, iter);
if (error)
goto fail;
if (!iter->victim_rtg)
return false;
}
irec = &iter->recs[iter->rec_idx];
error = xfs_iget(mp, NULL, irec->rm_owner,
XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, ipp);
if (error) {
/*
* If the inode was already deleted, skip over it.
*/
if (error == -ENOENT) {
iter->rec_idx++;
goto retry;
}
goto fail;
}
if (!S_ISREG(VFS_I(*ipp)->i_mode) || !XFS_IS_REALTIME_INODE(*ipp)) {
iter->rec_idx++;
xfs_irele(*ipp);
goto retry;
}
*chunk_rec = *irec;
return true;
fail:
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
return false;
}
static void
xfs_zone_gc_iter_advance(
struct xfs_zone_gc_iter *iter,
xfs_extlen_t count_fsb)
{
struct xfs_rmap_irec *irec = &iter->recs[iter->rec_idx];
irec->rm_offset += count_fsb;
irec->rm_startblock += count_fsb;
irec->rm_blockcount -= count_fsb;
if (!irec->rm_blockcount)
iter->rec_idx++;
}
static struct xfs_rtgroup *
xfs_zone_gc_pick_victim_from(
struct xfs_mount *mp,
uint32_t bucket)
{
struct xfs_zone_info *zi = mp->m_zone_info;
uint32_t victim_used = U32_MAX;
struct xfs_rtgroup *victim_rtg = NULL;
uint32_t bit;
if (!zi->zi_used_bucket_entries[bucket])
return NULL;
for_each_set_bit(bit, zi->zi_used_bucket_bitmap[bucket],
mp->m_sb.sb_rgcount) {
struct xfs_rtgroup *rtg = xfs_rtgroup_grab(mp, bit);
if (!rtg)
continue;
/* skip zones that are just waiting for a reset */
if (rtg_rmap(rtg)->i_used_blocks == 0 ||
rtg_rmap(rtg)->i_used_blocks >= victim_used) {
xfs_rtgroup_rele(rtg);
continue;
}
if (victim_rtg)
xfs_rtgroup_rele(victim_rtg);
victim_rtg = rtg;
victim_used = rtg_rmap(rtg)->i_used_blocks;
/*
* Any zone that is less than 1 percent used is fair game for
* instant reclaim. All of these zones are in the last
* bucket, so avoid the expensive division for the zones
* in the other buckets.
*/
if (bucket == 0 &&
rtg_rmap(rtg)->i_used_blocks < rtg_blocks(rtg) / 100)
break;
}
return victim_rtg;
}
/*
* Iterate through all zones marked as reclaimable and find a candidate to
* reclaim.
*/
static bool
xfs_zone_gc_select_victim(
struct xfs_zone_gc_data *data)
{
struct xfs_zone_gc_iter *iter = &data->iter;
struct xfs_mount *mp = data->mp;
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_rtgroup *victim_rtg = NULL;
unsigned int bucket;
if (xfs_is_shutdown(mp))
return false;
if (iter->victim_rtg)
return true;
/*
* Don't start new work if we are asked to stop or park.
*/
if (kthread_should_stop() || kthread_should_park())
return false;
if (!xfs_zoned_need_gc(mp))
return false;
spin_lock(&zi->zi_used_buckets_lock);
for (bucket = 0; bucket < XFS_ZONE_USED_BUCKETS; bucket++) {
victim_rtg = xfs_zone_gc_pick_victim_from(mp, bucket);
if (victim_rtg)
break;
}
spin_unlock(&zi->zi_used_buckets_lock);
if (!victim_rtg)
return false;
trace_xfs_zone_gc_select_victim(victim_rtg, bucket);
xfs_zone_gc_iter_init(iter, victim_rtg);
return true;
}
static struct xfs_open_zone *
xfs_zone_gc_steal_open(
struct xfs_zone_info *zi)
{
struct xfs_open_zone *oz, *found = NULL;
spin_lock(&zi->zi_open_zones_lock);
list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) {
if (!found || oz->oz_allocated < found->oz_allocated)
found = oz;
}
if (found) {
found->oz_is_gc = true;
list_del_init(&found->oz_entry);
zi->zi_nr_open_zones--;
}
spin_unlock(&zi->zi_open_zones_lock);
return found;
}
static struct xfs_open_zone *
xfs_zone_gc_select_target(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_open_zone *oz = zi->zi_open_gc_zone;
/*
* We need to wait for pending writes to finish.
*/
if (oz && oz->oz_written < rtg_blocks(oz->oz_rtg))
return NULL;
ASSERT(zi->zi_nr_open_zones <=
mp->m_max_open_zones - XFS_OPEN_GC_ZONES);
oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
if (oz)
trace_xfs_zone_gc_target_opened(oz->oz_rtg);
spin_lock(&zi->zi_open_zones_lock);
zi->zi_open_gc_zone = oz;
spin_unlock(&zi->zi_open_zones_lock);
return oz;
}
/*
* Ensure we have a valid open zone to write the GC data to.
*
* If the current target zone has space keep writing to it, else first wait for
* all pending writes and then pick a new one.
*/
static struct xfs_open_zone *
xfs_zone_gc_ensure_target(
struct xfs_mount *mp)
{
struct xfs_open_zone *oz = mp->m_zone_info->zi_open_gc_zone;
if (!oz || oz->oz_allocated == rtg_blocks(oz->oz_rtg))
return xfs_zone_gc_select_target(mp);
return oz;
}
static unsigned int
xfs_zone_gc_scratch_available(
struct xfs_zone_gc_data *data)
{
return XFS_GC_CHUNK_SIZE - data->scratch[data->scratch_idx].offset;
}
static bool
xfs_zone_gc_space_available(
struct xfs_zone_gc_data *data)
{
struct xfs_open_zone *oz;
oz = xfs_zone_gc_ensure_target(data->mp);
if (!oz)
return false;
return oz->oz_allocated < rtg_blocks(oz->oz_rtg) &&
xfs_zone_gc_scratch_available(data);
}
static void
xfs_zone_gc_end_io(
struct bio *bio)
{
struct xfs_gc_bio *chunk =
container_of(bio, struct xfs_gc_bio, bio);
struct xfs_zone_gc_data *data = chunk->data;
WRITE_ONCE(chunk->state, XFS_GC_BIO_DONE);
wake_up_process(data->mp->m_zone_info->zi_gc_thread);
}
static struct xfs_open_zone *
xfs_zone_gc_alloc_blocks(
struct xfs_zone_gc_data *data,
xfs_extlen_t *count_fsb,
xfs_daddr_t *daddr,
bool *is_seq)
{
struct xfs_mount *mp = data->mp;
struct xfs_open_zone *oz;
oz = xfs_zone_gc_ensure_target(mp);
if (!oz)
return NULL;
*count_fsb = min(*count_fsb,
XFS_B_TO_FSB(mp, xfs_zone_gc_scratch_available(data)));
/*
* Directly allocate GC blocks from the reserved pool.
*
* If we'd take them from the normal pool we could be stealing blocks
* from a regular writer, which would then have to wait for GC and
* deadlock.
*/
spin_lock(&mp->m_sb_lock);
*count_fsb = min(*count_fsb,
rtg_blocks(oz->oz_rtg) - oz->oz_allocated);
*count_fsb = min3(*count_fsb,
mp->m_free[XC_FREE_RTEXTENTS].res_avail,
mp->m_free[XC_FREE_RTAVAILABLE].res_avail);
mp->m_free[XC_FREE_RTEXTENTS].res_avail -= *count_fsb;
mp->m_free[XC_FREE_RTAVAILABLE].res_avail -= *count_fsb;
spin_unlock(&mp->m_sb_lock);
if (!*count_fsb)
return NULL;
*daddr = xfs_gbno_to_daddr(&oz->oz_rtg->rtg_group, 0);
*is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *daddr);
if (!*is_seq)
*daddr += XFS_FSB_TO_BB(mp, oz->oz_allocated);
oz->oz_allocated += *count_fsb;
atomic_inc(&oz->oz_ref);
return oz;
}
static bool
xfs_zone_gc_start_chunk(
struct xfs_zone_gc_data *data)
{
struct xfs_zone_gc_iter *iter = &data->iter;
struct xfs_mount *mp = data->mp;
struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
struct xfs_open_zone *oz;
struct xfs_rmap_irec irec;
struct xfs_gc_bio *chunk;
struct xfs_inode *ip;
struct bio *bio;
xfs_daddr_t daddr;
bool is_seq;
if (xfs_is_shutdown(mp))
return false;
if (!xfs_zone_gc_iter_next(mp, iter, &irec, &ip))
return false;
oz = xfs_zone_gc_alloc_blocks(data, &irec.rm_blockcount, &daddr,
&is_seq);
if (!oz) {
xfs_irele(ip);
return false;
}
bio = bio_alloc_bioset(bdev, 1, REQ_OP_READ, GFP_NOFS, &data->bio_set);
chunk = container_of(bio, struct xfs_gc_bio, bio);
chunk->ip = ip;
chunk->offset = XFS_FSB_TO_B(mp, irec.rm_offset);
chunk->len = XFS_FSB_TO_B(mp, irec.rm_blockcount);
chunk->old_startblock =
xfs_rgbno_to_rtb(iter->victim_rtg, irec.rm_startblock);
chunk->new_daddr = daddr;
chunk->is_seq = is_seq;
chunk->scratch = &data->scratch[data->scratch_idx];
chunk->data = data;
chunk->oz = oz;
bio->bi_iter.bi_sector = xfs_rtb_to_daddr(mp, chunk->old_startblock);
bio->bi_end_io = xfs_zone_gc_end_io;
bio_add_folio_nofail(bio, chunk->scratch->folio, chunk->len,
chunk->scratch->offset);
chunk->scratch->offset += chunk->len;
if (chunk->scratch->offset == XFS_GC_CHUNK_SIZE) {
data->scratch_idx =
(data->scratch_idx + 1) % XFS_ZONE_GC_NR_SCRATCH;
}
WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
list_add_tail(&chunk->entry, &data->reading);
xfs_zone_gc_iter_advance(iter, irec.rm_blockcount);
submit_bio(bio);
return true;
}
static void
xfs_zone_gc_free_chunk(
struct xfs_gc_bio *chunk)
{
list_del(&chunk->entry);
xfs_open_zone_put(chunk->oz);
xfs_irele(chunk->ip);
bio_put(&chunk->bio);
}
static void
xfs_zone_gc_submit_write(
struct xfs_zone_gc_data *data,
struct xfs_gc_bio *chunk)
{
if (chunk->is_seq) {
chunk->bio.bi_opf &= ~REQ_OP_WRITE;
chunk->bio.bi_opf |= REQ_OP_ZONE_APPEND;
}
chunk->bio.bi_iter.bi_sector = chunk->new_daddr;
chunk->bio.bi_end_io = xfs_zone_gc_end_io;
submit_bio(&chunk->bio);
}
static struct xfs_gc_bio *
xfs_zone_gc_split_write(
struct xfs_zone_gc_data *data,
struct xfs_gc_bio *chunk)
{
struct queue_limits *lim =
&bdev_get_queue(chunk->bio.bi_bdev)->limits;
struct xfs_gc_bio *split_chunk;
int split_sectors;
unsigned int split_len;
struct bio *split;
unsigned int nsegs;
if (!chunk->is_seq)
return NULL;
split_sectors = bio_split_rw_at(&chunk->bio, lim, &nsegs,
lim->max_zone_append_sectors << SECTOR_SHIFT);
if (!split_sectors)
return NULL;
/* ensure the split chunk is still block size aligned */
split_sectors = ALIGN_DOWN(split_sectors << SECTOR_SHIFT,
data->mp->m_sb.sb_blocksize) >> SECTOR_SHIFT;
split_len = split_sectors << SECTOR_SHIFT;
split = bio_split(&chunk->bio, split_sectors, GFP_NOFS, &data->bio_set);
split_chunk = container_of(split, struct xfs_gc_bio, bio);
split_chunk->data = data;
ihold(VFS_I(chunk->ip));
split_chunk->ip = chunk->ip;
split_chunk->is_seq = chunk->is_seq;
split_chunk->scratch = chunk->scratch;
split_chunk->offset = chunk->offset;
split_chunk->len = split_len;
split_chunk->old_startblock = chunk->old_startblock;
split_chunk->new_daddr = chunk->new_daddr;
split_chunk->oz = chunk->oz;
atomic_inc(&chunk->oz->oz_ref);
chunk->offset += split_len;
chunk->len -= split_len;
chunk->old_startblock += XFS_B_TO_FSB(data->mp, split_len);
/* add right before the original chunk */
WRITE_ONCE(split_chunk->state, XFS_GC_BIO_NEW);
list_add_tail(&split_chunk->entry, &chunk->entry);
return split_chunk;
}
static void
xfs_zone_gc_write_chunk(
struct xfs_gc_bio *chunk)
{
struct xfs_zone_gc_data *data = chunk->data;
struct xfs_mount *mp = chunk->ip->i_mount;
phys_addr_t bvec_paddr =
bvec_phys(bio_first_bvec_all(&chunk->bio));
struct xfs_gc_bio *split_chunk;
if (chunk->bio.bi_status)
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
if (xfs_is_shutdown(mp)) {
xfs_zone_gc_free_chunk(chunk);
return;
}
WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
list_move_tail(&chunk->entry, &data->writing);
bio_reset(&chunk->bio, mp->m_rtdev_targp->bt_bdev, REQ_OP_WRITE);
bio_add_folio_nofail(&chunk->bio, chunk->scratch->folio, chunk->len,
offset_in_folio(chunk->scratch->folio, bvec_paddr));
while ((split_chunk = xfs_zone_gc_split_write(data, chunk)))
xfs_zone_gc_submit_write(data, split_chunk);
xfs_zone_gc_submit_write(data, chunk);
}
static void
xfs_zone_gc_finish_chunk(
struct xfs_gc_bio *chunk)
{
uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
struct xfs_inode *ip = chunk->ip;
struct xfs_mount *mp = ip->i_mount;
int error;
if (chunk->bio.bi_status)
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
if (xfs_is_shutdown(mp)) {
xfs_zone_gc_free_chunk(chunk);
return;
}
chunk->scratch->freed += chunk->len;
if (chunk->scratch->freed == chunk->scratch->offset) {
chunk->scratch->offset = 0;
chunk->scratch->freed = 0;
}
/*
* Cycle through the iolock and wait for direct I/O and layouts to
* ensure no one is reading from the old mapping before it goes away.
*
* Note that xfs_zoned_end_io() below checks that no other writer raced
* with us to update the mapping by checking that the old startblock
* didn't change.
*/
xfs_ilock(ip, iolock);
error = xfs_break_layouts(VFS_I(ip), &iolock, BREAK_UNMAP);
if (!error)
inode_dio_wait(VFS_I(ip));
xfs_iunlock(ip, iolock);
if (error)
goto free;
if (chunk->is_seq)
chunk->new_daddr = chunk->bio.bi_iter.bi_sector;
error = xfs_zoned_end_io(ip, chunk->offset, chunk->len,
chunk->new_daddr, chunk->oz, chunk->old_startblock);
free:
if (error)
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
xfs_zone_gc_free_chunk(chunk);
}
static void
xfs_zone_gc_finish_reset(
struct xfs_gc_bio *chunk)
{
struct xfs_rtgroup *rtg = chunk->bio.bi_private;
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_zone_info *zi = mp->m_zone_info;
if (chunk->bio.bi_status) {
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
goto out;
}
xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
atomic_inc(&zi->zi_nr_free_zones);
xfs_zoned_add_available(mp, rtg_blocks(rtg));
wake_up_all(&zi->zi_zone_wait);
out:
list_del(&chunk->entry);
bio_put(&chunk->bio);
}
static bool
xfs_zone_gc_prepare_reset(
struct bio *bio,
struct xfs_rtgroup *rtg)
{
trace_xfs_zone_reset(rtg);
ASSERT(rtg_rmap(rtg)->i_used_blocks == 0);
bio->bi_iter.bi_sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
if (!bdev_zone_is_seq(bio->bi_bdev, bio->bi_iter.bi_sector)) {
if (!bdev_max_discard_sectors(bio->bi_bdev))
return false;
bio->bi_opf = REQ_OP_DISCARD | REQ_SYNC;
bio->bi_iter.bi_size =
XFS_FSB_TO_B(rtg_mount(rtg), rtg_blocks(rtg));
}
return true;
}
int
xfs_zone_gc_reset_sync(
struct xfs_rtgroup *rtg)
{
int error = 0;
struct bio bio;
bio_init(&bio, rtg_mount(rtg)->m_rtdev_targp->bt_bdev, NULL, 0,
REQ_OP_ZONE_RESET);
if (xfs_zone_gc_prepare_reset(&bio, rtg))
error = submit_bio_wait(&bio);
bio_uninit(&bio);
return error;
}
static void
xfs_zone_gc_reset_zones(
struct xfs_zone_gc_data *data,
struct xfs_group *reset_list)
{
struct xfs_group *next = reset_list;
if (blkdev_issue_flush(data->mp->m_rtdev_targp->bt_bdev) < 0) {
xfs_force_shutdown(data->mp, SHUTDOWN_META_IO_ERROR);
return;
}
do {
struct xfs_rtgroup *rtg = to_rtg(next);
struct xfs_gc_bio *chunk;
struct bio *bio;
xfs_log_force_inode(rtg_rmap(rtg));
next = rtg_group(rtg)->xg_next_reset;
rtg_group(rtg)->xg_next_reset = NULL;
bio = bio_alloc_bioset(rtg_mount(rtg)->m_rtdev_targp->bt_bdev,
0, REQ_OP_ZONE_RESET, GFP_NOFS, &data->bio_set);
bio->bi_private = rtg;
bio->bi_end_io = xfs_zone_gc_end_io;
chunk = container_of(bio, struct xfs_gc_bio, bio);
chunk->data = data;
WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
list_add_tail(&chunk->entry, &data->resetting);
/*
* Also use the bio to drive the state machine when neither
* zone reset nor discard is supported to keep things simple.
*/
if (xfs_zone_gc_prepare_reset(bio, rtg))
submit_bio(bio);
else
bio_endio(bio);
} while (next);
}
/*
* Handle the work to read and write data for GC and to reset the zones,
* including handling all completions.
*
* Note that the order of the chunks is preserved so that we don't undo the
* optimal order established by xfs_zone_gc_query().
*/
static bool
xfs_zone_gc_handle_work(
struct xfs_zone_gc_data *data)
{
struct xfs_zone_info *zi = data->mp->m_zone_info;
struct xfs_gc_bio *chunk, *next;
struct xfs_group *reset_list;
struct blk_plug plug;
spin_lock(&zi->zi_reset_list_lock);
reset_list = zi->zi_reset_list;
zi->zi_reset_list = NULL;
spin_unlock(&zi->zi_reset_list_lock);
if (!xfs_zone_gc_select_victim(data) ||
!xfs_zone_gc_space_available(data)) {
if (list_empty(&data->reading) &&
list_empty(&data->writing) &&
list_empty(&data->resetting) &&
!reset_list)
return false;
}
__set_current_state(TASK_RUNNING);
try_to_freeze();
if (reset_list)
xfs_zone_gc_reset_zones(data, reset_list);
list_for_each_entry_safe(chunk, next, &data->resetting, entry) {
if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
break;
xfs_zone_gc_finish_reset(chunk);
}
list_for_each_entry_safe(chunk, next, &data->writing, entry) {
if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
break;
xfs_zone_gc_finish_chunk(chunk);
}
blk_start_plug(&plug);
list_for_each_entry_safe(chunk, next, &data->reading, entry) {
if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
break;
xfs_zone_gc_write_chunk(chunk);
}
blk_finish_plug(&plug);
blk_start_plug(&plug);
while (xfs_zone_gc_start_chunk(data))
;
blk_finish_plug(&plug);
return true;
}
/*
* Note that the current GC algorithm would break reflinks and thus duplicate
* data that was shared by multiple owners before. Because of that reflinks
* are currently not supported on zoned file systems and can't be created or
* mounted.
*/
static int
xfs_zoned_gcd(
void *private)
{
struct xfs_zone_gc_data *data = private;
struct xfs_mount *mp = data->mp;
struct xfs_zone_info *zi = mp->m_zone_info;
unsigned int nofs_flag;
nofs_flag = memalloc_nofs_save();
set_freezable();
for (;;) {
set_current_state(TASK_INTERRUPTIBLE | TASK_FREEZABLE);
xfs_set_zonegc_running(mp);
if (xfs_zone_gc_handle_work(data))
continue;
if (list_empty(&data->reading) &&
list_empty(&data->writing) &&
list_empty(&data->resetting) &&
!zi->zi_reset_list) {
xfs_clear_zonegc_running(mp);
xfs_zoned_resv_wake_all(mp);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
break;
}
if (kthread_should_park()) {
__set_current_state(TASK_RUNNING);
kthread_parkme();
continue;
}
}
schedule();
}
xfs_clear_zonegc_running(mp);
if (data->iter.victim_rtg)
xfs_rtgroup_rele(data->iter.victim_rtg);
memalloc_nofs_restore(nofs_flag);
xfs_zone_gc_data_free(data);
return 0;
}
void
xfs_zone_gc_start(
struct xfs_mount *mp)
{
if (xfs_has_zoned(mp))
kthread_unpark(mp->m_zone_info->zi_gc_thread);
}
void
xfs_zone_gc_stop(
struct xfs_mount *mp)
{
if (xfs_has_zoned(mp))
kthread_park(mp->m_zone_info->zi_gc_thread);
}
int
xfs_zone_gc_mount(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi = mp->m_zone_info;
struct xfs_zone_gc_data *data;
struct xfs_open_zone *oz;
int error;
/*
* If there are no free zones available for GC, pick the open zone with
* the least used space to GC into. This should only happen after an
* unclean shutdown near ENOSPC while GC was ongoing.
*
* We also need to do this for the first gc zone allocation if we
* unmounted while at the open limit.
*/
if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_FREE) ||
zi->zi_nr_open_zones == mp->m_max_open_zones)
oz = xfs_zone_gc_steal_open(zi);
else
oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
if (!oz) {
xfs_warn(mp, "unable to allocate a zone for gc");
error = -EIO;
goto out;
}
trace_xfs_zone_gc_target_opened(oz->oz_rtg);
zi->zi_open_gc_zone = oz;
data = xfs_zone_gc_data_alloc(mp);
if (!data) {
error = -ENOMEM;
goto out_put_gc_zone;
}
mp->m_zone_info->zi_gc_thread = kthread_create(xfs_zoned_gcd, data,
"xfs-zone-gc/%s", mp->m_super->s_id);
if (IS_ERR(mp->m_zone_info->zi_gc_thread)) {
xfs_warn(mp, "unable to create zone gc thread");
error = PTR_ERR(mp->m_zone_info->zi_gc_thread);
goto out_free_gc_data;
}
/* xfs_zone_gc_start will unpark for rw mounts */
kthread_park(mp->m_zone_info->zi_gc_thread);
return 0;
out_free_gc_data:
kfree(data);
out_put_gc_zone:
xfs_open_zone_put(zi->zi_open_gc_zone);
out:
return error;
}
void
xfs_zone_gc_unmount(
struct xfs_mount *mp)
{
struct xfs_zone_info *zi = mp->m_zone_info;
kthread_stop(zi->zi_gc_thread);
if (zi->zi_open_gc_zone)
xfs_open_zone_put(zi->zi_open_gc_zone);
}