linux/fs/nfsd/filecache.c

1389 lines
37 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
2019-08-18 14:18:48 -04:00
/*
* The NFSD open file cache.
2019-08-18 14:18:48 -04:00
*
* (c) 2015 - Jeff Layton <jeff.layton@primarydata.com>
*
* An nfsd_file object is a per-file collection of open state that binds
* together:
* - a struct file *
* - a user credential
* - a network namespace
* - a read-ahead context
* - monitoring for writeback errors
*
* nfsd_file objects are reference-counted. Consumers acquire a new
* object via the nfsd_file_acquire API. They manage their interest in
* the acquired object, and hence the object's reference count, via
* nfsd_file_get and nfsd_file_put. There are two varieties of nfsd_file
* object:
*
* * non-garbage-collected: When a consumer wants to precisely control
* the lifetime of a file's open state, it acquires a non-garbage-
* collected nfsd_file. The final nfsd_file_put releases the open
* state immediately.
*
* * garbage-collected: When a consumer does not control the lifetime
* of open state, it acquires a garbage-collected nfsd_file. The
* final nfsd_file_put allows the open state to linger for a period
* during which it may be re-used.
2019-08-18 14:18:48 -04:00
*/
#include <linux/hash.h>
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/pagemap.h>
2019-08-18 14:18:48 -04:00
#include <linux/sched.h>
#include <linux/list_lru.h>
#include <linux/fsnotify_backend.h>
#include <linux/fsnotify.h>
#include <linux/seq_file.h>
#include <linux/rhashtable.h>
#include <linux/nfslocalio.h>
2019-08-18 14:18:48 -04:00
#include "vfs.h"
#include "nfsd.h"
#include "nfsfh.h"
#include "netns.h"
2019-08-18 14:18:48 -04:00
#include "filecache.h"
#include "trace.h"
#define NFSD_LAUNDRETTE_DELAY (2 * HZ)
#define NFSD_FILE_CACHE_UP (0)
2019-08-18 14:18:48 -04:00
/* We only care about NFSD_MAY_READ/WRITE for this cache */
nfsd: add LOCALIO support Add server support for bypassing NFS for localhost reads, writes, and commits. This is only useful when both the client and server are running on the same host. If nfsd_open_local_fh() fails then the NFS client will both retry and fallback to normal network-based read, write and commit operations if localio is no longer supported. Care is taken to ensure the same NFS security mechanisms are used (authentication, etc) regardless of whether localio or regular NFS access is used. The auth_domain established as part of the traditional NFS client access to the NFS server is also used for localio. Store auth_domain for localio in nfsd_uuid_t and transfer it to the client if it is local to the server. Relative to containers, localio gives the client access to the network namespace the server has. This is required to allow the client to access the server's per-namespace nfsd_net struct. This commit also introduces the use of NFSD's percpu_ref to interlock nfsd_destroy_serv and nfsd_open_local_fh, to ensure nn->nfsd_serv is not destroyed while in use by nfsd_open_local_fh and other LOCALIO client code. CONFIG_NFS_LOCALIO enables NFS server support for LOCALIO. Signed-off-by: Weston Andros Adamson <dros@primarydata.com> Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com> Co-developed-by: Mike Snitzer <snitzer@kernel.org> Signed-off-by: Mike Snitzer <snitzer@kernel.org> Co-developed-by: NeilBrown <neilb@suse.de> Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Acked-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Anna Schumaker <anna.schumaker@oracle.com>
2024-09-05 15:09:50 -04:00
#define NFSD_FILE_MAY_MASK (NFSD_MAY_READ|NFSD_MAY_WRITE|NFSD_MAY_LOCALIO)
2019-08-18 14:18:48 -04:00
static DEFINE_PER_CPU(unsigned long, nfsd_file_cache_hits);
static DEFINE_PER_CPU(unsigned long, nfsd_file_acquisitions);
static DEFINE_PER_CPU(unsigned long, nfsd_file_allocations);
static DEFINE_PER_CPU(unsigned long, nfsd_file_releases);
static DEFINE_PER_CPU(unsigned long, nfsd_file_total_age);
static DEFINE_PER_CPU(unsigned long, nfsd_file_evictions);
2019-08-18 14:18:48 -04:00
struct nfsd_fcache_disposal {
spinlock_t lock;
struct list_head freeme;
};
2019-08-18 14:18:48 -04:00
static struct kmem_cache *nfsd_file_slab;
static struct kmem_cache *nfsd_file_mark_slab;
static struct list_lru nfsd_file_lru;
static unsigned long nfsd_file_flags;
2019-08-18 14:18:48 -04:00
static struct fsnotify_group *nfsd_file_fsnotify_group;
static struct delayed_work nfsd_filecache_laundrette;
static struct rhltable nfsd_file_rhltable
____cacheline_aligned_in_smp;
static bool
nfsd_match_cred(const struct cred *c1, const struct cred *c2)
{
int i;
if (!uid_eq(c1->fsuid, c2->fsuid))
return false;
if (!gid_eq(c1->fsgid, c2->fsgid))
return false;
if (c1->group_info == NULL || c2->group_info == NULL)
return c1->group_info == c2->group_info;
if (c1->group_info->ngroups != c2->group_info->ngroups)
return false;
for (i = 0; i < c1->group_info->ngroups; i++) {
if (!gid_eq(c1->group_info->gid[i], c2->group_info->gid[i]))
return false;
}
return true;
}
static const struct rhashtable_params nfsd_file_rhash_params = {
.key_len = sizeof_field(struct nfsd_file, nf_inode),
.key_offset = offsetof(struct nfsd_file, nf_inode),
.head_offset = offsetof(struct nfsd_file, nf_rlist),
/*
* Start with a single page hash table to reduce resizing churn
* on light workloads.
*/
.min_size = 256,
.automatic_shrinking = true,
};
2019-08-18 14:18:48 -04:00
static void
nfsd_file_schedule_laundrette(void)
2019-08-18 14:18:48 -04:00
{
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags))
queue_delayed_work(system_unbound_wq, &nfsd_filecache_laundrette,
NFSD_LAUNDRETTE_DELAY);
2019-08-18 14:18:48 -04:00
}
static void
nfsd_file_slab_free(struct rcu_head *rcu)
{
struct nfsd_file *nf = container_of(rcu, struct nfsd_file, nf_rcu);
put_cred(nf->nf_cred);
kmem_cache_free(nfsd_file_slab, nf);
}
static void
nfsd_file_mark_free(struct fsnotify_mark *mark)
{
struct nfsd_file_mark *nfm = container_of(mark, struct nfsd_file_mark,
nfm_mark);
kmem_cache_free(nfsd_file_mark_slab, nfm);
}
static struct nfsd_file_mark *
nfsd_file_mark_get(struct nfsd_file_mark *nfm)
{
if (!refcount_inc_not_zero(&nfm->nfm_ref))
2019-08-18 14:18:48 -04:00
return NULL;
return nfm;
}
static void
nfsd_file_mark_put(struct nfsd_file_mark *nfm)
{
if (refcount_dec_and_test(&nfm->nfm_ref)) {
2019-08-18 14:18:48 -04:00
fsnotify_destroy_mark(&nfm->nfm_mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(&nfm->nfm_mark);
}
}
static struct nfsd_file_mark *
nfsd_file_mark_find_or_create(struct inode *inode)
2019-08-18 14:18:48 -04:00
{
int err;
struct fsnotify_mark *mark;
struct nfsd_file_mark *nfm = NULL, *new;
do {
fsnotify_group_lock(nfsd_file_fsnotify_group);
mark = fsnotify_find_inode_mark(inode,
nfsd_file_fsnotify_group);
2019-08-18 14:18:48 -04:00
if (mark) {
nfm = nfsd_file_mark_get(container_of(mark,
struct nfsd_file_mark,
nfm_mark));
fsnotify_group_unlock(nfsd_file_fsnotify_group);
if (nfm) {
fsnotify_put_mark(mark);
2019-08-18 14:18:48 -04:00
break;
}
/* Avoid soft lockup race with nfsd_file_mark_put() */
fsnotify_destroy_mark(mark, nfsd_file_fsnotify_group);
fsnotify_put_mark(mark);
} else {
fsnotify_group_unlock(nfsd_file_fsnotify_group);
}
2019-08-18 14:18:48 -04:00
/* allocate a new nfm */
new = kmem_cache_alloc(nfsd_file_mark_slab, GFP_KERNEL);
if (!new)
return NULL;
fsnotify_init_mark(&new->nfm_mark, nfsd_file_fsnotify_group);
new->nfm_mark.mask = FS_ATTRIB|FS_DELETE_SELF;
refcount_set(&new->nfm_ref, 1);
2019-08-18 14:18:48 -04:00
err = fsnotify_add_inode_mark(&new->nfm_mark, inode, 0);
/*
* If the add was successful, then return the object.
* Otherwise, we need to put the reference we hold on the
* nfm_mark. The fsnotify code will take a reference and put
* it on failure, so we can't just free it directly. It's also
* not safe to call fsnotify_destroy_mark on it as the
* mark->group will be NULL. Thus, we can't let the nfm_ref
* counter drive the destruction at this point.
*/
if (likely(!err))
nfm = new;
else
fsnotify_put_mark(&new->nfm_mark);
} while (unlikely(err == -EEXIST));
return nfm;
}
static struct nfsd_file *
nfsd_file_alloc(struct net *net, struct inode *inode, unsigned char need,
bool want_gc)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file *nf;
nf = kmem_cache_alloc(nfsd_file_slab, GFP_KERNEL);
if (unlikely(!nf))
return NULL;
this_cpu_inc(nfsd_file_allocations);
INIT_LIST_HEAD(&nf->nf_lru);
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
INIT_LIST_HEAD(&nf->nf_gc);
nf->nf_birthtime = ktime_get();
nf->nf_file = NULL;
nf->nf_cred = get_current_cred();
nf->nf_net = net;
nf->nf_flags = want_gc ?
BIT(NFSD_FILE_HASHED) | BIT(NFSD_FILE_PENDING) | BIT(NFSD_FILE_GC) :
BIT(NFSD_FILE_HASHED) | BIT(NFSD_FILE_PENDING);
nf->nf_inode = inode;
refcount_set(&nf->nf_ref, 1);
nf->nf_may = need;
nf->nf_mark = NULL;
2019-08-18 14:18:48 -04:00
return nf;
}
nfsd: don't fsync nfsd_files on last close Most of the time, NFSv4 clients issue a COMMIT before the final CLOSE of an open stateid, so with NFSv4, the fsync in the nfsd_file_free path is usually a no-op and doesn't block. We have a customer running knfsd over very slow storage (XFS over Ceph RBD). They were using the "async" export option because performance was more important than data integrity for this application. That export option turns NFSv4 COMMIT calls into no-ops. Due to the fsync in this codepath however, their final CLOSE calls would still stall (since a CLOSE effectively became a COMMIT). I think this fsync is not strictly necessary. We only use that result to reset the write verifier. Instead of fsync'ing all of the data when we free an nfsd_file, we can just check for writeback errors when one is acquired and when it is freed. If the client never comes back, then it'll never see the error anyway and there is no point in resetting it. If an error occurs after the nfsd_file is removed from the cache but before the inode is evicted, then it will reset the write verifier on the next nfsd_file_acquire, (since there will be an unseen error). The only exception here is if something else opens and fsyncs the file during that window. Given that local applications work with this limitation today, I don't see that as an issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=2166658 Fixes: ac3a2585f018 ("nfsd: rework refcounting in filecache") Reported-and-tested-by: Pierguido Lambri <plambri@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-02-07 12:02:46 -05:00
/**
* nfsd_file_check_write_error - check for writeback errors on a file
* @nf: nfsd_file to check for writeback errors
*
* Check whether a nfsd_file has an unseen error. Reset the write
* verifier if so.
*/
static void
nfsd_file_check_write_error(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
nfsd: don't fsync nfsd_files on last close Most of the time, NFSv4 clients issue a COMMIT before the final CLOSE of an open stateid, so with NFSv4, the fsync in the nfsd_file_free path is usually a no-op and doesn't block. We have a customer running knfsd over very slow storage (XFS over Ceph RBD). They were using the "async" export option because performance was more important than data integrity for this application. That export option turns NFSv4 COMMIT calls into no-ops. Due to the fsync in this codepath however, their final CLOSE calls would still stall (since a CLOSE effectively became a COMMIT). I think this fsync is not strictly necessary. We only use that result to reset the write verifier. Instead of fsync'ing all of the data when we free an nfsd_file, we can just check for writeback errors when one is acquired and when it is freed. If the client never comes back, then it'll never see the error anyway and there is no point in resetting it. If an error occurs after the nfsd_file is removed from the cache but before the inode is evicted, then it will reset the write verifier on the next nfsd_file_acquire, (since there will be an unseen error). The only exception here is if something else opens and fsyncs the file during that window. Given that local applications work with this limitation today, I don't see that as an issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=2166658 Fixes: ac3a2585f018 ("nfsd: rework refcounting in filecache") Reported-and-tested-by: Pierguido Lambri <plambri@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-02-07 12:02:46 -05:00
if ((file->f_mode & FMODE_WRITE) &&
filemap_check_wb_err(file->f_mapping, READ_ONCE(file->f_wb_err)))
nfsd_reset_write_verifier(net_generic(nf->nf_net, nfsd_net_id));
}
static void
nfsd_file_hash_remove(struct nfsd_file *nf)
{
trace_nfsd_file_unhash(nf);
rhltable_remove(&nfsd_file_rhltable, &nf->nf_rlist,
nfsd_file_rhash_params);
}
static bool
nfsd_file_unhash(struct nfsd_file *nf)
{
if (test_and_clear_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
nfsd_file_hash_remove(nf);
return true;
}
return false;
}
static void
2019-08-18 14:18:48 -04:00
nfsd_file_free(struct nfsd_file *nf)
{
s64 age = ktime_to_ms(ktime_sub(ktime_get(), nf->nf_birthtime));
2019-08-18 14:18:48 -04:00
trace_nfsd_file_free(nf);
this_cpu_inc(nfsd_file_releases);
this_cpu_add(nfsd_file_total_age, age);
nfsd_file_unhash(nf);
2019-08-18 14:18:48 -04:00
if (nf->nf_mark)
nfsd_file_mark_put(nf->nf_mark);
if (nf->nf_file) {
nfsd: don't fsync nfsd_files on last close Most of the time, NFSv4 clients issue a COMMIT before the final CLOSE of an open stateid, so with NFSv4, the fsync in the nfsd_file_free path is usually a no-op and doesn't block. We have a customer running knfsd over very slow storage (XFS over Ceph RBD). They were using the "async" export option because performance was more important than data integrity for this application. That export option turns NFSv4 COMMIT calls into no-ops. Due to the fsync in this codepath however, their final CLOSE calls would still stall (since a CLOSE effectively became a COMMIT). I think this fsync is not strictly necessary. We only use that result to reset the write verifier. Instead of fsync'ing all of the data when we free an nfsd_file, we can just check for writeback errors when one is acquired and when it is freed. If the client never comes back, then it'll never see the error anyway and there is no point in resetting it. If an error occurs after the nfsd_file is removed from the cache but before the inode is evicted, then it will reset the write verifier on the next nfsd_file_acquire, (since there will be an unseen error). The only exception here is if something else opens and fsyncs the file during that window. Given that local applications work with this limitation today, I don't see that as an issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=2166658 Fixes: ac3a2585f018 ("nfsd: rework refcounting in filecache") Reported-and-tested-by: Pierguido Lambri <plambri@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-02-07 12:02:46 -05:00
nfsd_file_check_write_error(nf);
nfsd: use __fput_sync() to avoid delayed closing of files. Calling fput() directly or though filp_close() from a kernel thread like nfsd causes the final __fput() (if necessary) to be called from a workqueue. This means that nfsd is not forced to wait for any work to complete. If the ->release or ->destroy_inode function is slow for any reason, this can result in nfsd closing files more quickly than the workqueue can complete the close and the queue of pending closes can grow without bounces (30 million has been seen at one customer site, though this was in part due to a slowness in xfs which has since been fixed). nfsd does not need this. It is quite appropriate and safe for nfsd to do its own close work. There is no reason that close should ever wait for nfsd, so no deadlock can occur. It should be safe and sensible to change all fput() calls to __fput_sync(). However in the interests of caution this patch only changes two - the two that can be most directly affected by client behaviour and could occur at high frequency. - the fput() implicitly in flip_close() is changed to __fput_sync() by calling get_file() first to ensure filp_close() doesn't do the final fput() itself. If is where files opened for IO are closed. - the fput() in nfsd_read() is also changed. This is where directories opened for readdir are closed. This ensure that minimal fput work is queued to the workqueue. This removes the need for the flush_delayed_fput() call in nfsd_file_close_inode_sync() Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-12-15 12:18:31 +11:00
nfsd_filp_close(nf->nf_file);
2019-08-18 14:18:48 -04:00
}
/*
* If this item is still linked via nf_lru, that's a bug.
* WARN and leak it to preserve system stability.
*/
if (WARN_ON_ONCE(!list_empty(&nf->nf_lru)))
return;
2019-08-18 14:18:48 -04:00
call_rcu(&nf->nf_rcu, nfsd_file_slab_free);
}
static bool
nfsd_file_check_writeback(struct nfsd_file *nf)
{
struct file *file = nf->nf_file;
struct address_space *mapping;
/* File not open for write? */
if (!(file->f_mode & FMODE_WRITE))
return false;
/*
* Some filesystems (e.g. NFS) flush all dirty data on close.
* On others, there is no need to wait for writeback.
*/
if (!(file_inode(file)->i_sb->s_export_op->flags & EXPORT_OP_FLUSH_ON_CLOSE))
return false;
mapping = file->f_mapping;
return mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) ||
mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
}
static void nfsd_file_lru_add(struct nfsd_file *nf)
2019-08-18 14:18:48 -04:00
{
refcount_inc(&nf->nf_ref);
if (list_lru_add_obj(&nfsd_file_lru, &nf->nf_lru))
trace_nfsd_file_lru_add(nf);
else
WARN_ON(1);
nfsd_file_schedule_laundrette();
}
2019-08-18 14:18:48 -04:00
static bool nfsd_file_lru_remove(struct nfsd_file *nf)
{
list_lru: allow explicit memcg and NUMA node selection Patch series "workload-specific and memory pressure-driven zswap writeback", v8. There are currently several issues with zswap writeback: 1. There is only a single global LRU for zswap, making it impossible to perform worload-specific shrinking - an memcg under memory pressure cannot determine which pages in the pool it owns, and often ends up writing pages from other memcgs. This issue has been previously observed in practice and mitigated by simply disabling memcg-initiated shrinking: https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u But this solution leaves a lot to be desired, as we still do not have an avenue for an memcg to free up its own memory locked up in the zswap pool. 2. We only shrink the zswap pool when the user-defined limit is hit. This means that if we set the limit too high, cold data that are unlikely to be used again will reside in the pool, wasting precious memory. It is hard to predict how much zswap space will be needed ahead of time, as this depends on the workload (specifically, on factors such as memory access patterns and compressibility of the memory pages). This patch series solves these issues by separating the global zswap LRU into per-memcg and per-NUMA LRUs, and performs workload-specific (i.e memcg- and NUMA-aware) zswap writeback under memory pressure. The new shrinker does not have any parameter that must be tuned by the user, and can be opted in or out on a per-memcg basis. As a proof of concept, we ran the following synthetic benchmark: build the linux kernel in a memory-limited cgroup, and allocate some cold data in tmpfs to see if the shrinker could write them out and improved the overall performance. Depending on the amount of cold data generated, we observe from 14% to 35% reduction in kernel CPU time used in the kernel builds. This patch (of 6): The interface of list_lru is based on the assumption that the list node and the data it represents belong to the same allocated on the correct node/memcg. While this assumption is valid for existing slab objects LRU such as dentries and inodes, it is undocumented, and rather inflexible for certain potential list_lru users (such as the upcoming zswap shrinker and the THP shrinker). It has caused us a lot of issues during our development. This patch changes list_lru interface so that the caller must explicitly specify numa node and memcg when adding and removing objects. The old list_lru_add() and list_lru_del() are renamed to list_lru_add_obj() and list_lru_del_obj(), respectively. It also extends the list_lru API with a new function, list_lru_putback, which undoes a previous list_lru_isolate call. Unlike list_lru_add, it does not increment the LRU node count (as list_lru_isolate does not decrement the node count). list_lru_putback also allows for explicit memcg and NUMA node selection. Link: https://lkml.kernel.org/r/20231130194023.4102148-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-30 11:40:18 -08:00
if (list_lru_del_obj(&nfsd_file_lru, &nf->nf_lru)) {
trace_nfsd_file_lru_del(nf);
return true;
}
return false;
}
struct nfsd_file *
nfsd_file_get(struct nfsd_file *nf)
2019-08-18 14:18:48 -04:00
{
if (nf && refcount_inc_not_zero(&nf->nf_ref))
return nf;
return NULL;
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_put - put the reference to a nfsd_file
* @nf: nfsd_file of which to put the reference
*
* Put a reference to a nfsd_file. In the non-GC case, we just put the
* reference immediately. In the GC case, if the reference would be
* the last one, the put it on the LRU instead to be cleaned up later.
*/
2019-08-18 14:18:48 -04:00
void
nfsd_file_put(struct nfsd_file *nf)
{
might_sleep();
trace_nfsd_file_put(nf);
if (test_bit(NFSD_FILE_GC, &nf->nf_flags) &&
test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
set_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
set_bit(NFSD_FILE_RECENT, &nf->nf_flags);
2019-08-18 14:18:48 -04:00
}
if (refcount_dec_and_test(&nf->nf_ref))
nfsd_file_free(nf);
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_put_local - put nfsd_file reference and arm nfsd_net_put in caller
* @pnf: nfsd_file of which to put the reference
*
nfs_common: must not hold RCU while calling nfsd_file_put_local Move holding the RCU from nfs_to_nfsd_file_put_local to nfs_to_nfsd_net_put. It is the call to nfs_to->nfsd_serv_put that requires the RCU anyway (the puts for nfsd_file and netns were combined to avoid an extra indirect reference but that micro-optimization isn't possible now). This fixes xfstests generic/013 and it triggering: "Voluntary context switch within RCU read-side critical section!" [ 143.545738] Call Trace: [ 143.546206] <TASK> [ 143.546625] ? show_regs+0x6d/0x80 [ 143.547267] ? __warn+0x91/0x140 [ 143.547951] ? rcu_note_context_switch+0x496/0x5d0 [ 143.548856] ? report_bug+0x193/0x1a0 [ 143.549557] ? handle_bug+0x63/0xa0 [ 143.550214] ? exc_invalid_op+0x1d/0x80 [ 143.550938] ? asm_exc_invalid_op+0x1f/0x30 [ 143.551736] ? rcu_note_context_switch+0x496/0x5d0 [ 143.552634] ? wakeup_preempt+0x62/0x70 [ 143.553358] __schedule+0xaa/0x1380 [ 143.554025] ? _raw_spin_unlock_irqrestore+0x12/0x40 [ 143.554958] ? try_to_wake_up+0x1fe/0x6b0 [ 143.555715] ? wake_up_process+0x19/0x20 [ 143.556452] schedule+0x2e/0x120 [ 143.557066] schedule_preempt_disabled+0x19/0x30 [ 143.557933] rwsem_down_read_slowpath+0x24d/0x4a0 [ 143.558818] ? xfs_efi_item_format+0x50/0xc0 [xfs] [ 143.559894] down_read+0x4e/0xb0 [ 143.560519] xlog_cil_commit+0x1b2/0xbc0 [xfs] [ 143.561460] ? _raw_spin_unlock+0x12/0x30 [ 143.562212] ? xfs_inode_item_precommit+0xc7/0x220 [xfs] [ 143.563309] ? xfs_trans_run_precommits+0x69/0xd0 [xfs] [ 143.564394] __xfs_trans_commit+0xb5/0x330 [xfs] [ 143.565367] xfs_trans_roll+0x48/0xc0 [xfs] [ 143.566262] xfs_defer_trans_roll+0x57/0x100 [xfs] [ 143.567278] xfs_defer_finish_noroll+0x27a/0x490 [xfs] [ 143.568342] xfs_defer_finish+0x1a/0x80 [xfs] [ 143.569267] xfs_bunmapi_range+0x4d/0xb0 [xfs] [ 143.570208] xfs_itruncate_extents_flags+0x13d/0x230 [xfs] [ 143.571353] xfs_free_eofblocks+0x12e/0x190 [xfs] [ 143.572359] xfs_file_release+0x12d/0x140 [xfs] [ 143.573324] __fput+0xe8/0x2d0 [ 143.573922] __fput_sync+0x1d/0x30 [ 143.574574] nfsd_filp_close+0x33/0x60 [nfsd] [ 143.575430] nfsd_file_free+0x96/0x150 [nfsd] [ 143.576274] nfsd_file_put+0xf7/0x1a0 [nfsd] [ 143.577104] nfsd_file_put_local+0x18/0x30 [nfsd] [ 143.578070] nfs_close_local_fh+0x101/0x110 [nfs_localio] [ 143.579079] __put_nfs_open_context+0xc9/0x180 [nfs] [ 143.580031] nfs_file_clear_open_context+0x4a/0x60 [nfs] [ 143.581038] nfs_file_release+0x3e/0x60 [nfs] [ 143.581879] __fput+0xe8/0x2d0 [ 143.582464] __fput_sync+0x1d/0x30 [ 143.583108] __x64_sys_close+0x41/0x80 [ 143.583823] x64_sys_call+0x189a/0x20d0 [ 143.584552] do_syscall_64+0x64/0x170 [ 143.585240] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 143.586185] RIP: 0033:0x7f3c5153efd7 Fixes: 65f2a5c36635 ("nfs_common: fix race in NFS calls to nfsd_file_put_local() and nfsd_serv_put()") Signed-off-by: Mike Snitzer <snitzer@kernel.org> Reviewed-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-11-13 22:59:38 -05:00
* First save the associated net to return to caller, then put
* the reference of the nfsd_file.
*/
nfs_common: must not hold RCU while calling nfsd_file_put_local Move holding the RCU from nfs_to_nfsd_file_put_local to nfs_to_nfsd_net_put. It is the call to nfs_to->nfsd_serv_put that requires the RCU anyway (the puts for nfsd_file and netns were combined to avoid an extra indirect reference but that micro-optimization isn't possible now). This fixes xfstests generic/013 and it triggering: "Voluntary context switch within RCU read-side critical section!" [ 143.545738] Call Trace: [ 143.546206] <TASK> [ 143.546625] ? show_regs+0x6d/0x80 [ 143.547267] ? __warn+0x91/0x140 [ 143.547951] ? rcu_note_context_switch+0x496/0x5d0 [ 143.548856] ? report_bug+0x193/0x1a0 [ 143.549557] ? handle_bug+0x63/0xa0 [ 143.550214] ? exc_invalid_op+0x1d/0x80 [ 143.550938] ? asm_exc_invalid_op+0x1f/0x30 [ 143.551736] ? rcu_note_context_switch+0x496/0x5d0 [ 143.552634] ? wakeup_preempt+0x62/0x70 [ 143.553358] __schedule+0xaa/0x1380 [ 143.554025] ? _raw_spin_unlock_irqrestore+0x12/0x40 [ 143.554958] ? try_to_wake_up+0x1fe/0x6b0 [ 143.555715] ? wake_up_process+0x19/0x20 [ 143.556452] schedule+0x2e/0x120 [ 143.557066] schedule_preempt_disabled+0x19/0x30 [ 143.557933] rwsem_down_read_slowpath+0x24d/0x4a0 [ 143.558818] ? xfs_efi_item_format+0x50/0xc0 [xfs] [ 143.559894] down_read+0x4e/0xb0 [ 143.560519] xlog_cil_commit+0x1b2/0xbc0 [xfs] [ 143.561460] ? _raw_spin_unlock+0x12/0x30 [ 143.562212] ? xfs_inode_item_precommit+0xc7/0x220 [xfs] [ 143.563309] ? xfs_trans_run_precommits+0x69/0xd0 [xfs] [ 143.564394] __xfs_trans_commit+0xb5/0x330 [xfs] [ 143.565367] xfs_trans_roll+0x48/0xc0 [xfs] [ 143.566262] xfs_defer_trans_roll+0x57/0x100 [xfs] [ 143.567278] xfs_defer_finish_noroll+0x27a/0x490 [xfs] [ 143.568342] xfs_defer_finish+0x1a/0x80 [xfs] [ 143.569267] xfs_bunmapi_range+0x4d/0xb0 [xfs] [ 143.570208] xfs_itruncate_extents_flags+0x13d/0x230 [xfs] [ 143.571353] xfs_free_eofblocks+0x12e/0x190 [xfs] [ 143.572359] xfs_file_release+0x12d/0x140 [xfs] [ 143.573324] __fput+0xe8/0x2d0 [ 143.573922] __fput_sync+0x1d/0x30 [ 143.574574] nfsd_filp_close+0x33/0x60 [nfsd] [ 143.575430] nfsd_file_free+0x96/0x150 [nfsd] [ 143.576274] nfsd_file_put+0xf7/0x1a0 [nfsd] [ 143.577104] nfsd_file_put_local+0x18/0x30 [nfsd] [ 143.578070] nfs_close_local_fh+0x101/0x110 [nfs_localio] [ 143.579079] __put_nfs_open_context+0xc9/0x180 [nfs] [ 143.580031] nfs_file_clear_open_context+0x4a/0x60 [nfs] [ 143.581038] nfs_file_release+0x3e/0x60 [nfs] [ 143.581879] __fput+0xe8/0x2d0 [ 143.582464] __fput_sync+0x1d/0x30 [ 143.583108] __x64_sys_close+0x41/0x80 [ 143.583823] x64_sys_call+0x189a/0x20d0 [ 143.584552] do_syscall_64+0x64/0x170 [ 143.585240] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 143.586185] RIP: 0033:0x7f3c5153efd7 Fixes: 65f2a5c36635 ("nfs_common: fix race in NFS calls to nfsd_file_put_local() and nfsd_serv_put()") Signed-off-by: Mike Snitzer <snitzer@kernel.org> Reviewed-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-11-13 22:59:38 -05:00
struct net *
nfsd_file_put_local(struct nfsd_file __rcu **pnf)
{
struct nfsd_file *nf;
struct net *net = NULL;
nf = unrcu_pointer(xchg(pnf, NULL));
if (nf) {
net = nf->nf_net;
nfsd_file_put(nf);
}
nfs_common: must not hold RCU while calling nfsd_file_put_local Move holding the RCU from nfs_to_nfsd_file_put_local to nfs_to_nfsd_net_put. It is the call to nfs_to->nfsd_serv_put that requires the RCU anyway (the puts for nfsd_file and netns were combined to avoid an extra indirect reference but that micro-optimization isn't possible now). This fixes xfstests generic/013 and it triggering: "Voluntary context switch within RCU read-side critical section!" [ 143.545738] Call Trace: [ 143.546206] <TASK> [ 143.546625] ? show_regs+0x6d/0x80 [ 143.547267] ? __warn+0x91/0x140 [ 143.547951] ? rcu_note_context_switch+0x496/0x5d0 [ 143.548856] ? report_bug+0x193/0x1a0 [ 143.549557] ? handle_bug+0x63/0xa0 [ 143.550214] ? exc_invalid_op+0x1d/0x80 [ 143.550938] ? asm_exc_invalid_op+0x1f/0x30 [ 143.551736] ? rcu_note_context_switch+0x496/0x5d0 [ 143.552634] ? wakeup_preempt+0x62/0x70 [ 143.553358] __schedule+0xaa/0x1380 [ 143.554025] ? _raw_spin_unlock_irqrestore+0x12/0x40 [ 143.554958] ? try_to_wake_up+0x1fe/0x6b0 [ 143.555715] ? wake_up_process+0x19/0x20 [ 143.556452] schedule+0x2e/0x120 [ 143.557066] schedule_preempt_disabled+0x19/0x30 [ 143.557933] rwsem_down_read_slowpath+0x24d/0x4a0 [ 143.558818] ? xfs_efi_item_format+0x50/0xc0 [xfs] [ 143.559894] down_read+0x4e/0xb0 [ 143.560519] xlog_cil_commit+0x1b2/0xbc0 [xfs] [ 143.561460] ? _raw_spin_unlock+0x12/0x30 [ 143.562212] ? xfs_inode_item_precommit+0xc7/0x220 [xfs] [ 143.563309] ? xfs_trans_run_precommits+0x69/0xd0 [xfs] [ 143.564394] __xfs_trans_commit+0xb5/0x330 [xfs] [ 143.565367] xfs_trans_roll+0x48/0xc0 [xfs] [ 143.566262] xfs_defer_trans_roll+0x57/0x100 [xfs] [ 143.567278] xfs_defer_finish_noroll+0x27a/0x490 [xfs] [ 143.568342] xfs_defer_finish+0x1a/0x80 [xfs] [ 143.569267] xfs_bunmapi_range+0x4d/0xb0 [xfs] [ 143.570208] xfs_itruncate_extents_flags+0x13d/0x230 [xfs] [ 143.571353] xfs_free_eofblocks+0x12e/0x190 [xfs] [ 143.572359] xfs_file_release+0x12d/0x140 [xfs] [ 143.573324] __fput+0xe8/0x2d0 [ 143.573922] __fput_sync+0x1d/0x30 [ 143.574574] nfsd_filp_close+0x33/0x60 [nfsd] [ 143.575430] nfsd_file_free+0x96/0x150 [nfsd] [ 143.576274] nfsd_file_put+0xf7/0x1a0 [nfsd] [ 143.577104] nfsd_file_put_local+0x18/0x30 [nfsd] [ 143.578070] nfs_close_local_fh+0x101/0x110 [nfs_localio] [ 143.579079] __put_nfs_open_context+0xc9/0x180 [nfs] [ 143.580031] nfs_file_clear_open_context+0x4a/0x60 [nfs] [ 143.581038] nfs_file_release+0x3e/0x60 [nfs] [ 143.581879] __fput+0xe8/0x2d0 [ 143.582464] __fput_sync+0x1d/0x30 [ 143.583108] __x64_sys_close+0x41/0x80 [ 143.583823] x64_sys_call+0x189a/0x20d0 [ 143.584552] do_syscall_64+0x64/0x170 [ 143.585240] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 143.586185] RIP: 0033:0x7f3c5153efd7 Fixes: 65f2a5c36635 ("nfs_common: fix race in NFS calls to nfsd_file_put_local() and nfsd_serv_put()") Signed-off-by: Mike Snitzer <snitzer@kernel.org> Reviewed-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-11-13 22:59:38 -05:00
return net;
}
nfs_localio: always hold nfsd net ref with nfsd_file ref Having separate nfsd_file_put and nfsd_file_put_local in struct nfsd_localio_operations doesn't make much sense. The difference is that nfsd_file_put doesn't drop a reference to the nfs_net which is what keeps nfsd from shutting down. Currently, if nfsd tries to shutdown it will invalidate the files stored in the list from the nfs_uuid and this will drop all references to the nfsd net that the client holds. But the client could still hold some references to nfsd_files for active IO. So nfsd might think is has completely shut down local IO, but hasn't and has no way to wait for those active IO requests to complete. So this patch changes nfsd_file_get to nfsd_file_get_local and has it increase the ref count on the nfsd net and it replaces all calls to ->nfsd_put_file to ->nfsd_put_file_local. It also changes ->nfsd_open_local_fh to return with the refcount on the net elevated precisely when a valid nfsd_file is returned. This means that whenever the client holds a valid nfsd_file, there will be an associated count on the nfsd net, and so the count can only reach zero when all nfsd_files have been returned. nfs_local_file_put() is changed to call nfs_to_nfsd_file_put_local() instead of replacing calls to one with calls to the other because this will help a later patch which changes nfs_to_nfsd_file_put_local() to take an __rcu pointer while nfs_local_file_put() doesn't. Fixes: 86e00412254a ("nfs: cache all open LOCALIO nfsd_file(s) in client") Signed-off-by: NeilBrown <neil@brown.name> Signed-off-by: Anna Schumaker <anna.schumaker@oracle.com>
2025-05-09 10:46:39 +10:00
/**
* nfsd_file_get_local - get nfsd_file reference and reference to net
* @nf: nfsd_file of which to put the reference
*
* Get reference to both the nfsd_file and nf->nf_net.
*/
struct nfsd_file *
nfsd_file_get_local(struct nfsd_file *nf)
{
struct net *net = nf->nf_net;
if (nfsd_net_try_get(net)) {
nf = nfsd_file_get(nf);
if (!nf)
nfsd_net_put(net);
} else {
nf = NULL;
}
return nf;
}
/**
* nfsd_file_file - get the backing file of an nfsd_file
* @nf: nfsd_file of which to access the backing file.
*
* Return backing file for @nf.
*/
struct file *
nfsd_file_file(struct nfsd_file *nf)
{
return nf->nf_file;
}
2019-08-18 14:18:48 -04:00
static void
nfsd_file_dispose_list(struct list_head *dispose)
2019-08-18 14:18:48 -04:00
{
struct nfsd_file *nf;
while (!list_empty(dispose)) {
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
nf = list_first_entry(dispose, struct nfsd_file, nf_gc);
list_del_init(&nf->nf_gc);
nfsd_file_free(nf);
2019-08-18 14:18:48 -04:00
}
}
/**
* nfsd_file_dispose_list_delayed - move list of dead files to net's freeme list
* @dispose: list of nfsd_files to be disposed
*
* Transfers each file to the "freeme" list for its nfsd_net, to eventually
* be disposed of by the per-net garbage collector.
*/
static void
nfsd_file_dispose_list_delayed(struct list_head *dispose)
{
while(!list_empty(dispose)) {
struct nfsd_file *nf = list_first_entry(dispose,
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
struct nfsd_file, nf_gc);
struct nfsd_net *nn = net_generic(nf->nf_net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
struct svc_serv *serv;
spin_lock(&l->lock);
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
list_move_tail(&nf->nf_gc, &l->freeme);
spin_unlock(&l->lock);
/*
* The filecache laundrette is shut down after the
* nn->nfsd_serv pointer is cleared, but before the
* svc_serv is freed.
*/
serv = nn->nfsd_serv;
if (serv)
svc_wake_up(serv);
nfsd: Don't leave work of closing files to a work queue The work of closing a file can have non-trivial cost. Doing it in a separate work queue thread means that cost isn't imposed on the nfsd threads and an imbalance can be created. This can result in files being queued for the work queue more quickly that the work queue can process them, resulting in unbounded growth of the queue and memory exhaustion. To avoid this work imbalance that exhausts memory, this patch moves all closing of files into the nfsd threads. This means that when the work imposes a cost, that cost appears where it would be expected - in the work of the nfsd thread. A subsequent patch will ensure the final __fput() is called in the same (nfsd) thread which calls filp_close(). Files opened for NFSv3 are never explicitly closed by the client and are kept open by the server in the "filecache", which responds to memory pressure, is garbage collected even when there is no pressure, and sometimes closes files when there is particular need such as for rename. These files currently have filp_close() called in a dedicated work queue, so their __fput() can have no effect on nfsd threads. This patch discards the work queue and instead has each nfsd thread call flip_close() on as many as 8 files from the filecache each time it acts on a client request (or finds there are no pending client requests). If there are more to be closed, more threads are woken. This spreads the work of __fput() over multiple threads and imposes any cost on those threads. The number 8 is somewhat arbitrary. It needs to be greater than 1 to ensure that files are closed more quickly than they can be added to the cache. It needs to be small enough to limit the per-request delays that will be imposed on clients when all threads are busy closing files. Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-12-15 12:18:30 +11:00
}
}
/**
* nfsd_file_net_dispose - deal with nfsd_files waiting to be disposed.
* @nn: nfsd_net in which to find files to be disposed.
*
* When files held open for nfsv3 are removed from the filecache, whether
* due to memory pressure or garbage collection, they are queued to
* a per-net-ns queue. This function completes the disposal, either
* directly or by waking another nfsd thread to help with the work.
*/
void nfsd_file_net_dispose(struct nfsd_net *nn)
{
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
if (!list_empty(&l->freeme)) {
LIST_HEAD(dispose);
int i;
spin_lock(&l->lock);
for (i = 0; i < 8 && !list_empty(&l->freeme); i++)
list_move(l->freeme.next, &dispose);
spin_unlock(&l->lock);
if (!list_empty(&l->freeme))
/* Wake up another thread to share the work
* *before* doing any actual disposing.
*/
svc_wake_up(nn->nfsd_serv);
nfsd_file_dispose_list(&dispose);
}
}
/**
* nfsd_file_lru_cb - Examine an entry on the LRU list
* @item: LRU entry to examine
* @lru: controlling LRU
* @arg: dispose list
*
* Return values:
* %LRU_REMOVED: @item was removed from the LRU
* %LRU_ROTATE: @item is to be moved to the LRU tail
* %LRU_SKIP: @item cannot be evicted
2019-08-18 14:18:48 -04:00
*/
static enum lru_status
nfsd_file_lru_cb(struct list_head *item, struct list_lru_one *lru,
void *arg)
2019-08-18 14:18:48 -04:00
{
struct list_head *head = arg;
struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
/* We should only be dealing with GC entries here */
WARN_ON_ONCE(!test_bit(NFSD_FILE_GC, &nf->nf_flags));
/*
* Don't throw out files that are still undergoing I/O or
* that have uncleared errors pending.
*/
if (nfsd_file_check_writeback(nf)) {
trace_nfsd_file_gc_writeback(nf);
return LRU_SKIP;
}
/* If it was recently added to the list, skip it */
if (test_and_clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags)) {
trace_nfsd_file_gc_referenced(nf);
return LRU_ROTATE;
}
2019-08-18 14:18:48 -04:00
/*
* Put the reference held on behalf of the LRU if it is the last
* reference, else rotate.
*/
if (!refcount_dec_if_one(&nf->nf_ref)) {
trace_nfsd_file_gc_in_use(nf);
return LRU_ROTATE;
}
2019-08-18 14:18:48 -04:00
/* Refcount went to zero. Unhash it and queue it to the dispose list */
nfsd_file_unhash(nf);
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
list_lru_isolate(lru, &nf->nf_lru);
list_add(&nf->nf_gc, head);
this_cpu_inc(nfsd_file_evictions);
trace_nfsd_file_gc_disposed(nf);
2019-08-18 14:18:48 -04:00
return LRU_REMOVED;
}
nfsd: filecache: introduce NFSD_FILE_RECENT The filecache lru is walked in 2 circumstances for 2 different reasons. 1/ When called from the shrinker we want to discard the first few entries on the list, ignoring any with NFSD_FILE_REFERENCED set because they should really be at the end of the LRU as they have been referenced recently. So those ones are ROTATED. 2/ When called from the nfsd_file_gc() timer function we want to discard anything that hasn't been used since before the previous call, and mark everything else as unused at this point in time. Using the same flag for both of these can result in some unexpected outcomes. If the shrinker callback clears NFSD_FILE_REFERENCED then nfsd_file_gc() will think the file hasn't been used in a while, while really it has. I think it is easier to reason about the behaviour if we instead have two flags. NFSD_FILE_REFERENCED means "this should be at the end of the LRU, please put it there when convenient" NFSD_FILE_RECENT means "this has been used recently - since the last run of nfsd_file_gc() When either caller finds an NFSD_FILE_REFERENCED entry, that entry should be moved to the end of the LRU and the flag cleared. This can safely happen at any time. The actual order on the lru might not be strictly least-recently-used, but that is normal for linux lrus. The shrinker callback can ignore the "recent" flag. If it ends up freeing something that is "recent" that simply means that memory pressure is sufficient to limit the acceptable cache age to less than the nfsd_file_gc frequency. The gc callback should primarily focus on NFSD_FILE_RECENT. It should free everything that doesn't have this flag set, and should clear the flag on everything else. When it clears the flag it is convenient to clear the "REFERENCED" flag and move to the end of the LRU too. With this, calls from the shrinker do not prematurely age files. It will focus only on freeing those that are least recently used. Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2025-02-18 10:39:35 -05:00
static enum lru_status
nfsd_file_gc_cb(struct list_head *item, struct list_lru_one *lru,
void *arg)
{
struct nfsd_file *nf = list_entry(item, struct nfsd_file, nf_lru);
if (test_and_clear_bit(NFSD_FILE_RECENT, &nf->nf_flags)) {
/*
* "REFERENCED" really means "should be at the end of the
* LRU. As we are putting it there we can clear the flag.
*/
clear_bit(NFSD_FILE_REFERENCED, &nf->nf_flags);
trace_nfsd_file_gc_aged(nf);
return LRU_ROTATE;
}
return nfsd_file_lru_cb(item, lru, arg);
}
/* If the shrinker runs between calls to list_lru_walk_node() in
* nfsd_file_gc(), the "remaining" count will be wrong. This could
* result in premature freeing of some files. This may not matter much
* but is easy to fix with this spinlock which temporarily disables
* the shrinker.
*/
static DEFINE_SPINLOCK(nfsd_gc_lock);
static void
nfsd_file_gc(void)
{
unsigned long ret = 0;
LIST_HEAD(dispose);
int nid;
spin_lock(&nfsd_gc_lock);
for_each_node_state(nid, N_NORMAL_MEMORY) {
unsigned long remaining = list_lru_count_node(&nfsd_file_lru, nid);
while (remaining > 0) {
unsigned long nr = min(remaining, NFSD_FILE_GC_BATCH);
remaining -= nr;
ret += list_lru_walk_node(&nfsd_file_lru, nid, nfsd_file_gc_cb,
&dispose, &nr);
if (nr)
/* walk aborted early */
remaining = 0;
}
}
spin_unlock(&nfsd_gc_lock);
trace_nfsd_file_gc_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_dispose_list_delayed(&dispose);
}
static void
nfsd_file_gc_worker(struct work_struct *work)
{
if (list_lru_count(&nfsd_file_lru))
nfsd_file_gc();
nfsd_file_schedule_laundrette();
2019-08-18 14:18:48 -04:00
}
static unsigned long
nfsd_file_lru_count(struct shrinker *s, struct shrink_control *sc)
{
return list_lru_count(&nfsd_file_lru);
}
static unsigned long
nfsd_file_lru_scan(struct shrinker *s, struct shrink_control *sc)
{
LIST_HEAD(dispose);
unsigned long ret;
if (!spin_trylock(&nfsd_gc_lock))
return SHRINK_STOP;
ret = list_lru_shrink_walk(&nfsd_file_lru, sc,
nfsd_file_lru_cb, &dispose);
spin_unlock(&nfsd_gc_lock);
trace_nfsd_file_shrinker_removed(ret, list_lru_count(&nfsd_file_lru));
nfsd_file_dispose_list_delayed(&dispose);
return ret;
2019-08-18 14:18:48 -04:00
}
nfsd: dynamically allocate the nfsd-filecache shrinker Use new APIs to dynamically allocate the nfsd-filecache shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-13-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Tom Talpey <tom@talpey.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-11 17:44:11 +08:00
static struct shrinker *nfsd_file_shrinker;
2019-08-18 14:18:48 -04:00
/**
* nfsd_file_cond_queue - conditionally unhash and queue a nfsd_file
* @nf: nfsd_file to attempt to queue
* @dispose: private list to queue successfully-put objects
*
* Unhash an nfsd_file, try to get a reference to it, and then put that
* reference. If it's the last reference, queue it to the dispose list.
*/
static void
nfsd_file_cond_queue(struct nfsd_file *nf, struct list_head *dispose)
__must_hold(RCU)
{
int decrement = 1;
/* If we raced with someone else unhashing, ignore it */
if (!nfsd_file_unhash(nf))
return;
/* If we can't get a reference, ignore it */
if (!nfsd_file_get(nf))
return;
/* Extra decrement if we remove from the LRU */
if (nfsd_file_lru_remove(nf))
++decrement;
/* If refcount goes to 0, then put on the dispose list */
if (refcount_sub_and_test(decrement, &nf->nf_ref)) {
nfsd: add list_head nf_gc to struct nfsd_file nfsd_file_put() in one thread can race with another thread doing garbage collection (running nfsd_file_gc() -> list_lru_walk() -> nfsd_file_lru_cb()): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() returns true (with NFSD_FILE_REFERENCED bit set) * garbage collector kicks in, nfsd_file_lru_cb() clears REFERENCED bit and returns LRU_ROTATE. * garbage collector kicks in again, nfsd_file_lru_cb() now decrements nf->nf_ref to 0, runs nfsd_file_unhash(), removes it from the LRU and adds to the dispose list [list_lru_isolate_move(lru, &nf->nf_lru, head)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))]. The 'nf' has been added to the 'dispose' list by nfsd_file_lru_cb(), so nfsd_file_lru_remove(nf) simply treats it as part of the LRU and removes it, which leads to its removal from the 'dispose' list. * At this moment, 'nf' is unhashed with its nf_ref being 0, and not on the LRU. nfsd_file_put() continues its execution [if (refcount_dec_and_test(&nf->nf_ref))], as nf->nf_ref is already 0, nf->nf_ref is set to REFCOUNT_SATURATED, and the 'nf' gets no chance of being freed. nfsd_file_put() can also race with nfsd_file_cond_queue(): * In nfsd_file_put(), nf->nf_ref is 1, so it tries to do nfsd_file_lru_add(). * nfsd_file_lru_add() sets REFERENCED bit and returns true. * Some userland application runs 'exportfs -f' or something like that, which triggers __nfsd_file_cache_purge() -> nfsd_file_cond_queue(). * In nfsd_file_cond_queue(), it runs [if (!nfsd_file_unhash(nf))], unhash is done successfully. * nfsd_file_cond_queue() runs [if (!nfsd_file_get(nf))], now nf->nf_ref goes to 2. * nfsd_file_cond_queue() runs [if (nfsd_file_lru_remove(nf))], it succeeds. * nfsd_file_cond_queue() runs [if (refcount_sub_and_test(decrement, &nf->nf_ref))] (with "decrement" being 2), so the nf->nf_ref goes to 0, the 'nf' is added to the dispose list [list_add(&nf->nf_lru, dispose)] * nfsd_file_put() detects NFSD_FILE_HASHED bit is cleared, so it tries to remove the 'nf' from the LRU [if (!nfsd_file_lru_remove(nf))], although the 'nf' is not in the LRU, but it is linked in the 'dispose' list, nfsd_file_lru_remove() simply treats it as part of the LRU and removes it. This leads to its removal from the 'dispose' list! * Now nf->ref is 0, unhashed. nfsd_file_put() continues its execution and set nf->nf_ref to REFCOUNT_SATURATED. As shown in the above analysis, using nf_lru for both the LRU list and dispose list can cause the leaks. This patch adds a new list_head nf_gc in struct nfsd_file, and uses it for the dispose list. This does not fix the nfsd_file leaking issue completely. Signed-off-by: Youzhong Yang <youzhong@gmail.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2024-07-10 10:40:35 -04:00
list_add(&nf->nf_gc, dispose);
trace_nfsd_file_closing(nf);
}
}
/**
* nfsd_file_queue_for_close: try to close out any open nfsd_files for an inode
* @inode: inode on which to close out nfsd_files
* @dispose: list on which to gather nfsd_files to close out
*
* An nfsd_file represents a struct file being held open on behalf of nfsd.
* An open file however can block other activity (such as leases), or cause
* undesirable behavior (e.g. spurious silly-renames when reexporting NFS).
*
* This function is intended to find open nfsd_files when this sort of
* conflicting access occurs and then attempt to close those files out.
*
* Populates the dispose list with entries that have already had their
* refcounts go to zero. The actual free of an nfsd_file can be expensive,
* so we leave it up to the caller whether it wants to wait or not.
*/
static void
nfsd_file_queue_for_close(struct inode *inode, struct list_head *dispose)
2019-08-18 14:18:48 -04:00
{
struct rhlist_head *tmp, *list;
struct nfsd_file *nf;
2019-08-18 14:18:48 -04:00
rcu_read_lock();
list = rhltable_lookup(&nfsd_file_rhltable, &inode,
nfsd_file_rhash_params);
rhl_for_each_entry_rcu(nf, tmp, list, nf_rlist) {
if (!test_bit(NFSD_FILE_GC, &nf->nf_flags))
continue;
nfsd_file_cond_queue(nf, dispose);
}
rcu_read_unlock();
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_close_inode - attempt a delayed close of a nfsd_file
2019-08-18 14:18:48 -04:00
* @inode: inode of the file to attempt to remove
*
* Close out any open nfsd_files that can be reaped for @inode. The
* actual freeing is deferred to the dispose_list_delayed infrastructure.
*
* This is used by the fsnotify callbacks and setlease notifier.
2019-08-18 14:18:48 -04:00
*/
static void
nfsd_file_close_inode(struct inode *inode)
2019-08-18 14:18:48 -04:00
{
LIST_HEAD(dispose);
nfsd_file_queue_for_close(inode, &dispose);
nfsd_file_dispose_list_delayed(&dispose);
2019-08-18 14:18:48 -04:00
}
/**
* nfsd_file_close_inode_sync - attempt to forcibly close a nfsd_file
2019-08-18 14:18:48 -04:00
* @inode: inode of the file to attempt to remove
*
* Close out any open nfsd_files that can be reaped for @inode. The
* nfsd_files are closed out synchronously.
*
* This is called from nfsd_rename and nfsd_unlink to avoid silly-renames
* when reexporting NFS.
2019-08-18 14:18:48 -04:00
*/
void
nfsd_file_close_inode_sync(struct inode *inode)
2019-08-18 14:18:48 -04:00
{
LIST_HEAD(dispose);
trace_nfsd_file_close(inode);
nfsd_file_queue_for_close(inode, &dispose);
nfsd_file_dispose_list(&dispose);
2019-08-18 14:18:48 -04:00
}
static int
nfsd_file_lease_notifier_call(struct notifier_block *nb, unsigned long arg,
void *data)
{
struct file_lease *fl = data;
2019-08-18 14:18:48 -04:00
/* Only close files for F_SETLEASE leases */
if (fl->c.flc_flags & FL_LEASE)
nfsd_file_close_inode(file_inode(fl->c.flc_file));
2019-08-18 14:18:48 -04:00
return 0;
}
static struct notifier_block nfsd_file_lease_notifier = {
.notifier_call = nfsd_file_lease_notifier_call,
};
static int
nfsd_file_fsnotify_handle_event(struct fsnotify_mark *mark, u32 mask,
struct inode *inode, struct inode *dir,
const struct qstr *name, u32 cookie)
2019-08-18 14:18:48 -04:00
{
if (WARN_ON_ONCE(!inode))
return 0;
2019-08-18 14:18:48 -04:00
trace_nfsd_file_fsnotify_handle_event(inode, mask);
/* Should be no marks on non-regular files */
if (!S_ISREG(inode->i_mode)) {
WARN_ON_ONCE(1);
return 0;
}
/* don't close files if this was not the last link */
if (mask & FS_ATTRIB) {
if (inode->i_nlink)
return 0;
}
nfsd_file_close_inode(inode);
return 0;
}
static const struct fsnotify_ops nfsd_file_fsnotify_ops = {
.handle_inode_event = nfsd_file_fsnotify_handle_event,
2019-08-18 14:18:48 -04:00
.free_mark = nfsd_file_mark_free,
};
int
nfsd_file_cache_init(void)
{
int ret;
2019-08-18 14:18:48 -04:00
lockdep_assert_held(&nfsd_mutex);
if (test_and_set_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
2019-08-18 14:18:48 -04:00
return 0;
ret = rhltable_init(&nfsd_file_rhltable, &nfsd_file_rhash_params);
if (ret)
goto out;
ret = -ENOMEM;
nfsd_file_slab = KMEM_CACHE(nfsd_file, 0);
2019-08-18 14:18:48 -04:00
if (!nfsd_file_slab) {
pr_err("nfsd: unable to create nfsd_file_slab\n");
goto out_err;
}
nfsd_file_mark_slab = KMEM_CACHE(nfsd_file_mark, 0);
2019-08-18 14:18:48 -04:00
if (!nfsd_file_mark_slab) {
pr_err("nfsd: unable to create nfsd_file_mark_slab\n");
goto out_err;
}
ret = list_lru_init(&nfsd_file_lru);
if (ret) {
pr_err("nfsd: failed to init nfsd_file_lru: %d\n", ret);
goto out_err;
}
nfsd: dynamically allocate the nfsd-filecache shrinker Use new APIs to dynamically allocate the nfsd-filecache shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-13-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Tom Talpey <tom@talpey.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-11 17:44:11 +08:00
nfsd_file_shrinker = shrinker_alloc(0, "nfsd-filecache");
if (!nfsd_file_shrinker) {
ret = -ENOMEM;
pr_err("nfsd: failed to allocate nfsd_file_shrinker\n");
2019-08-18 14:18:48 -04:00
goto out_lru;
}
nfsd: dynamically allocate the nfsd-filecache shrinker Use new APIs to dynamically allocate the nfsd-filecache shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-13-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Tom Talpey <tom@talpey.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-11 17:44:11 +08:00
nfsd_file_shrinker->count_objects = nfsd_file_lru_count;
nfsd_file_shrinker->scan_objects = nfsd_file_lru_scan;
nfsd_file_shrinker->seeks = 1;
shrinker_register(nfsd_file_shrinker);
2019-08-18 14:18:48 -04:00
ret = lease_register_notifier(&nfsd_file_lease_notifier);
if (ret) {
pr_err("nfsd: unable to register lease notifier: %d\n", ret);
goto out_shrinker;
}
nfsd_file_fsnotify_group = fsnotify_alloc_group(&nfsd_file_fsnotify_ops,
inotify: Fix possible deadlock in fsnotify_destroy_mark [Syzbot reported] WARNING: possible circular locking dependency detected 6.11.0-rc4-syzkaller-00019-gb311c1b497e5 #0 Not tainted ------------------------------------------------------ kswapd0/78 is trying to acquire lock: ffff88801b8d8930 (&group->mark_mutex){+.+.}-{3:3}, at: fsnotify_group_lock include/linux/fsnotify_backend.h:270 [inline] ffff88801b8d8930 (&group->mark_mutex){+.+.}-{3:3}, at: fsnotify_destroy_mark+0x38/0x3c0 fs/notify/mark.c:578 but task is already holding lock: ffffffff8ea2fd60 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:6841 [inline] ffffffff8ea2fd60 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0xbb4/0x35a0 mm/vmscan.c:7223 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: ... kmem_cache_alloc_noprof+0x3d/0x2a0 mm/slub.c:4044 inotify_new_watch fs/notify/inotify/inotify_user.c:599 [inline] inotify_update_watch fs/notify/inotify/inotify_user.c:647 [inline] __do_sys_inotify_add_watch fs/notify/inotify/inotify_user.c:786 [inline] __se_sys_inotify_add_watch+0x72e/0x1070 fs/notify/inotify/inotify_user.c:729 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (&group->mark_mutex){+.+.}-{3:3}: ... __mutex_lock+0x136/0xd70 kernel/locking/mutex.c:752 fsnotify_group_lock include/linux/fsnotify_backend.h:270 [inline] fsnotify_destroy_mark+0x38/0x3c0 fs/notify/mark.c:578 fsnotify_destroy_marks+0x14a/0x660 fs/notify/mark.c:934 fsnotify_inoderemove include/linux/fsnotify.h:264 [inline] dentry_unlink_inode+0x2e0/0x430 fs/dcache.c:403 __dentry_kill+0x20d/0x630 fs/dcache.c:610 shrink_kill+0xa9/0x2c0 fs/dcache.c:1055 shrink_dentry_list+0x2c0/0x5b0 fs/dcache.c:1082 prune_dcache_sb+0x10f/0x180 fs/dcache.c:1163 super_cache_scan+0x34f/0x4b0 fs/super.c:221 do_shrink_slab+0x701/0x1160 mm/shrinker.c:435 shrink_slab+0x1093/0x14d0 mm/shrinker.c:662 shrink_one+0x43b/0x850 mm/vmscan.c:4815 shrink_many mm/vmscan.c:4876 [inline] lru_gen_shrink_node mm/vmscan.c:4954 [inline] shrink_node+0x3799/0x3de0 mm/vmscan.c:5934 kswapd_shrink_node mm/vmscan.c:6762 [inline] balance_pgdat mm/vmscan.c:6954 [inline] kswapd+0x1bcd/0x35a0 mm/vmscan.c:7223 [Analysis] The problem is that inotify_new_watch() is using GFP_KERNEL to allocate new watches under group->mark_mutex, however if dentry reclaim races with unlinking of an inode, it can end up dropping the last dentry reference for an unlinked inode resulting in removal of fsnotify mark from reclaim context which wants to acquire group->mark_mutex as well. This scenario shows that all notification groups are in principle prone to this kind of a deadlock (previously, we considered only fanotify and dnotify to be problematic for other reasons) so make sure all allocations under group->mark_mutex happen with GFP_NOFS. Reported-and-tested-by: syzbot+c679f13773f295d2da53@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=c679f13773f295d2da53 Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://patch.msgid.link/20240927143642.2369508-1-lizhi.xu@windriver.com
2024-09-27 22:36:42 +08:00
0);
2019-08-18 14:18:48 -04:00
if (IS_ERR(nfsd_file_fsnotify_group)) {
pr_err("nfsd: unable to create fsnotify group: %ld\n",
PTR_ERR(nfsd_file_fsnotify_group));
ret = PTR_ERR(nfsd_file_fsnotify_group);
2019-08-18 14:18:48 -04:00
nfsd_file_fsnotify_group = NULL;
goto out_notifier;
}
INIT_DELAYED_WORK(&nfsd_filecache_laundrette, nfsd_file_gc_worker);
2019-08-18 14:18:48 -04:00
out:
if (ret)
clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags);
2019-08-18 14:18:48 -04:00
return ret;
out_notifier:
lease_unregister_notifier(&nfsd_file_lease_notifier);
out_shrinker:
nfsd: dynamically allocate the nfsd-filecache shrinker Use new APIs to dynamically allocate the nfsd-filecache shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-13-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Tom Talpey <tom@talpey.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-11 17:44:11 +08:00
shrinker_free(nfsd_file_shrinker);
2019-08-18 14:18:48 -04:00
out_lru:
list_lru_destroy(&nfsd_file_lru);
out_err:
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
rhltable_destroy(&nfsd_file_rhltable);
2019-08-18 14:18:48 -04:00
goto out;
}
/**
* __nfsd_file_cache_purge: clean out the cache for shutdown
* @net: net-namespace to shut down the cache (may be NULL)
*
* Walk the nfsd_file cache and close out any that match @net. If @net is NULL,
* then close out everything. Called when an nfsd instance is being shut down,
* and when the exports table is flushed.
*/
static void
__nfsd_file_cache_purge(struct net *net)
2019-08-18 14:18:48 -04:00
{
struct rhashtable_iter iter;
struct nfsd_file *nf;
2019-08-18 14:18:48 -04:00
LIST_HEAD(dispose);
#if IS_ENABLED(CONFIG_NFS_LOCALIO)
if (net) {
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
nfs_localio_invalidate_clients(&nn->local_clients,
&nn->local_clients_lock);
}
#endif
rhltable_walk_enter(&nfsd_file_rhltable, &iter);
do {
rhashtable_walk_start(&iter);
nf = rhashtable_walk_next(&iter);
while (!IS_ERR_OR_NULL(nf)) {
if (!net || nf->nf_net == net)
nfsd_file_cond_queue(nf, &dispose);
nf = rhashtable_walk_next(&iter);
2019-08-18 14:18:48 -04:00
}
rhashtable_walk_stop(&iter);
} while (nf == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
nfsd_file_dispose_list(&dispose);
2019-08-18 14:18:48 -04:00
}
static struct nfsd_fcache_disposal *
nfsd_alloc_fcache_disposal(void)
{
struct nfsd_fcache_disposal *l;
l = kmalloc(sizeof(*l), GFP_KERNEL);
if (!l)
return NULL;
spin_lock_init(&l->lock);
INIT_LIST_HEAD(&l->freeme);
return l;
}
static void
nfsd_free_fcache_disposal(struct nfsd_fcache_disposal *l)
{
nfsd_file_dispose_list(&l->freeme);
kfree(l);
}
static void
nfsd_free_fcache_disposal_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
struct nfsd_fcache_disposal *l = nn->fcache_disposal;
nfsd_free_fcache_disposal(l);
}
int
nfsd_file_cache_start_net(struct net *net)
{
struct nfsd_net *nn = net_generic(net, nfsd_net_id);
nn->fcache_disposal = nfsd_alloc_fcache_disposal();
return nn->fcache_disposal ? 0 : -ENOMEM;
}
/**
* nfsd_file_cache_purge - Remove all cache items associated with @net
* @net: target net namespace
*
*/
void
nfsd_file_cache_purge(struct net *net)
{
lockdep_assert_held(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1)
__nfsd_file_cache_purge(net);
}
void
nfsd_file_cache_shutdown_net(struct net *net)
{
nfsd_file_cache_purge(net);
nfsd_free_fcache_disposal_net(net);
}
2019-08-18 14:18:48 -04:00
void
nfsd_file_cache_shutdown(void)
{
int i;
lockdep_assert_held(&nfsd_mutex);
if (test_and_clear_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 0)
return;
2019-08-18 14:18:48 -04:00
lease_unregister_notifier(&nfsd_file_lease_notifier);
nfsd: dynamically allocate the nfsd-filecache shrinker Use new APIs to dynamically allocate the nfsd-filecache shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-13-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Neil Brown <neilb@suse.de> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Tom Talpey <tom@talpey.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-11 17:44:11 +08:00
shrinker_free(nfsd_file_shrinker);
2019-08-18 14:18:48 -04:00
/*
* make sure all callers of nfsd_file_lru_cb are done before
* calling nfsd_file_cache_purge
*/
cancel_delayed_work_sync(&nfsd_filecache_laundrette);
__nfsd_file_cache_purge(NULL);
2019-08-18 14:18:48 -04:00
list_lru_destroy(&nfsd_file_lru);
rcu_barrier();
fsnotify_put_group(nfsd_file_fsnotify_group);
nfsd_file_fsnotify_group = NULL;
kmem_cache_destroy(nfsd_file_slab);
nfsd_file_slab = NULL;
fsnotify_wait_marks_destroyed();
kmem_cache_destroy(nfsd_file_mark_slab);
nfsd_file_mark_slab = NULL;
rhltable_destroy(&nfsd_file_rhltable);
for_each_possible_cpu(i) {
per_cpu(nfsd_file_cache_hits, i) = 0;
per_cpu(nfsd_file_acquisitions, i) = 0;
per_cpu(nfsd_file_allocations, i) = 0;
per_cpu(nfsd_file_releases, i) = 0;
per_cpu(nfsd_file_total_age, i) = 0;
per_cpu(nfsd_file_evictions, i) = 0;
2019-08-18 14:18:48 -04:00
}
}
static struct nfsd_file *
nfsd_file_lookup_locked(const struct net *net, const struct cred *cred,
struct inode *inode, unsigned char need,
bool want_gc)
{
struct rhlist_head *tmp, *list;
struct nfsd_file *nf;
list = rhltable_lookup(&nfsd_file_rhltable, &inode,
nfsd_file_rhash_params);
rhl_for_each_entry_rcu(nf, tmp, list, nf_rlist) {
if (nf->nf_may != need)
continue;
if (nf->nf_net != net)
continue;
if (!nfsd_match_cred(nf->nf_cred, cred))
continue;
if (test_bit(NFSD_FILE_GC, &nf->nf_flags) != want_gc)
continue;
if (test_bit(NFSD_FILE_HASHED, &nf->nf_flags) == 0)
continue;
if (!nfsd_file_get(nf))
continue;
return nf;
}
return NULL;
}
2019-08-18 14:18:48 -04:00
/**
* nfsd_file_is_cached - are there any cached open files for this inode?
* @inode: inode to check
*
* The lookup matches inodes in all net namespaces and is atomic wrt
* nfsd_file_acquire().
2019-08-18 14:18:48 -04:00
*
* Return values:
* %true: filecache contains at least one file matching this inode
* %false: filecache contains no files matching this inode
2019-08-18 14:18:48 -04:00
*/
bool
nfsd_file_is_cached(struct inode *inode)
{
struct rhlist_head *tmp, *list;
struct nfsd_file *nf;
bool ret = false;
rcu_read_lock();
list = rhltable_lookup(&nfsd_file_rhltable, &inode,
nfsd_file_rhash_params);
rhl_for_each_entry_rcu(nf, tmp, list, nf_rlist)
if (test_bit(NFSD_FILE_GC, &nf->nf_flags)) {
ret = true;
break;
}
rcu_read_unlock();
trace_nfsd_file_is_cached(inode, (int)ret);
2019-08-18 14:18:48 -04:00
return ret;
}
static __be32
nfsd_file_do_acquire(struct svc_rqst *rqstp, struct net *net,
struct svc_cred *cred,
struct auth_domain *client,
struct svc_fh *fhp,
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
unsigned int may_flags, struct file *file,
struct nfsd_file **pnf, bool want_gc)
2019-08-18 14:18:48 -04:00
{
unsigned char need = may_flags & NFSD_FILE_MAY_MASK;
struct nfsd_file *new, *nf;
bool stale_retry = true;
bool open_retry = true;
struct inode *inode;
__be32 status;
int ret;
2019-08-18 14:18:48 -04:00
retry:
if (rqstp) {
status = fh_verify(rqstp, fhp, S_IFREG,
may_flags|NFSD_MAY_OWNER_OVERRIDE);
} else {
status = fh_verify_local(net, cred, client, fhp, S_IFREG,
may_flags|NFSD_MAY_OWNER_OVERRIDE);
}
2019-08-18 14:18:48 -04:00
if (status != nfs_ok)
return status;
inode = d_inode(fhp->fh_dentry);
2019-08-18 14:18:48 -04:00
rcu_read_lock();
nf = nfsd_file_lookup_locked(net, current_cred(), inode, need, want_gc);
rcu_read_unlock();
if (nf)
2019-08-18 14:18:48 -04:00
goto wait_for_construction;
new = nfsd_file_alloc(net, inode, need, want_gc);
if (!new) {
status = nfserr_jukebox;
goto out;
2019-08-18 14:18:48 -04:00
}
rcu_read_lock();
spin_lock(&inode->i_lock);
nf = nfsd_file_lookup_locked(net, current_cred(), inode, need, want_gc);
if (unlikely(nf)) {
spin_unlock(&inode->i_lock);
rcu_read_unlock();
nfsd_file_free(new);
goto wait_for_construction;
}
nf = new;
ret = rhltable_insert(&nfsd_file_rhltable, &nf->nf_rlist,
nfsd_file_rhash_params);
spin_unlock(&inode->i_lock);
rcu_read_unlock();
if (likely(ret == 0))
2019-08-18 14:18:48 -04:00
goto open_file;
trace_nfsd_file_insert_err(rqstp, inode, may_flags, ret);
status = nfserr_jukebox;
goto construction_err;
2019-08-18 14:18:48 -04:00
wait_for_construction:
wait_on_bit(&nf->nf_flags, NFSD_FILE_PENDING, TASK_UNINTERRUPTIBLE);
/* Did construction of this file fail? */
if (!test_bit(NFSD_FILE_HASHED, &nf->nf_flags)) {
trace_nfsd_file_cons_err(rqstp, inode, may_flags, nf);
if (!open_retry) {
status = nfserr_jukebox;
goto construction_err;
}
nfsd_file_put(nf);
open_retry = false;
fh_put(fhp);
2019-08-18 14:18:48 -04:00
goto retry;
}
this_cpu_inc(nfsd_file_cache_hits);
nfsd: eliminate the NFSD_FILE_BREAK_* flags We had a report from the spring Bake-a-thon of data corruption in some nfstest_interop tests. Looking at the traces showed the NFS server allowing a v3 WRITE to proceed while a read delegation was still outstanding. Currently, we only set NFSD_FILE_BREAK_* flags if NFSD_MAY_NOT_BREAK_LEASE was set when we call nfsd_file_alloc. NFSD_MAY_NOT_BREAK_LEASE was intended to be set when finding files for COMMIT ops, where we need a writeable filehandle but don't need to break read leases. It doesn't make any sense to consult that flag when allocating a file since the file may be used on subsequent calls where we do want to break the lease (and the usage of it here seems to be reverse from what it should be anyway). Also, after calling nfsd_open_break_lease, we don't want to clear the BREAK_* bits. A lease could end up being set on it later (more than once) and we need to be able to break those leases as well. This means that the NFSD_FILE_BREAK_* flags now just mirror NFSD_MAY_{READ,WRITE} flags, so there's no need for them at all. Just drop those flags and unconditionally call nfsd_open_break_lease every time. Reported-by: Olga Kornieskaia <kolga@netapp.com> Link: https://bugzilla.redhat.com/show_bug.cgi?id=2107360 Fixes: 65294c1f2c5e (nfsd: add a new struct file caching facility to nfsd) Cc: <stable@vger.kernel.org> # 5.4.x : bb283ca18d1e NFSD: Clean up the show_nf_flags() macro Cc: <stable@vger.kernel.org> # 5.4.x Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2022-07-29 17:01:07 -04:00
status = nfserrno(nfsd_open_break_lease(file_inode(nf->nf_file), may_flags));
if (status != nfs_ok) {
nfsd_file_put(nf);
nf = NULL;
}
2019-08-18 14:18:48 -04:00
out:
if (status == nfs_ok) {
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
this_cpu_inc(nfsd_file_acquisitions);
nfsd: don't fsync nfsd_files on last close Most of the time, NFSv4 clients issue a COMMIT before the final CLOSE of an open stateid, so with NFSv4, the fsync in the nfsd_file_free path is usually a no-op and doesn't block. We have a customer running knfsd over very slow storage (XFS over Ceph RBD). They were using the "async" export option because performance was more important than data integrity for this application. That export option turns NFSv4 COMMIT calls into no-ops. Due to the fsync in this codepath however, their final CLOSE calls would still stall (since a CLOSE effectively became a COMMIT). I think this fsync is not strictly necessary. We only use that result to reset the write verifier. Instead of fsync'ing all of the data when we free an nfsd_file, we can just check for writeback errors when one is acquired and when it is freed. If the client never comes back, then it'll never see the error anyway and there is no point in resetting it. If an error occurs after the nfsd_file is removed from the cache but before the inode is evicted, then it will reset the write verifier on the next nfsd_file_acquire, (since there will be an unseen error). The only exception here is if something else opens and fsyncs the file during that window. Given that local applications work with this limitation today, I don't see that as an issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=2166658 Fixes: ac3a2585f018 ("nfsd: rework refcounting in filecache") Reported-and-tested-by: Pierguido Lambri <plambri@redhat.com> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-02-07 12:02:46 -05:00
nfsd_file_check_write_error(nf);
2019-08-18 14:18:48 -04:00
*pnf = nf;
}
trace_nfsd_file_acquire(rqstp, inode, may_flags, nf, status);
2019-08-18 14:18:48 -04:00
return status;
2019-08-18 14:18:48 -04:00
open_file:
trace_nfsd_file_alloc(nf);
nf->nf_mark = nfsd_file_mark_find_or_create(inode);
if (nf->nf_mark) {
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
if (file) {
get_file(file);
nf->nf_file = file;
status = nfs_ok;
trace_nfsd_file_opened(nf, status);
} else {
ret = nfsd_open_verified(fhp, may_flags, &nf->nf_file);
if (ret == -EOPENSTALE && stale_retry) {
stale_retry = false;
nfsd_file_unhash(nf);
clear_and_wake_up_bit(NFSD_FILE_PENDING,
&nf->nf_flags);
if (refcount_dec_and_test(&nf->nf_ref))
nfsd_file_free(nf);
nf = NULL;
fh_put(fhp);
goto retry;
}
status = nfserrno(ret);
trace_nfsd_file_open(nf, status);
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
}
} else
2019-08-18 14:18:48 -04:00
status = nfserr_jukebox;
/*
* If construction failed, or we raced with a call to unlink()
* then unhash.
*/
if (status != nfs_ok || inode->i_nlink == 0)
nfsd_file_unhash(nf);
else if (want_gc)
nfsd_file_lru_add(nf);
clear_and_wake_up_bit(NFSD_FILE_PENDING, &nf->nf_flags);
if (status == nfs_ok)
goto out;
construction_err:
if (refcount_dec_and_test(&nf->nf_ref))
nfsd_file_free(nf);
nf = NULL;
2019-08-18 14:18:48 -04:00
goto out;
}
/**
* nfsd_file_acquire_gc - Get a struct nfsd_file with an open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* The nfsd_file object returned by this API is reference-counted
* and garbage-collected. The object is retained for a few
* seconds after the final nfsd_file_put() in case the caller
* wants to re-use it.
*
* Return values:
* %nfs_ok - @pnf points to an nfsd_file with its reference
* count boosted.
*
* On error, an nfsstat value in network byte order is returned.
*/
__be32
nfsd_file_acquire_gc(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, SVC_NET(rqstp), NULL, NULL,
fhp, may_flags, NULL, pnf, true);
}
/**
* nfsd_file_acquire - Get a struct nfsd_file with an open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* The nfsd_file_object returned by this API is reference-counted
* but not garbage-collected. The object is unhashed after the
* final nfsd_file_put().
*
* Return values:
* %nfs_ok - @pnf points to an nfsd_file with its reference
* count boosted.
*
* On error, an nfsstat value in network byte order is returned.
*/
__be32
nfsd_file_acquire(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, SVC_NET(rqstp), NULL, NULL,
fhp, may_flags, NULL, pnf, false);
}
/**
* nfsd_file_acquire_local - Get a struct nfsd_file with an open file for localio
* @net: The network namespace in which to perform a lookup
* @cred: the user credential with which to validate access
* @client: the auth_domain for LOCALIO lookup
* @fhp: the NFS filehandle of the file to be opened
* @may_flags: NFSD_MAY_ settings for the file
* @pnf: OUT: new or found "struct nfsd_file" object
*
* This file lookup interface provide access to a file given the
* filehandle and credential. No connection-based authorisation
* is performed and in that way it is quite different to other
* file access mediated by nfsd. It allows a kernel module such as the NFS
* client to reach across network and filesystem namespaces to access
* a file. The security implications of this should be carefully
* considered before use.
*
* The nfsd_file_object returned by this API is reference-counted
* but not garbage-collected. The object is unhashed after the
* final nfsd_file_put().
*
* Return values:
* %nfs_ok - @pnf points to an nfsd_file with its reference
* count boosted.
*
* On error, an nfsstat value in network byte order is returned.
*/
__be32
nfsd_file_acquire_local(struct net *net, struct svc_cred *cred,
struct auth_domain *client, struct svc_fh *fhp,
unsigned int may_flags, struct nfsd_file **pnf)
{
/*
* Save creds before calling nfsd_file_do_acquire() (which calls
* nfsd_setuser). Important because caller (LOCALIO) is from
* client context.
*/
const struct cred *save_cred = get_current_cred();
__be32 beres;
beres = nfsd_file_do_acquire(NULL, net, cred, client,
fhp, may_flags, NULL, pnf, false);
put_cred(revert_creds(save_cred));
return beres;
}
/**
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
* nfsd_file_acquire_opened - Get a struct nfsd_file using existing open file
* @rqstp: the RPC transaction being executed
* @fhp: the NFS filehandle of the file just created
* @may_flags: NFSD_MAY_ settings for the file
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
* @file: cached, already-open file (may be NULL)
* @pnf: OUT: new or found "struct nfsd_file" object
*
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
* Acquire a nfsd_file object that is not GC'ed. If one doesn't already exist,
* and @file is non-NULL, use it to instantiate a new nfsd_file instead of
* opening a new one.
*
* Return values:
* %nfs_ok - @pnf points to an nfsd_file with its reference
* count boosted.
*
* On error, an nfsstat value in network byte order is returned.
*/
__be32
nfsd: fix handling of cached open files in nfsd4_open codepath Commit fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") added the ability to cache an open fd over a compound. There are a couple of problems with the way this currently works: It's racy, as a newly-created nfsd_file can end up with its PENDING bit cleared while the nf is hashed, and the nf_file pointer is still zeroed out. Other tasks can find it in this state and they expect to see a valid nf_file, and can oops if nf_file is NULL. Also, there is no guarantee that we'll end up creating a new nfsd_file if one is already in the hash. If an extant entry is in the hash with a valid nf_file, nfs4_get_vfs_file will clobber its nf_file pointer with the value of op_file and the old nf_file will leak. Fix both issues by making a new nfsd_file_acquirei_opened variant that takes an optional file pointer. If one is present when this is called, we'll take a new reference to it instead of trying to open the file. If the nfsd_file already has a valid nf_file, we'll just ignore the optional file and pass the nfsd_file back as-is. Also rework the tracepoints a bit to allow for an "opened" variant and don't try to avoid counting acquisitions in the case where we already have a cached open file. Fixes: fb70bf124b05 ("NFSD: Instantiate a struct file when creating a regular NFSv4 file") Cc: Trond Myklebust <trondmy@hammerspace.com> Reported-by: Stanislav Saner <ssaner@redhat.com> Reported-and-Tested-by: Ruben Vestergaard <rubenv@drcmr.dk> Reported-and-Tested-by: Torkil Svensgaard <torkil@drcmr.dk> Signed-off-by: Jeff Layton <jlayton@kernel.org> Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
2023-01-05 14:55:56 -05:00
nfsd_file_acquire_opened(struct svc_rqst *rqstp, struct svc_fh *fhp,
unsigned int may_flags, struct file *file,
struct nfsd_file **pnf)
{
return nfsd_file_do_acquire(rqstp, SVC_NET(rqstp), NULL, NULL,
fhp, may_flags, file, pnf, false);
}
2019-08-18 14:18:48 -04:00
/*
* Note that fields may be added, removed or reordered in the future. Programs
* scraping this file for info should test the labels to ensure they're
* getting the correct field.
*/
int nfsd_file_cache_stats_show(struct seq_file *m, void *v)
2019-08-18 14:18:48 -04:00
{
unsigned long allocations = 0, releases = 0, evictions = 0;
unsigned long hits = 0, acquisitions = 0;
unsigned int i, count = 0, buckets = 0;
unsigned long lru = 0, total_age = 0;
2019-08-18 14:18:48 -04:00
/* Serialize with server shutdown */
2019-08-18 14:18:48 -04:00
mutex_lock(&nfsd_mutex);
if (test_bit(NFSD_FILE_CACHE_UP, &nfsd_file_flags) == 1) {
struct bucket_table *tbl;
struct rhashtable *ht;
lru = list_lru_count(&nfsd_file_lru);
rcu_read_lock();
ht = &nfsd_file_rhltable.ht;
count = atomic_read(&ht->nelems);
tbl = rht_dereference_rcu(ht->tbl, ht);
buckets = tbl->size;
rcu_read_unlock();
2019-08-18 14:18:48 -04:00
}
mutex_unlock(&nfsd_mutex);
for_each_possible_cpu(i) {
2019-08-18 14:18:48 -04:00
hits += per_cpu(nfsd_file_cache_hits, i);
acquisitions += per_cpu(nfsd_file_acquisitions, i);
allocations += per_cpu(nfsd_file_allocations, i);
releases += per_cpu(nfsd_file_releases, i);
total_age += per_cpu(nfsd_file_total_age, i);
evictions += per_cpu(nfsd_file_evictions, i);
}
2019-08-18 14:18:48 -04:00
seq_printf(m, "total inodes: %u\n", count);
seq_printf(m, "hash buckets: %u\n", buckets);
seq_printf(m, "lru entries: %lu\n", lru);
2019-08-18 14:18:48 -04:00
seq_printf(m, "cache hits: %lu\n", hits);
seq_printf(m, "acquisitions: %lu\n", acquisitions);
seq_printf(m, "allocations: %lu\n", allocations);
seq_printf(m, "releases: %lu\n", releases);
seq_printf(m, "evictions: %lu\n", evictions);
if (releases)
seq_printf(m, "mean age (ms): %ld\n", total_age / releases);
else
seq_printf(m, "mean age (ms): -\n");
2019-08-18 14:18:48 -04:00
return 0;
}