linux/drivers/s390/crypto/pkey_base.h

241 lines
7 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright IBM Corp. 2024
*
* Pkey base: debug feature, defines and structs
* common to all pkey code.
*/
#ifndef _PKEY_BASE_H_
#define _PKEY_BASE_H_
#include <linux/types.h>
#include <asm/debug.h>
#include <asm/pkey.h>
/*
* pkey debug feature
*/
extern debug_info_t *pkey_dbf_info;
#define PKEY_DBF_INFO(...) debug_sprintf_event(pkey_dbf_info, 5, ##__VA_ARGS__)
#define PKEY_DBF_WARN(...) debug_sprintf_event(pkey_dbf_info, 4, ##__VA_ARGS__)
#define PKEY_DBF_ERR(...) debug_sprintf_event(pkey_dbf_info, 3, ##__VA_ARGS__)
/*
* common defines and common structs
*/
#define KEYBLOBBUFSIZE 8192 /* key buffer size used for internal processing */
#define MINKEYBLOBBUFSIZE (sizeof(struct keytoken_header))
#define PROTKEYBLOBBUFSIZE 256 /* protected key buffer size used internal */
#define MAXAPQNSINLIST 64 /* max 64 apqns within a apqn list */
#define AES_WK_VP_SIZE 32 /* Size of WK VP block appended to a prot key */
/* inside view of a generic protected key token */
struct protkeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* should be 0x01 for protected key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in protkey[] */
u8 protkey[]; /* the protected key blob */
} __packed;
/* inside view of a protected AES key token */
struct protaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* should be 0x01 for protected key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in protkey[] */
u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
} __packed;
/* inside view of a clear key token (type 0x00 version 0x02) */
struct clearkeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* 0x02 for clear key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE_* values */
u32 len; /* bytes actually stored in clearkey[] */
u8 clearkey[]; /* clear key value */
} __packed;
/* helper function which translates the PKEY_KEYTYPE_AES_* to their keysize */
static inline u32 pkey_keytype_aes_to_size(u32 keytype)
{
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
return 16;
case PKEY_KEYTYPE_AES_192:
return 24;
case PKEY_KEYTYPE_AES_256:
return 32;
default:
return 0;
}
}
/* helper function which translates AES key bit size into PKEY_KEYTYPE_AES_* */
static inline u32 pkey_aes_bitsize_to_keytype(u32 keybitsize)
{
switch (keybitsize) {
case 128:
return PKEY_KEYTYPE_AES_128;
case 192:
return PKEY_KEYTYPE_AES_192;
case 256:
return PKEY_KEYTYPE_AES_256;
default:
return 0;
}
}
/*
* helper function which translates the PKEY_KEYTYPE_*
* to the protected key size minus the WK VP length
*/
static inline u32 pkey_keytype_to_size(u32 keytype)
{
switch (keytype) {
case PKEY_KEYTYPE_AES_128:
return 16;
case PKEY_KEYTYPE_AES_192:
return 24;
case PKEY_KEYTYPE_AES_256:
return 32;
case PKEY_KEYTYPE_ECC_P256:
return 32;
case PKEY_KEYTYPE_ECC_P384:
return 48;
case PKEY_KEYTYPE_ECC_P521:
return 80;
case PKEY_KEYTYPE_ECC_ED25519:
return 32;
case PKEY_KEYTYPE_ECC_ED448:
return 54;
case PKEY_KEYTYPE_AES_XTS_128:
return 32;
case PKEY_KEYTYPE_AES_XTS_256:
return 64;
case PKEY_KEYTYPE_HMAC_512:
return 64;
case PKEY_KEYTYPE_HMAC_1024:
return 128;
default:
return 0;
}
}
/*
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
* pkey_api.c:
*/
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int __init pkey_api_init(void);
void __exit pkey_api_exit(void);
/*
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
* pkey_sysfs.c:
*/
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
extern const struct attribute_group *pkey_attr_groups[];
/*
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
* pkey handler registry
*/
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
struct pkey_handler {
struct module *module;
const char *name;
/*
* is_supported_key() and is_supported_keytype() are called
* within an rcu_read_lock() scope and thus must not sleep!
*/
bool (*is_supported_key)(const u8 *key, u32 keylen);
bool (*is_supported_keytype)(enum pkey_key_type);
int (*key_to_protkey)(const struct pkey_apqn *apqns, size_t nr_apqns,
const u8 *key, u32 keylen,
u8 *protkey, u32 *protkeylen, u32 *protkeytype,
u32 xflags);
int (*slowpath_key_to_protkey)(const struct pkey_apqn *apqns,
size_t nr_apqns,
const u8 *key, u32 keylen,
u8 *protkey, u32 *protkeylen,
u32 *protkeytype, u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int (*gen_key)(const struct pkey_apqn *apqns, size_t nr_apqns,
u32 keytype, u32 keysubtype,
u32 keybitsize, u32 flags,
u8 *keybuf, u32 *keybuflen, u32 *keyinfo, u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int (*clr_to_key)(const struct pkey_apqn *apqns, size_t nr_apqns,
u32 keytype, u32 keysubtype,
u32 keybitsize, u32 flags,
const u8 *clrkey, u32 clrkeylen,
u8 *keybuf, u32 *keybuflen, u32 *keyinfo, u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int (*verify_key)(const u8 *key, u32 keylen,
u16 *card, u16 *dom,
u32 *keytype, u32 *keybitsize, u32 *flags,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int (*apqns_for_key)(const u8 *key, u32 keylen, u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int (*apqns_for_keytype)(enum pkey_key_type ktype,
u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
/* used internal by pkey base */
struct list_head list;
};
int pkey_handler_register(struct pkey_handler *handler);
int pkey_handler_unregister(struct pkey_handler *handler);
/*
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
* invocation function for the registered pkey handlers
*/
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
const struct pkey_handler *pkey_handler_get_keybased(const u8 *key, u32 keylen);
const struct pkey_handler *pkey_handler_get_keytypebased(enum pkey_key_type kt);
void pkey_handler_put(const struct pkey_handler *handler);
int pkey_handler_key_to_protkey(const struct pkey_apqn *apqns, size_t nr_apqns,
const u8 *key, u32 keylen,
u8 *protkey, u32 *protkeylen, u32 *protkeytype,
u32 xflags);
int pkey_handler_slowpath_key_to_protkey(const struct pkey_apqn *apqns,
size_t nr_apqns,
const u8 *key, u32 keylen,
u8 *protkey, u32 *protkeylen,
u32 *protkeytype, u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int pkey_handler_gen_key(const struct pkey_apqn *apqns, size_t nr_apqns,
u32 keytype, u32 keysubtype,
u32 keybitsize, u32 flags,
u8 *keybuf, u32 *keybuflen, u32 *keyinfo, u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int pkey_handler_clr_to_key(const struct pkey_apqn *apqns, size_t nr_apqns,
u32 keytype, u32 keysubtype,
u32 keybitsize, u32 flags,
const u8 *clrkey, u32 clrkeylen,
u8 *keybuf, u32 *keybuflen, u32 *keyinfo,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int pkey_handler_verify_key(const u8 *key, u32 keylen,
u16 *card, u16 *dom,
u32 *keytype, u32 *keybitsize, u32 *flags,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int pkey_handler_apqns_for_key(const u8 *key, u32 keylen, u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns,
u32 xflags);
s390/pkey: Introduce pkey base with handler registry and handler modules Introduce pkey base kernel code with a simple pkey handler registry. Regroup the pkey code into these kernel modules: - pkey is the pkey api supporting the ioctls, sysfs and in-kernel api. Also the pkey base code which offers the handler registry and handler wrapping invocation functions is integrated there. This module is automatically loaded in via CPU feature if the MSA feature is available. - pkey-cca is the CCA related handler code kernel module a offering CCA specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-ep11 is the EP11 related handler code kernel module offering an EP11 specific implementation for pkey. This module is loaded in via MODULE_DEVICE_TABLE when a CEX[4-8] card becomes available. - pkey-pckmo is the PCKMO related handler code kernel module. This module is loaded in via CPU feature if the MSA feature is available, but on init a check for availability of the pckmo instruction is performed. The handler modules register via a pkey_handler struct at the pkey base code and the pkey customer (that is currently the pkey api code fetches a handler via pkey handler registry functions and calls the unified handler functions via the pkey base handler functions. As a result the pkey-cca, pkey-ep11 and pkey-pckmo modules get independent from each other and it becomes possible to write new handlers which offer another kind of implementation without implicit dependencies to other handler implementations and/or kernel device drivers. For each of these 4 kernel modules there is an individual Kconfig entry: CONFIG_PKEY for the base and api, CONFIG_PKEY_CCA for the PKEY CCA support handler, CONFIG_PKEY_EP11 for the EP11 support handler and CONFIG_PKEY_PCKMO for the pckmo support. The both CEX related handler modules (PKEY CCA and PKEY EP11) have a dependency to the zcrypt api of the zcrypt device driver. Signed-off-by: Harald Freudenberger <freude@linux.ibm.com> Reviewed-by: Holger Dengler <dengler@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-22 11:32:19 +02:00
int pkey_handler_apqns_for_keytype(enum pkey_key_type ktype,
u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags,
struct pkey_apqn *apqns, size_t *nr_apqns,
u32 xflags);
/*
* Unconditional try to load all handler modules
*/
void pkey_handler_request_modules(void);
#endif /* _PKEY_BASE_H_ */