linux/drivers/rtc/rtc-sh.c

509 lines
13 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* SuperH On-Chip RTC Support
*
* Copyright (C) 2006 - 2009 Paul Mundt
* Copyright (C) 2006 Jamie Lenehan
* Copyright (C) 2008 Angelo Castello
* Copyright (C) 2025 Wolfram Sang, Renesas Electronics Corporation
*
* Based on the old arch/sh/kernel/cpu/rtc.c by:
*
* Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
* Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
*/
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/kernel.h>
#include <linux/bcd.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/clk.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#ifdef CONFIG_SUPERH
#include <asm/rtc.h>
#else
/* Default values for RZ/A RTC */
#define rtc_reg_size sizeof(u16)
#define RTC_BIT_INVERTED 0 /* no chip bugs */
#define RTC_CAP_4_DIGIT_YEAR BIT(0)
#define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
#endif
#define DRV_NAME "sh-rtc"
#define RTC_REG(r) ((r) * rtc_reg_size)
#define R64CNT RTC_REG(0)
#define RSECCNT RTC_REG(1) /* RTC sec */
#define RMINCNT RTC_REG(2) /* RTC min */
#define RHRCNT RTC_REG(3) /* RTC hour */
#define RWKCNT RTC_REG(4) /* RTC week */
#define RDAYCNT RTC_REG(5) /* RTC day */
#define RMONCNT RTC_REG(6) /* RTC month */
#define RYRCNT RTC_REG(7) /* RTC year */
#define RSECAR RTC_REG(8) /* ALARM sec */
#define RMINAR RTC_REG(9) /* ALARM min */
#define RHRAR RTC_REG(10) /* ALARM hour */
#define RWKAR RTC_REG(11) /* ALARM week */
#define RDAYAR RTC_REG(12) /* ALARM day */
#define RMONAR RTC_REG(13) /* ALARM month */
#define RCR1 RTC_REG(14) /* Control */
#define RCR2 RTC_REG(15) /* Control */
/*
* Note on RYRAR and RCR3: Up until this point most of the register
* definitions are consistent across all of the available parts. However,
* the placement of the optional RYRAR and RCR3 (the RYRAR control
* register used to control RYRCNT/RYRAR compare) varies considerably
* across various parts, occasionally being mapped in to a completely
* unrelated address space. For proper RYRAR support a separate resource
* would have to be handed off, but as this is purely optional in
* practice, we simply opt not to support it, thereby keeping the code
* quite a bit more simplified.
*/
/* ALARM Bits - or with BCD encoded value */
#define AR_ENB BIT(7) /* Enable for alarm cmp */
/* RCR1 Bits */
#define RCR1_CF BIT(7) /* Carry Flag */
#define RCR1_CIE BIT(4) /* Carry Interrupt Enable */
#define RCR1_AIE BIT(3) /* Alarm Interrupt Enable */
#define RCR1_AF BIT(0) /* Alarm Flag */
/* RCR2 Bits */
#define RCR2_RTCEN BIT(3) /* ENable RTC */
#define RCR2_ADJ BIT(2) /* ADJustment (30-second) */
#define RCR2_RESET BIT(1) /* Reset bit */
#define RCR2_START BIT(0) /* Start bit */
struct sh_rtc {
void __iomem *regbase;
int alarm_irq;
struct clk *clk;
struct rtc_device *rtc_dev;
spinlock_t lock; /* protecting register access */
unsigned long capabilities; /* See asm/rtc.h for cap bits */
};
static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
{
struct sh_rtc *rtc = dev_id;
unsigned int tmp, pending;
spin_lock(&rtc->lock);
tmp = readb(rtc->regbase + RCR1);
pending = tmp & RCR1_AF;
tmp &= ~(RCR1_AF | RCR1_AIE);
writeb(tmp, rtc->regbase + RCR1);
if (pending)
rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
spin_unlock(&rtc->lock);
return IRQ_RETVAL(pending);
}
static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
unsigned int tmp;
spin_lock_irq(&rtc->lock);
tmp = readb(rtc->regbase + RCR1);
if (enable)
tmp |= RCR1_AIE;
else
tmp &= ~RCR1_AIE;
writeb(tmp, rtc->regbase + RCR1);
spin_unlock_irq(&rtc->lock);
return 0;
}
static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
unsigned int sec128, sec2, yr, yr100, cf_bit;
if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
return -EINVAL;
do {
unsigned int tmp;
spin_lock_irq(&rtc->lock);
tmp = readb(rtc->regbase + RCR1);
tmp &= ~RCR1_CF; /* Clear CF-bit */
tmp |= RCR1_CIE;
writeb(tmp, rtc->regbase + RCR1);
sec128 = readb(rtc->regbase + R64CNT);
tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
yr = readw(rtc->regbase + RYRCNT);
yr100 = bcd2bin(yr >> 8);
yr &= 0xff;
} else {
yr = readb(rtc->regbase + RYRCNT);
yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
}
tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
sec2 = readb(rtc->regbase + R64CNT);
cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
spin_unlock_irq(&rtc->lock);
} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
#if RTC_BIT_INVERTED != 0
if ((sec128 & RTC_BIT_INVERTED))
tm->tm_sec--;
#endif
dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
__func__, tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
return 0;
}
static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
unsigned int tmp;
int year;
spin_lock_irq(&rtc->lock);
/* Reset pre-scaler & stop RTC */
tmp = readb(rtc->regbase + RCR2);
tmp |= RCR2_RESET;
tmp &= ~RCR2_START;
writeb(tmp, rtc->regbase + RCR2);
writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
bin2bcd(tm->tm_year % 100);
writew(year, rtc->regbase + RYRCNT);
} else {
year = tm->tm_year % 100;
writeb(bin2bcd(year), rtc->regbase + RYRCNT);
}
/* Start RTC */
tmp = readb(rtc->regbase + RCR2);
tmp &= ~RCR2_RESET;
tmp |= RCR2_RTCEN | RCR2_START;
writeb(tmp, rtc->regbase + RCR2);
spin_unlock_irq(&rtc->lock);
return 0;
}
static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
{
unsigned int byte;
int value = -1; /* return -1 for ignored values */
byte = readb(rtc->regbase + reg_off);
if (byte & AR_ENB) {
byte &= ~AR_ENB; /* strip the enable bit */
value = bcd2bin(byte);
}
return value;
}
static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &wkalrm->time;
spin_lock_irq(&rtc->lock);
tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
if (tm->tm_mon > 0)
tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
spin_unlock_irq(&rtc->lock);
return 0;
}
static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
int value, int reg_off)
{
/* < 0 for a value that is ignored */
if (value < 0)
writeb(0, rtc->regbase + reg_off);
else
writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
}
static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
unsigned int rcr1;
struct rtc_time *tm = &wkalrm->time;
int mon;
spin_lock_irq(&rtc->lock);
/* disable alarm interrupt and clear the alarm flag */
rcr1 = readb(rtc->regbase + RCR1);
rcr1 &= ~(RCR1_AF | RCR1_AIE);
writeb(rcr1, rtc->regbase + RCR1);
/* set alarm time */
sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
mon = tm->tm_mon;
if (mon >= 0)
mon += 1;
sh_rtc_write_alarm_value(rtc, mon, RMONAR);
if (wkalrm->enabled) {
rcr1 |= RCR1_AIE;
writeb(rcr1, rtc->regbase + RCR1);
}
spin_unlock_irq(&rtc->lock);
return 0;
}
static const struct rtc_class_ops sh_rtc_ops = {
.read_time = sh_rtc_read_time,
.set_time = sh_rtc_set_time,
.read_alarm = sh_rtc_read_alarm,
.set_alarm = sh_rtc_set_alarm,
.alarm_irq_enable = sh_rtc_alarm_irq_enable,
};
static int __init sh_rtc_probe(struct platform_device *pdev)
{
struct sh_rtc *rtc;
struct resource *res, *req_res;
char clk_name[14];
int clk_id, ret;
unsigned int tmp;
resource_size_t regsize;
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (unlikely(!rtc))
return -ENOMEM;
spin_lock_init(&rtc->lock);
ret = platform_get_irq(pdev, 0);
if (unlikely(ret <= 0)) {
dev_err(&pdev->dev, "No IRQ resource\n");
return -ENOENT;
}
if (!pdev->dev.of_node)
rtc->alarm_irq = platform_get_irq(pdev, 2);
else
rtc->alarm_irq = ret;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!res)
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "No IO resource\n");
return -ENOENT;
}
regsize = resource_size(res);
req_res = devm_request_mem_region(&pdev->dev, res->start, regsize, pdev->name);
if (!req_res)
return -EBUSY;
rtc->regbase = devm_ioremap(&pdev->dev, req_res->start, regsize);
if (!rtc->regbase)
return -EINVAL;
if (!pdev->dev.of_node) {
clk_id = pdev->id;
/* With a single device, the clock id is still "rtc0" */
if (clk_id < 0)
clk_id = 0;
snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
} else {
snprintf(clk_name, sizeof(clk_name), "fck");
}
rtc->clk = devm_clk_get(&pdev->dev, clk_name);
if (IS_ERR(rtc->clk)) {
/*
* No error handling for rtc->clk intentionally, not all
* platforms will have a unique clock for the RTC, and
* the clk API can handle the struct clk pointer being
* NULL.
*/
rtc->clk = NULL;
}
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtc_dev))
return PTR_ERR(rtc->rtc_dev);
clk_enable(rtc->clk);
rtc->capabilities = RTC_DEF_CAPABILITIES;
#ifdef CONFIG_SUPERH
if (dev_get_platdata(&pdev->dev)) {
struct sh_rtc_platform_info *pinfo =
dev_get_platdata(&pdev->dev);
/*
* Some CPUs have special capabilities in addition to the
* default set. Add those in here.
*/
rtc->capabilities |= pinfo->capabilities;
}
#endif
ret = devm_request_irq(&pdev->dev, rtc->alarm_irq, sh_rtc_alarm, 0, "sh-rtc", rtc);
if (ret) {
dev_err(&pdev->dev, "request alarm IRQ failed with %d, IRQ %d\n",
ret, rtc->alarm_irq);
goto err_unmap;
}
platform_set_drvdata(pdev, rtc);
/* everything disabled by default */
tmp = readb(rtc->regbase + RCR1);
tmp &= ~(RCR1_CIE | RCR1_AIE);
writeb(tmp, rtc->regbase + RCR1);
rtc->rtc_dev->ops = &sh_rtc_ops;
rtc->rtc_dev->max_user_freq = 256;
if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
} else {
rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
}
ret = devm_rtc_register_device(rtc->rtc_dev);
if (ret)
goto err_unmap;
device_init_wakeup(&pdev->dev, true);
return 0;
err_unmap:
clk_disable(rtc->clk);
return ret;
}
static void __exit sh_rtc_remove(struct platform_device *pdev)
{
struct sh_rtc *rtc = platform_get_drvdata(pdev);
sh_rtc_alarm_irq_enable(&pdev->dev, 0);
clk_disable(rtc->clk);
}
static int sh_rtc_suspend(struct device *dev)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
irq_set_irq_wake(rtc->alarm_irq, 1);
return 0;
}
static int sh_rtc_resume(struct device *dev)
{
struct sh_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
irq_set_irq_wake(rtc->alarm_irq, 0);
return 0;
}
static DEFINE_SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
static const struct of_device_id sh_rtc_of_match[] = {
{ .compatible = "renesas,sh-rtc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
/*
* sh_rtc_remove() lives in .exit.text. For drivers registered via
* module_platform_driver_probe() this is ok because they cannot get unbound at
* runtime. So mark the driver struct with __refdata to prevent modpost
* triggering a section mismatch warning.
*/
static struct platform_driver sh_rtc_platform_driver __refdata = {
.driver = {
.name = DRV_NAME,
.pm = pm_sleep_ptr(&sh_rtc_pm_ops),
.of_match_table = sh_rtc_of_match,
},
.remove = __exit_p(sh_rtc_remove),
};
module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
MODULE_DESCRIPTION("SuperH on-chip RTC driver");
MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>");
MODULE_AUTHOR("Jamie Lenehan <lenehan@twibble.org>");
MODULE_AUTHOR("Angelo Castello <angelo.castello@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRV_NAME);