2025-05-13 11:14:47 +05:30
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/*
|
|
|
|
* TI K3 Remote Processor(s) driver common code
|
|
|
|
*
|
|
|
|
* Refactored out of ti_k3_r5_remoteproc.c, ti_k3_dsp_remoteproc.c and
|
|
|
|
* ti_k3_m4_remoteproc.c.
|
|
|
|
*
|
|
|
|
* ti_k3_r5_remoteproc.c:
|
|
|
|
* Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
|
|
|
|
* Suman Anna <s-anna@ti.com>
|
|
|
|
*
|
|
|
|
* ti_k3_dsp_remoteproc.c:
|
|
|
|
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
|
|
|
|
* Suman Anna <s-anna@ti.com>
|
|
|
|
*
|
|
|
|
* ti_k3_m4_remoteproc.c:
|
|
|
|
* Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/
|
|
|
|
* Hari Nagalla <hnagalla@ti.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/mailbox_client.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/of_address.h>
|
|
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/of_reserved_mem.h>
|
|
|
|
#include <linux/omap-mailbox.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/remoteproc.h>
|
|
|
|
#include <linux/reset.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include "omap_remoteproc.h"
|
|
|
|
#include "remoteproc_internal.h"
|
|
|
|
#include "ti_sci_proc.h"
|
|
|
|
#include "ti_k3_common.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* k3_rproc_mbox_callback() - inbound mailbox message handler
|
|
|
|
* @client: mailbox client pointer used for requesting the mailbox channel
|
|
|
|
* @data: mailbox payload
|
|
|
|
*
|
|
|
|
* This handler is invoked by the K3 mailbox driver whenever a mailbox
|
|
|
|
* message is received. Usually, the mailbox payload simply contains
|
|
|
|
* the index of the virtqueue that is kicked by the remote processor,
|
|
|
|
* and we let remoteproc core handle it.
|
|
|
|
*
|
|
|
|
* In addition to virtqueue indices, we also have some out-of-band values
|
|
|
|
* that indicate different events. Those values are deliberately very
|
|
|
|
* large so they don't coincide with virtqueue indices.
|
|
|
|
*/
|
|
|
|
void k3_rproc_mbox_callback(struct mbox_client *client, void *data)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = container_of(client, struct k3_rproc, client);
|
|
|
|
struct device *dev = kproc->rproc->dev.parent;
|
|
|
|
struct rproc *rproc = kproc->rproc;
|
|
|
|
u32 msg = (u32)(uintptr_t)(data);
|
|
|
|
|
|
|
|
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
|
|
|
|
|
|
|
|
switch (msg) {
|
|
|
|
case RP_MBOX_CRASH:
|
|
|
|
/*
|
|
|
|
* remoteproc detected an exception, but error recovery is not
|
|
|
|
* supported. So, just log this for now
|
|
|
|
*/
|
|
|
|
dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
|
|
|
|
break;
|
|
|
|
case RP_MBOX_ECHO_REPLY:
|
|
|
|
dev_info(dev, "received echo reply from %s\n", rproc->name);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* silently handle all other valid messages */
|
|
|
|
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
|
|
|
|
return;
|
|
|
|
if (msg > rproc->max_notifyid) {
|
|
|
|
dev_dbg(dev, "dropping unknown message 0x%x", msg);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* msg contains the index of the triggered vring */
|
|
|
|
if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
|
|
|
|
dev_dbg(dev, "no message was found in vqid %d\n", msg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_mbox_callback);
|
|
|
|
|
2025-05-13 11:14:48 +05:30
|
|
|
/*
|
|
|
|
* Kick the remote processor to notify about pending unprocessed messages.
|
|
|
|
* The vqid usage is not used and is inconsequential, as the kick is performed
|
|
|
|
* through a simulated GPIO (a bit in an IPC interrupt-triggering register),
|
|
|
|
* the remote processor is expected to process both its Tx and Rx virtqueues.
|
|
|
|
*/
|
|
|
|
void k3_rproc_kick(struct rproc *rproc, int vqid)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
u32 msg = (u32)vqid;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send the index of the triggered virtqueue in the mailbox payload.
|
|
|
|
* NOTE: msg is cast to uintptr_t to prevent compiler warnings when
|
|
|
|
* void* is 64bit. It is safely cast back to u32 in the mailbox driver.
|
|
|
|
*/
|
|
|
|
ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
|
|
|
|
if (ret < 0)
|
|
|
|
dev_err(dev, "failed to send mailbox message, status = %d\n",
|
|
|
|
ret);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_kick);
|
|
|
|
|
2025-05-13 11:14:51 +05:30
|
|
|
/* Put the remote processor into reset */
|
|
|
|
int k3_rproc_reset(struct k3_rproc *kproc)
|
|
|
|
{
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (kproc->data->uses_lreset) {
|
|
|
|
ret = reset_control_assert(kproc->reset);
|
|
|
|
if (ret)
|
|
|
|
dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
|
|
|
|
} else {
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
|
|
kproc->ti_sci_id);
|
|
|
|
if (ret)
|
|
|
|
dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_reset);
|
|
|
|
|
2025-05-13 11:14:54 +05:30
|
|
|
/* Release the remote processor from reset */
|
|
|
|
int k3_rproc_release(struct k3_rproc *kproc)
|
|
|
|
{
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (kproc->data->uses_lreset) {
|
|
|
|
ret = reset_control_deassert(kproc->reset);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
|
|
|
|
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
|
|
kproc->ti_sci_id))
|
|
|
|
dev_warn(dev, "module-reset assert back failed\n");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
|
|
|
|
kproc->ti_sci_id);
|
|
|
|
if (ret)
|
|
|
|
dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_release);
|
|
|
|
|
2025-05-13 11:14:56 +05:30
|
|
|
int k3_rproc_request_mbox(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
struct mbox_client *client = &kproc->client;
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
client->dev = dev;
|
|
|
|
client->tx_done = NULL;
|
|
|
|
client->rx_callback = k3_rproc_mbox_callback;
|
|
|
|
client->tx_block = false;
|
|
|
|
client->knows_txdone = false;
|
|
|
|
|
|
|
|
kproc->mbox = mbox_request_channel(client, 0);
|
|
|
|
if (IS_ERR(kproc->mbox))
|
|
|
|
return dev_err_probe(dev, PTR_ERR(kproc->mbox),
|
|
|
|
"mbox_request_channel failed\n");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ping the remote processor, this is only for sanity-sake for now;
|
|
|
|
* there is no functional effect whatsoever.
|
|
|
|
*
|
|
|
|
* Note that the reply will _not_ arrive immediately: this message
|
|
|
|
* will wait in the mailbox fifo until the remote processor is booted.
|
|
|
|
*/
|
|
|
|
ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
|
|
|
|
if (ret < 0) {
|
|
|
|
dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
|
|
|
|
mbox_free_channel(kproc->mbox);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_request_mbox);
|
|
|
|
|
2025-05-13 11:14:59 +05:30
|
|
|
/*
|
|
|
|
* The K3 DSP and M4 cores have a local reset that affects only the CPU, and a
|
|
|
|
* generic module reset that powers on the device and allows the internal
|
|
|
|
* memories to be accessed while the local reset is asserted. This function is
|
|
|
|
* used to release the global reset on remote cores to allow loading into the
|
|
|
|
* internal RAMs. The .prepare() ops is invoked by remoteproc core before any
|
|
|
|
* firmware loading, and is followed by the .start() ops after loading to
|
|
|
|
* actually let the remote cores to run.
|
|
|
|
*/
|
|
|
|
int k3_rproc_prepare(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* If the core is running already no need to deassert the module reset */
|
|
|
|
if (rproc->state == RPROC_DETACHED)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ensure the local reset is asserted so the core doesn't
|
|
|
|
* execute bogus code when the module reset is released.
|
|
|
|
*/
|
|
|
|
if (kproc->data->uses_lreset) {
|
|
|
|
ret = k3_rproc_reset(kproc);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = reset_control_status(kproc->reset);
|
|
|
|
if (ret <= 0) {
|
|
|
|
dev_err(dev, "local reset still not asserted\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
|
|
|
|
kproc->ti_sci_id);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_prepare);
|
|
|
|
|
2025-05-13 11:15:00 +05:30
|
|
|
/*
|
|
|
|
* This function implements the .unprepare() ops and performs the complimentary
|
|
|
|
* operations to that of the .prepare() ops. The function is used to assert the
|
|
|
|
* global reset on applicable K3 DSP and M4 cores. This completes the second
|
|
|
|
* portion of powering down the remote core. The cores themselves are only
|
|
|
|
* halted in the .stop() callback through the local reset, and the .unprepare()
|
|
|
|
* ops is invoked by the remoteproc core after the remoteproc is stopped to
|
|
|
|
* balance the global reset.
|
|
|
|
*/
|
|
|
|
int k3_rproc_unprepare(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* If the core is going to be detached do not assert the module reset */
|
|
|
|
if (rproc->state == RPROC_DETACHED)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
|
|
|
|
kproc->ti_sci_id);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "module-reset assert failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_unprepare);
|
|
|
|
|
2025-05-13 11:15:01 +05:30
|
|
|
/*
|
|
|
|
* Power up the remote processor.
|
|
|
|
*
|
|
|
|
* This function will be invoked only after the firmware for this rproc
|
|
|
|
* was loaded, parsed successfully, and all of its resource requirements
|
|
|
|
* were met. This callback is invoked only in remoteproc mode.
|
|
|
|
*/
|
|
|
|
int k3_rproc_start(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
|
|
|
|
return k3_rproc_release(kproc);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_start);
|
|
|
|
|
2025-05-13 11:15:02 +05:30
|
|
|
/*
|
|
|
|
* Stop the remote processor.
|
|
|
|
*
|
|
|
|
* This function puts the remote processor into reset, and finishes processing
|
|
|
|
* of any pending messages. This callback is invoked only in remoteproc mode.
|
|
|
|
*/
|
|
|
|
int k3_rproc_stop(struct rproc *rproc)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
|
|
|
|
return k3_rproc_reset(kproc);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_stop);
|
|
|
|
|
2025-05-13 11:15:03 +05:30
|
|
|
/*
|
|
|
|
* Attach to a running remote processor (IPC-only mode)
|
|
|
|
*
|
|
|
|
* The rproc attach callback is a NOP. The remote processor is already booted,
|
|
|
|
* and all required resources have been acquired during probe routine, so there
|
|
|
|
* is no need to issue any TI-SCI commands to boot the remote cores in IPC-only
|
|
|
|
* mode. This callback is invoked only in IPC-only mode and exists because
|
|
|
|
* rproc_validate() checks for its existence.
|
|
|
|
*/
|
|
|
|
int k3_rproc_attach(struct rproc *rproc) { return 0; }
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_attach);
|
|
|
|
|
2025-05-13 11:15:04 +05:30
|
|
|
/*
|
|
|
|
* Detach from a running remote processor (IPC-only mode)
|
|
|
|
*
|
|
|
|
* The rproc detach callback is a NOP. The remote processor is not stopped and
|
|
|
|
* will be left in booted state in IPC-only mode. This callback is invoked only
|
|
|
|
* in IPC-only mode and exists for sanity sake
|
|
|
|
*/
|
|
|
|
int k3_rproc_detach(struct rproc *rproc) { return 0; }
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_detach);
|
|
|
|
|
2025-05-13 11:15:05 +05:30
|
|
|
/*
|
|
|
|
* This function implements the .get_loaded_rsc_table() callback and is used
|
|
|
|
* to provide the resource table for a booted remote processor in IPC-only
|
|
|
|
* mode. The remote processor firmwares follow a design-by-contract approach
|
|
|
|
* and are expected to have the resource table at the base of the DDR region
|
|
|
|
* reserved for firmware usage. This provides flexibility for the remote
|
|
|
|
* processor to be booted by different bootloaders that may or may not have the
|
|
|
|
* ability to publish the resource table address and size through a DT
|
|
|
|
* property.
|
|
|
|
*/
|
|
|
|
struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
|
|
|
|
size_t *rsc_table_sz)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
|
|
|
|
if (!kproc->rmem[0].cpu_addr) {
|
|
|
|
dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* NOTE: The resource table size is currently hard-coded to a maximum
|
|
|
|
* of 256 bytes. The most common resource table usage for K3 firmwares
|
|
|
|
* is to only have the vdev resource entry and an optional trace entry.
|
|
|
|
* The exact size could be computed based on resource table address, but
|
|
|
|
* the hard-coded value suffices to support the IPC-only mode.
|
|
|
|
*/
|
|
|
|
*rsc_table_sz = 256;
|
|
|
|
return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table);
|
|
|
|
|
2025-05-13 11:15:06 +05:30
|
|
|
/*
|
|
|
|
* Custom function to translate a remote processor device address (internal
|
|
|
|
* RAMs only) to a kernel virtual address. The remote processors can access
|
|
|
|
* their RAMs at either an internal address visible only from a remote
|
|
|
|
* processor, or at the SoC-level bus address. Both these addresses need to be
|
|
|
|
* looked through for translation. The translated addresses can be used either
|
|
|
|
* by the remoteproc core for loading (when using kernel remoteproc loader), or
|
|
|
|
* by any rpmsg bus drivers.
|
|
|
|
*/
|
|
|
|
void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
|
|
|
|
{
|
|
|
|
struct k3_rproc *kproc = rproc->priv;
|
|
|
|
void __iomem *va = NULL;
|
|
|
|
phys_addr_t bus_addr;
|
|
|
|
u32 dev_addr, offset;
|
|
|
|
size_t size;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (len == 0)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
for (i = 0; i < kproc->num_mems; i++) {
|
|
|
|
bus_addr = kproc->mem[i].bus_addr;
|
|
|
|
dev_addr = kproc->mem[i].dev_addr;
|
|
|
|
size = kproc->mem[i].size;
|
|
|
|
|
|
|
|
/* handle rproc-view addresses */
|
|
|
|
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
|
|
|
|
offset = da - dev_addr;
|
|
|
|
va = kproc->mem[i].cpu_addr + offset;
|
|
|
|
return (__force void *)va;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* handle SoC-view addresses */
|
|
|
|
if (da >= bus_addr && (da + len) <= (bus_addr + size)) {
|
|
|
|
offset = da - bus_addr;
|
|
|
|
va = kproc->mem[i].cpu_addr + offset;
|
|
|
|
return (__force void *)va;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* handle static DDR reserved memory regions */
|
|
|
|
for (i = 0; i < kproc->num_rmems; i++) {
|
|
|
|
dev_addr = kproc->rmem[i].dev_addr;
|
|
|
|
size = kproc->rmem[i].size;
|
|
|
|
|
|
|
|
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
|
|
|
|
offset = da - dev_addr;
|
|
|
|
va = kproc->rmem[i].cpu_addr + offset;
|
|
|
|
return (__force void *)va;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_da_to_va);
|
|
|
|
|
2025-05-13 11:15:07 +05:30
|
|
|
int k3_rproc_of_get_memories(struct platform_device *pdev,
|
|
|
|
struct k3_rproc *kproc)
|
|
|
|
{
|
|
|
|
const struct k3_rproc_dev_data *data = kproc->data;
|
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct resource *res;
|
|
|
|
int num_mems = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
num_mems = data->num_mems;
|
|
|
|
kproc->mem = devm_kcalloc(kproc->dev, num_mems,
|
|
|
|
sizeof(*kproc->mem), GFP_KERNEL);
|
|
|
|
if (!kproc->mem)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < num_mems; i++) {
|
|
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
|
|
data->mems[i].name);
|
|
|
|
if (!res) {
|
|
|
|
dev_err(dev, "found no memory resource for %s\n",
|
|
|
|
data->mems[i].name);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (!devm_request_mem_region(dev, res->start,
|
|
|
|
resource_size(res),
|
|
|
|
dev_name(dev))) {
|
|
|
|
dev_err(dev, "could not request %s region for resource\n",
|
|
|
|
data->mems[i].name);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
|
|
|
|
resource_size(res));
|
|
|
|
if (!kproc->mem[i].cpu_addr) {
|
|
|
|
dev_err(dev, "failed to map %s memory\n",
|
|
|
|
data->mems[i].name);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
kproc->mem[i].bus_addr = res->start;
|
|
|
|
kproc->mem[i].dev_addr = data->mems[i].dev_addr;
|
|
|
|
kproc->mem[i].size = resource_size(res);
|
|
|
|
|
2025-06-11 12:03:06 +02:00
|
|
|
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
|
2025-05-13 11:15:07 +05:30
|
|
|
data->mems[i].name, &kproc->mem[i].bus_addr,
|
|
|
|
kproc->mem[i].size, kproc->mem[i].cpu_addr,
|
|
|
|
kproc->mem[i].dev_addr);
|
|
|
|
}
|
|
|
|
kproc->num_mems = num_mems;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories);
|
|
|
|
|
2025-05-13 11:15:08 +05:30
|
|
|
void k3_mem_release(void *data)
|
|
|
|
{
|
|
|
|
struct device *dev = data;
|
|
|
|
|
|
|
|
of_reserved_mem_device_release(dev);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_mem_release);
|
|
|
|
|
2025-05-13 11:15:09 +05:30
|
|
|
int k3_reserved_mem_init(struct k3_rproc *kproc)
|
|
|
|
{
|
|
|
|
struct device *dev = kproc->dev;
|
|
|
|
struct device_node *np = dev->of_node;
|
|
|
|
struct device_node *rmem_np;
|
|
|
|
struct reserved_mem *rmem;
|
|
|
|
int num_rmems;
|
|
|
|
int ret, i;
|
|
|
|
|
|
|
|
num_rmems = of_property_count_elems_of_size(np, "memory-region",
|
|
|
|
sizeof(phandle));
|
|
|
|
if (num_rmems < 0) {
|
|
|
|
dev_err(dev, "device does not reserved memory regions (%d)\n",
|
|
|
|
num_rmems);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (num_rmems < 2) {
|
|
|
|
dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
|
|
|
|
num_rmems);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* use reserved memory region 0 for vring DMA allocations */
|
|
|
|
ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
ret = devm_add_action_or_reset(dev, k3_mem_release, dev);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
num_rmems--;
|
|
|
|
kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
|
|
|
|
if (!kproc->rmem)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
/* use remaining reserved memory regions for static carveouts */
|
|
|
|
for (i = 0; i < num_rmems; i++) {
|
|
|
|
rmem_np = of_parse_phandle(np, "memory-region", i + 1);
|
|
|
|
if (!rmem_np)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
rmem = of_reserved_mem_lookup(rmem_np);
|
|
|
|
of_node_put(rmem_np);
|
|
|
|
if (!rmem)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
kproc->rmem[i].bus_addr = rmem->base;
|
|
|
|
/* 64-bit address regions currently not supported */
|
|
|
|
kproc->rmem[i].dev_addr = (u32)rmem->base;
|
|
|
|
kproc->rmem[i].size = rmem->size;
|
|
|
|
kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
|
|
|
|
if (!kproc->rmem[i].cpu_addr) {
|
|
|
|
dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
|
|
|
|
i + 1, &rmem->base, &rmem->size);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
2025-06-11 12:03:06 +02:00
|
|
|
dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %p da 0x%x\n",
|
2025-05-13 11:15:09 +05:30
|
|
|
i + 1, &kproc->rmem[i].bus_addr,
|
|
|
|
kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
|
|
|
|
kproc->rmem[i].dev_addr);
|
|
|
|
}
|
|
|
|
kproc->num_rmems = num_rmems;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_reserved_mem_init);
|
|
|
|
|
2025-05-13 11:15:10 +05:30
|
|
|
void k3_release_tsp(void *data)
|
|
|
|
{
|
|
|
|
struct ti_sci_proc *tsp = data;
|
|
|
|
|
|
|
|
ti_sci_proc_release(tsp);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(k3_release_tsp);
|
|
|
|
|
2025-05-13 11:14:47 +05:30
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_DESCRIPTION("TI K3 common Remoteproc code");
|