linux/drivers/remoteproc/ti_k3_common.c

552 lines
16 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI K3 Remote Processor(s) driver common code
*
* Refactored out of ti_k3_r5_remoteproc.c, ti_k3_dsp_remoteproc.c and
* ti_k3_m4_remoteproc.c.
*
* ti_k3_r5_remoteproc.c:
* Copyright (C) 2017-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*
* ti_k3_dsp_remoteproc.c:
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
* Suman Anna <s-anna@ti.com>
*
* ti_k3_m4_remoteproc.c:
* Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/
* Hari Nagalla <hnagalla@ti.com>
*/
#include <linux/io.h>
#include <linux/mailbox_client.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/omap-mailbox.h>
#include <linux/platform_device.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
#include "ti_sci_proc.h"
#include "ti_k3_common.h"
/**
* k3_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by the K3 mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicate different events. Those values are deliberately very
* large so they don't coincide with virtqueue indices.
*/
void k3_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct k3_rproc *kproc = container_of(client, struct k3_rproc, client);
struct device *dev = kproc->rproc->dev.parent;
struct rproc *rproc = kproc->rproc;
u32 msg = (u32)(uintptr_t)(data);
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, but error recovery is not
* supported. So, just log this for now
*/
dev_err(dev, "K3 rproc %s crashed\n", rproc->name);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", rproc->name);
break;
default:
/* silently handle all other valid messages */
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
EXPORT_SYMBOL_GPL(k3_rproc_mbox_callback);
/*
* Kick the remote processor to notify about pending unprocessed messages.
* The vqid usage is not used and is inconsequential, as the kick is performed
* through a simulated GPIO (a bit in an IPC interrupt-triggering register),
* the remote processor is expected to process both its Tx and Rx virtqueues.
*/
void k3_rproc_kick(struct rproc *rproc, int vqid)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
u32 msg = (u32)vqid;
int ret;
/*
* Send the index of the triggered virtqueue in the mailbox payload.
* NOTE: msg is cast to uintptr_t to prevent compiler warnings when
* void* is 64bit. It is safely cast back to u32 in the mailbox driver.
*/
ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
}
EXPORT_SYMBOL_GPL(k3_rproc_kick);
/* Put the remote processor into reset */
int k3_rproc_reset(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
if (kproc->data->uses_lreset) {
ret = reset_control_assert(kproc->reset);
if (ret)
dev_err(dev, "local-reset assert failed (%pe)\n", ERR_PTR(ret));
} else {
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset assert failed (%pe)\n", ERR_PTR(ret));
}
return ret;
}
EXPORT_SYMBOL_GPL(k3_rproc_reset);
/* Release the remote processor from reset */
int k3_rproc_release(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
int ret;
if (kproc->data->uses_lreset) {
ret = reset_control_deassert(kproc->reset);
if (ret) {
dev_err(dev, "local-reset deassert failed, (%pe)\n", ERR_PTR(ret));
if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id))
dev_warn(dev, "module-reset assert back failed\n");
}
} else {
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret)
dev_err(dev, "module-reset deassert failed (%pe)\n", ERR_PTR(ret));
}
return ret;
}
EXPORT_SYMBOL_GPL(k3_rproc_release);
int k3_rproc_request_mbox(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct mbox_client *client = &kproc->client;
struct device *dev = kproc->dev;
int ret;
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = k3_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
kproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(kproc->mbox))
return dev_err_probe(dev, PTR_ERR(kproc->mbox),
"mbox_request_channel failed\n");
/*
* Ping the remote processor, this is only for sanity-sake for now;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed (%pe)\n", ERR_PTR(ret));
mbox_free_channel(kproc->mbox);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_request_mbox);
/*
* The K3 DSP and M4 cores have a local reset that affects only the CPU, and a
* generic module reset that powers on the device and allows the internal
* memories to be accessed while the local reset is asserted. This function is
* used to release the global reset on remote cores to allow loading into the
* internal RAMs. The .prepare() ops is invoked by remoteproc core before any
* firmware loading, and is followed by the .start() ops after loading to
* actually let the remote cores to run.
*/
int k3_rproc_prepare(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
/* If the core is running already no need to deassert the module reset */
if (rproc->state == RPROC_DETACHED)
return 0;
/*
* Ensure the local reset is asserted so the core doesn't
* execute bogus code when the module reset is released.
*/
if (kproc->data->uses_lreset) {
ret = k3_rproc_reset(kproc);
if (ret)
return ret;
ret = reset_control_status(kproc->reset);
if (ret <= 0) {
dev_err(dev, "local reset still not asserted\n");
return ret;
}
}
ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "could not deassert module-reset for internal RAM loading\n");
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_prepare);
/*
* This function implements the .unprepare() ops and performs the complimentary
* operations to that of the .prepare() ops. The function is used to assert the
* global reset on applicable K3 DSP and M4 cores. This completes the second
* portion of powering down the remote core. The cores themselves are only
* halted in the .stop() callback through the local reset, and the .unprepare()
* ops is invoked by the remoteproc core after the remoteproc is stopped to
* balance the global reset.
*/
int k3_rproc_unprepare(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
int ret;
/* If the core is going to be detached do not assert the module reset */
if (rproc->state == RPROC_DETACHED)
return 0;
ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci,
kproc->ti_sci_id);
if (ret) {
dev_err(dev, "module-reset assert failed\n");
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_unprepare);
/*
* Power up the remote processor.
*
* This function will be invoked only after the firmware for this rproc
* was loaded, parsed successfully, and all of its resource requirements
* were met. This callback is invoked only in remoteproc mode.
*/
int k3_rproc_start(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
return k3_rproc_release(kproc);
}
EXPORT_SYMBOL_GPL(k3_rproc_start);
/*
* Stop the remote processor.
*
* This function puts the remote processor into reset, and finishes processing
* of any pending messages. This callback is invoked only in remoteproc mode.
*/
int k3_rproc_stop(struct rproc *rproc)
{
struct k3_rproc *kproc = rproc->priv;
return k3_rproc_reset(kproc);
}
EXPORT_SYMBOL_GPL(k3_rproc_stop);
/*
* Attach to a running remote processor (IPC-only mode)
*
* The rproc attach callback is a NOP. The remote processor is already booted,
* and all required resources have been acquired during probe routine, so there
* is no need to issue any TI-SCI commands to boot the remote cores in IPC-only
* mode. This callback is invoked only in IPC-only mode and exists because
* rproc_validate() checks for its existence.
*/
int k3_rproc_attach(struct rproc *rproc) { return 0; }
EXPORT_SYMBOL_GPL(k3_rproc_attach);
/*
* Detach from a running remote processor (IPC-only mode)
*
* The rproc detach callback is a NOP. The remote processor is not stopped and
* will be left in booted state in IPC-only mode. This callback is invoked only
* in IPC-only mode and exists for sanity sake
*/
int k3_rproc_detach(struct rproc *rproc) { return 0; }
EXPORT_SYMBOL_GPL(k3_rproc_detach);
/*
* This function implements the .get_loaded_rsc_table() callback and is used
* to provide the resource table for a booted remote processor in IPC-only
* mode. The remote processor firmwares follow a design-by-contract approach
* and are expected to have the resource table at the base of the DDR region
* reserved for firmware usage. This provides flexibility for the remote
* processor to be booted by different bootloaders that may or may not have the
* ability to publish the resource table address and size through a DT
* property.
*/
struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc,
size_t *rsc_table_sz)
{
struct k3_rproc *kproc = rproc->priv;
struct device *dev = kproc->dev;
if (!kproc->rmem[0].cpu_addr) {
dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found");
return ERR_PTR(-ENOMEM);
}
/*
* NOTE: The resource table size is currently hard-coded to a maximum
* of 256 bytes. The most common resource table usage for K3 firmwares
* is to only have the vdev resource entry and an optional trace entry.
* The exact size could be computed based on resource table address, but
* the hard-coded value suffices to support the IPC-only mode.
*/
*rsc_table_sz = 256;
return (__force struct resource_table *)kproc->rmem[0].cpu_addr;
}
EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table);
/*
* Custom function to translate a remote processor device address (internal
* RAMs only) to a kernel virtual address. The remote processors can access
* their RAMs at either an internal address visible only from a remote
* processor, or at the SoC-level bus address. Both these addresses need to be
* looked through for translation. The translated addresses can be used either
* by the remoteproc core for loading (when using kernel remoteproc loader), or
* by any rpmsg bus drivers.
*/
void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
struct k3_rproc *kproc = rproc->priv;
void __iomem *va = NULL;
phys_addr_t bus_addr;
u32 dev_addr, offset;
size_t size;
int i;
if (len == 0)
return NULL;
for (i = 0; i < kproc->num_mems; i++) {
bus_addr = kproc->mem[i].bus_addr;
dev_addr = kproc->mem[i].dev_addr;
size = kproc->mem[i].size;
/* handle rproc-view addresses */
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
/* handle SoC-view addresses */
if (da >= bus_addr && (da + len) <= (bus_addr + size)) {
offset = da - bus_addr;
va = kproc->mem[i].cpu_addr + offset;
return (__force void *)va;
}
}
/* handle static DDR reserved memory regions */
for (i = 0; i < kproc->num_rmems; i++) {
dev_addr = kproc->rmem[i].dev_addr;
size = kproc->rmem[i].size;
if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
offset = da - dev_addr;
va = kproc->rmem[i].cpu_addr + offset;
return (__force void *)va;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(k3_rproc_da_to_va);
int k3_rproc_of_get_memories(struct platform_device *pdev,
struct k3_rproc *kproc)
{
const struct k3_rproc_dev_data *data = kproc->data;
struct device *dev = &pdev->dev;
struct resource *res;
int num_mems = 0;
int i;
num_mems = data->num_mems;
kproc->mem = devm_kcalloc(kproc->dev, num_mems,
sizeof(*kproc->mem), GFP_KERNEL);
if (!kproc->mem)
return -ENOMEM;
for (i = 0; i < num_mems; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
data->mems[i].name);
if (!res) {
dev_err(dev, "found no memory resource for %s\n",
data->mems[i].name);
return -EINVAL;
}
if (!devm_request_mem_region(dev, res->start,
resource_size(res),
dev_name(dev))) {
dev_err(dev, "could not request %s region for resource\n",
data->mems[i].name);
return -EBUSY;
}
kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
resource_size(res));
if (!kproc->mem[i].cpu_addr) {
dev_err(dev, "failed to map %s memory\n",
data->mems[i].name);
return -ENOMEM;
}
kproc->mem[i].bus_addr = res->start;
kproc->mem[i].dev_addr = data->mems[i].dev_addr;
kproc->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da 0x%x\n",
data->mems[i].name, &kproc->mem[i].bus_addr,
kproc->mem[i].size, kproc->mem[i].cpu_addr,
kproc->mem[i].dev_addr);
}
kproc->num_mems = num_mems;
return 0;
}
EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories);
void k3_mem_release(void *data)
{
struct device *dev = data;
of_reserved_mem_device_release(dev);
}
EXPORT_SYMBOL_GPL(k3_mem_release);
int k3_reserved_mem_init(struct k3_rproc *kproc)
{
struct device *dev = kproc->dev;
struct device_node *np = dev->of_node;
struct device_node *rmem_np;
struct reserved_mem *rmem;
int num_rmems;
int ret, i;
num_rmems = of_property_count_elems_of_size(np, "memory-region",
sizeof(phandle));
if (num_rmems < 0) {
dev_err(dev, "device does not reserved memory regions (%d)\n",
num_rmems);
return -EINVAL;
}
if (num_rmems < 2) {
dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
num_rmems);
return -EINVAL;
}
/* use reserved memory region 0 for vring DMA allocations */
ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
if (ret) {
dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret);
return ret;
}
ret = devm_add_action_or_reset(dev, k3_mem_release, dev);
if (ret)
return ret;
num_rmems--;
kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
if (!kproc->rmem)
return -ENOMEM;
/* use remaining reserved memory regions for static carveouts */
for (i = 0; i < num_rmems; i++) {
rmem_np = of_parse_phandle(np, "memory-region", i + 1);
if (!rmem_np)
return -EINVAL;
rmem = of_reserved_mem_lookup(rmem_np);
of_node_put(rmem_np);
if (!rmem)
return -EINVAL;
kproc->rmem[i].bus_addr = rmem->base;
/* 64-bit address regions currently not supported */
kproc->rmem[i].dev_addr = (u32)rmem->base;
kproc->rmem[i].size = rmem->size;
kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size);
if (!kproc->rmem[i].cpu_addr) {
dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
i + 1, &rmem->base, &rmem->size);
return -ENOMEM;
}
dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %p da 0x%x\n",
i + 1, &kproc->rmem[i].bus_addr,
kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
kproc->rmem[i].dev_addr);
}
kproc->num_rmems = num_rmems;
return 0;
}
EXPORT_SYMBOL_GPL(k3_reserved_mem_init);
void k3_release_tsp(void *data)
{
struct ti_sci_proc *tsp = data;
ti_sci_proc_release(tsp);
}
EXPORT_SYMBOL_GPL(k3_release_tsp);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("TI K3 common Remoteproc code");