linux/drivers/net/wireless/realtek/rtw89/pci.c

4587 lines
124 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2020 Realtek Corporation
*/
#include <linux/pci.h>
#include "mac.h"
#include "pci.h"
#include "reg.h"
#include "ser.h"
static bool rtw89_pci_disable_clkreq;
static bool rtw89_pci_disable_aspm_l1;
static bool rtw89_pci_disable_l1ss;
module_param_named(disable_clkreq, rtw89_pci_disable_clkreq, bool, 0644);
module_param_named(disable_aspm_l1, rtw89_pci_disable_aspm_l1, bool, 0644);
module_param_named(disable_aspm_l1ss, rtw89_pci_disable_l1ss, bool, 0644);
MODULE_PARM_DESC(disable_clkreq, "Set Y to disable PCI clkreq support");
MODULE_PARM_DESC(disable_aspm_l1, "Set Y to disable PCI ASPM L1 support");
MODULE_PARM_DESC(disable_aspm_l1ss, "Set Y to disable PCI L1SS support");
static int rtw89_pci_get_phy_offset_by_link_speed(struct rtw89_dev *rtwdev,
u32 *phy_offset)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u32 val;
int ret;
ret = pci_read_config_dword(pdev, RTW89_PCIE_L1_STS_V1, &val);
if (ret)
return ret;
val = u32_get_bits(val, RTW89_BCFG_LINK_SPEED_MASK);
if (val == RTW89_PCIE_GEN1_SPEED) {
*phy_offset = R_RAC_DIRECT_OFFSET_G1;
} else if (val == RTW89_PCIE_GEN2_SPEED) {
*phy_offset = R_RAC_DIRECT_OFFSET_G2;
} else {
rtw89_warn(rtwdev, "Unknown PCI link speed %d\n", val);
return -EFAULT;
}
return 0;
}
static int rtw89_pci_rst_bdram_ax(struct rtw89_dev *rtwdev)
{
u32 val;
int ret;
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_RST_BDRAM);
ret = read_poll_timeout_atomic(rtw89_read32, val, !(val & B_AX_RST_BDRAM),
1, RTW89_PCI_POLL_BDRAM_RST_CNT, false,
rtwdev, R_AX_PCIE_INIT_CFG1);
return ret;
}
static u32 rtw89_pci_dma_recalc(struct rtw89_dev *rtwdev,
struct rtw89_pci_dma_ring *bd_ring,
u32 cur_idx, bool tx)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 cnt, cur_rp, wp, rp, len;
rp = bd_ring->rp;
wp = bd_ring->wp;
len = bd_ring->len;
cur_rp = FIELD_GET(TXBD_HW_IDX_MASK, cur_idx);
if (tx) {
cnt = cur_rp >= rp ? cur_rp - rp : len - (rp - cur_rp);
} else {
if (info->rx_ring_eq_is_full)
wp += 1;
cnt = cur_rp >= wp ? cur_rp - wp : len - (wp - cur_rp);
}
bd_ring->rp = cur_rp;
return cnt;
}
static u32 rtw89_pci_txbd_recalc(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring;
u32 addr_idx = bd_ring->addr.idx;
u32 cnt, idx;
idx = rtw89_read32(rtwdev, addr_idx);
cnt = rtw89_pci_dma_recalc(rtwdev, bd_ring, idx, true);
return cnt;
}
static void rtw89_pci_release_fwcmd(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci,
u32 cnt, bool release_all)
{
struct rtw89_pci_tx_data *tx_data;
struct sk_buff *skb;
u32 qlen;
while (cnt--) {
skb = skb_dequeue(&rtwpci->h2c_queue);
if (!skb) {
rtw89_err(rtwdev, "failed to pre-release fwcmd\n");
return;
}
skb_queue_tail(&rtwpci->h2c_release_queue, skb);
}
qlen = skb_queue_len(&rtwpci->h2c_release_queue);
if (!release_all)
qlen = qlen > RTW89_PCI_MULTITAG ? qlen - RTW89_PCI_MULTITAG : 0;
while (qlen--) {
skb = skb_dequeue(&rtwpci->h2c_release_queue);
if (!skb) {
rtw89_err(rtwdev, "failed to release fwcmd\n");
return;
}
tx_data = RTW89_PCI_TX_SKB_CB(skb);
dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void rtw89_pci_reclaim_tx_fwcmd(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci)
{
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[RTW89_TXCH_CH12];
u32 cnt;
cnt = rtw89_pci_txbd_recalc(rtwdev, tx_ring);
if (!cnt)
return;
rtw89_pci_release_fwcmd(rtwdev, rtwpci, cnt, false);
}
static u32 rtw89_pci_rxbd_recalc(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring)
{
struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring;
u32 addr_idx = bd_ring->addr.idx;
u32 cnt, idx;
idx = rtw89_read32(rtwdev, addr_idx);
cnt = rtw89_pci_dma_recalc(rtwdev, bd_ring, idx, false);
return cnt;
}
static void rtw89_pci_sync_skb_for_cpu(struct rtw89_dev *rtwdev,
struct sk_buff *skb)
{
struct rtw89_pci_rx_info *rx_info;
dma_addr_t dma;
rx_info = RTW89_PCI_RX_SKB_CB(skb);
dma = rx_info->dma;
dma_sync_single_for_cpu(rtwdev->dev, dma, RTW89_PCI_RX_BUF_SIZE,
DMA_FROM_DEVICE);
}
static void rtw89_pci_sync_skb_for_device(struct rtw89_dev *rtwdev,
struct sk_buff *skb)
{
struct rtw89_pci_rx_info *rx_info;
dma_addr_t dma;
rx_info = RTW89_PCI_RX_SKB_CB(skb);
dma = rx_info->dma;
dma_sync_single_for_device(rtwdev->dev, dma, RTW89_PCI_RX_BUF_SIZE,
DMA_FROM_DEVICE);
}
static void rtw89_pci_rxbd_info_update(struct rtw89_dev *rtwdev,
struct sk_buff *skb)
{
struct rtw89_pci_rx_info *rx_info = RTW89_PCI_RX_SKB_CB(skb);
struct rtw89_pci_rxbd_info *rxbd_info;
__le32 info;
rxbd_info = (struct rtw89_pci_rxbd_info *)skb->data;
info = rxbd_info->dword;
rx_info->fs = le32_get_bits(info, RTW89_PCI_RXBD_FS);
rx_info->ls = le32_get_bits(info, RTW89_PCI_RXBD_LS);
rx_info->len = le32_get_bits(info, RTW89_PCI_RXBD_WRITE_SIZE);
rx_info->tag = le32_get_bits(info, RTW89_PCI_RXBD_TAG);
}
static int rtw89_pci_validate_rx_tag(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring,
struct sk_buff *skb)
{
struct rtw89_pci_rx_info *rx_info = RTW89_PCI_RX_SKB_CB(skb);
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 target_rx_tag;
if (!info->check_rx_tag)
return 0;
/* valid range is 1 ~ 0x1FFF */
if (rx_ring->target_rx_tag == 0)
target_rx_tag = 1;
else
target_rx_tag = rx_ring->target_rx_tag;
if (rx_info->tag != target_rx_tag) {
rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "mismatch RX tag 0x%x 0x%x\n",
rx_info->tag, target_rx_tag);
return -EAGAIN;
}
return 0;
}
static
int rtw89_pci_sync_skb_for_device_and_validate_rx_info(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring,
struct sk_buff *skb)
{
struct rtw89_pci_rx_info *rx_info = RTW89_PCI_RX_SKB_CB(skb);
int rx_tag_retry = 1000;
int ret;
do {
rtw89_pci_sync_skb_for_cpu(rtwdev, skb);
rtw89_pci_rxbd_info_update(rtwdev, skb);
ret = rtw89_pci_validate_rx_tag(rtwdev, rx_ring, skb);
if (ret != -EAGAIN)
break;
} while (rx_tag_retry--);
/* update target rx_tag for next RX */
rx_ring->target_rx_tag = rx_info->tag + 1;
return ret;
}
static void rtw89_pci_ctrl_txdma_ch_ax(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_reg_def *dma_stop1 = &info->dma_stop1;
const struct rtw89_reg_def *dma_stop2 = &info->dma_stop2;
if (enable) {
rtw89_write32_clr(rtwdev, dma_stop1->addr, dma_stop1->mask);
if (dma_stop2->addr)
rtw89_write32_clr(rtwdev, dma_stop2->addr, dma_stop2->mask);
} else {
rtw89_write32_set(rtwdev, dma_stop1->addr, dma_stop1->mask);
if (dma_stop2->addr)
rtw89_write32_set(rtwdev, dma_stop2->addr, dma_stop2->mask);
}
}
static void rtw89_pci_ctrl_txdma_fw_ch_ax(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_reg_def *dma_stop1 = &info->dma_stop1;
if (enable)
rtw89_write32_clr(rtwdev, dma_stop1->addr, B_AX_STOP_CH12);
else
rtw89_write32_set(rtwdev, dma_stop1->addr, B_AX_STOP_CH12);
}
static bool
rtw89_skb_put_rx_data(struct rtw89_dev *rtwdev, bool fs, bool ls,
struct sk_buff *new,
const struct sk_buff *skb, u32 offset,
const struct rtw89_pci_rx_info *rx_info,
const struct rtw89_rx_desc_info *desc_info)
{
u32 copy_len = rx_info->len - offset;
if (unlikely(skb_tailroom(new) < copy_len)) {
rtw89_debug(rtwdev, RTW89_DBG_TXRX,
"invalid rx data length bd_len=%d desc_len=%d offset=%d (fs=%d ls=%d)\n",
rx_info->len, desc_info->pkt_size, offset, fs, ls);
rtw89_hex_dump(rtwdev, RTW89_DBG_TXRX, "rx_data: ",
skb->data, rx_info->len);
/* length of a single segment skb is desc_info->pkt_size */
if (fs && ls) {
copy_len = desc_info->pkt_size;
} else {
rtw89_info(rtwdev, "drop rx data due to invalid length\n");
return false;
}
}
skb_put_data(new, skb->data + offset, copy_len);
return true;
}
static u32 rtw89_pci_get_rx_skb_idx(struct rtw89_dev *rtwdev,
struct rtw89_pci_dma_ring *bd_ring)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 wp = bd_ring->wp;
if (!info->rx_ring_eq_is_full)
return wp;
if (++wp >= bd_ring->len)
wp = 0;
return wp;
}
static u32 rtw89_pci_rxbd_deliver_skbs(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring)
{
struct rtw89_rx_desc_info *desc_info = &rx_ring->diliver_desc;
struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring;
const struct rtw89_pci_info *info = rtwdev->pci_info;
struct sk_buff *new = rx_ring->diliver_skb;
struct rtw89_pci_rx_info *rx_info;
struct sk_buff *skb;
u32 rxinfo_size = sizeof(struct rtw89_pci_rxbd_info);
u32 skb_idx;
u32 offset;
u32 cnt = 1;
bool fs, ls;
int ret;
skb_idx = rtw89_pci_get_rx_skb_idx(rtwdev, bd_ring);
skb = rx_ring->buf[skb_idx];
ret = rtw89_pci_sync_skb_for_device_and_validate_rx_info(rtwdev, rx_ring, skb);
if (ret) {
rtw89_err(rtwdev, "failed to update %d RXBD info: %d\n",
bd_ring->wp, ret);
goto err_sync_device;
}
rx_info = RTW89_PCI_RX_SKB_CB(skb);
fs = info->no_rxbd_fs ? !new : rx_info->fs;
ls = rx_info->ls;
if (unlikely(!fs || !ls))
rtw89_debug(rtwdev, RTW89_DBG_UNEXP,
"unexpected fs/ls=%d/%d tag=%u len=%u new->len=%u\n",
fs, ls, rx_info->tag, rx_info->len, new ? new->len : 0);
if (fs) {
if (new) {
rtw89_debug(rtwdev, RTW89_DBG_UNEXP,
"skb should not be ready before first segment start\n");
goto err_sync_device;
}
if (desc_info->ready) {
rtw89_warn(rtwdev, "desc info should not be ready before first segment start\n");
goto err_sync_device;
}
rtw89_chip_query_rxdesc(rtwdev, desc_info, skb->data, rxinfo_size);
new = rtw89_alloc_skb_for_rx(rtwdev, desc_info->pkt_size);
if (!new)
goto err_sync_device;
rx_ring->diliver_skb = new;
/* first segment has RX desc */
offset = desc_info->offset + desc_info->rxd_len;
} else {
offset = sizeof(struct rtw89_pci_rxbd_info);
if (!new) {
rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "no last skb\n");
goto err_sync_device;
}
}
if (!rtw89_skb_put_rx_data(rtwdev, fs, ls, new, skb, offset, rx_info, desc_info))
goto err_sync_device;
rtw89_pci_sync_skb_for_device(rtwdev, skb);
rtw89_pci_rxbd_increase(rx_ring, 1);
if (!desc_info->ready) {
rtw89_warn(rtwdev, "no rx desc information\n");
goto err_free_resource;
}
if (ls) {
rtw89_core_rx(rtwdev, desc_info, new);
rx_ring->diliver_skb = NULL;
desc_info->ready = false;
}
return cnt;
err_sync_device:
rtw89_pci_sync_skb_for_device(rtwdev, skb);
rtw89_pci_rxbd_increase(rx_ring, 1);
err_free_resource:
if (new)
dev_kfree_skb_any(new);
rx_ring->diliver_skb = NULL;
desc_info->ready = false;
return cnt;
}
static void rtw89_pci_rxbd_deliver(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring,
u32 cnt)
{
struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring;
u32 rx_cnt;
while (cnt && rtwdev->napi_budget_countdown > 0) {
rx_cnt = rtw89_pci_rxbd_deliver_skbs(rtwdev, rx_ring);
if (!rx_cnt) {
rtw89_err(rtwdev, "failed to deliver RXBD skb\n");
/* skip the rest RXBD bufs */
rtw89_pci_rxbd_increase(rx_ring, cnt);
break;
}
cnt -= rx_cnt;
}
rtw89_write16(rtwdev, bd_ring->addr.idx, bd_ring->wp);
}
static int rtw89_pci_poll_rxq_dma(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci, int budget)
{
struct rtw89_pci_rx_ring *rx_ring;
int countdown = rtwdev->napi_budget_countdown;
u32 cnt;
rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RXQ];
cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring);
if (!cnt)
return 0;
cnt = min_t(u32, budget, cnt);
rtw89_pci_rxbd_deliver(rtwdev, rx_ring, cnt);
/* In case of flushing pending SKBs, the countdown may exceed. */
if (rtwdev->napi_budget_countdown <= 0)
return budget;
return budget - countdown;
}
static void rtw89_pci_tx_status(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring,
struct sk_buff *skb, u8 tx_status)
{
struct rtw89_tx_skb_data *skb_data = RTW89_TX_SKB_CB(skb);
struct ieee80211_tx_info *info;
rtw89_core_tx_wait_complete(rtwdev, skb_data, tx_status == RTW89_TX_DONE);
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
if (tx_status == RTW89_TX_DONE) {
info->flags |= IEEE80211_TX_STAT_ACK;
tx_ring->tx_acked++;
} else {
if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
rtw89_debug(rtwdev, RTW89_DBG_FW,
"failed to TX of status %x\n", tx_status);
switch (tx_status) {
case RTW89_TX_RETRY_LIMIT:
tx_ring->tx_retry_lmt++;
break;
case RTW89_TX_LIFE_TIME:
tx_ring->tx_life_time++;
break;
case RTW89_TX_MACID_DROP:
tx_ring->tx_mac_id_drop++;
break;
default:
rtw89_warn(rtwdev, "invalid TX status %x\n", tx_status);
break;
}
}
ieee80211_tx_status_ni(rtwdev->hw, skb);
}
static void rtw89_pci_reclaim_txbd(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci_tx_wd *txwd;
u32 cnt;
cnt = rtw89_pci_txbd_recalc(rtwdev, tx_ring);
while (cnt--) {
txwd = list_first_entry_or_null(&tx_ring->busy_pages, struct rtw89_pci_tx_wd, list);
if (!txwd) {
rtw89_warn(rtwdev, "No busy txwd pages available\n");
break;
}
list_del_init(&txwd->list);
/* this skb has been freed by RPP */
if (skb_queue_len(&txwd->queue) == 0)
rtw89_pci_enqueue_txwd(tx_ring, txwd);
}
}
static void rtw89_pci_release_busy_txwd(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
struct rtw89_pci_tx_wd *txwd;
int i;
for (i = 0; i < wd_ring->page_num; i++) {
txwd = list_first_entry_or_null(&tx_ring->busy_pages, struct rtw89_pci_tx_wd, list);
if (!txwd)
break;
list_del_init(&txwd->list);
}
}
static void rtw89_pci_release_txwd_skb(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring,
struct rtw89_pci_tx_wd *txwd, u16 seq,
u8 tx_status)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_data *tx_data;
struct sk_buff *skb, *tmp;
u8 txch = tx_ring->txch;
if (!list_empty(&txwd->list)) {
rtw89_pci_reclaim_txbd(rtwdev, tx_ring);
/* In low power mode, RPP can receive before updating of TX BD.
* In normal mode, it should not happen so give it a warning.
*/
if (!rtwpci->low_power && !list_empty(&txwd->list))
rtw89_warn(rtwdev, "queue %d txwd %d is not idle\n",
txch, seq);
}
skb_queue_walk_safe(&txwd->queue, skb, tmp) {
skb_unlink(skb, &txwd->queue);
tx_data = RTW89_PCI_TX_SKB_CB(skb);
dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
DMA_TO_DEVICE);
rtw89_pci_tx_status(rtwdev, tx_ring, skb, tx_status);
}
if (list_empty(&txwd->list))
rtw89_pci_enqueue_txwd(tx_ring, txwd);
}
static void rtw89_pci_release_rpp(struct rtw89_dev *rtwdev,
struct rtw89_pci_rpp_fmt *rpp)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring;
struct rtw89_pci_tx_wd_ring *wd_ring;
struct rtw89_pci_tx_wd *txwd;
u16 seq;
u8 qsel, tx_status, txch;
seq = le32_get_bits(rpp->dword, RTW89_PCI_RPP_SEQ);
qsel = le32_get_bits(rpp->dword, RTW89_PCI_RPP_QSEL);
tx_status = le32_get_bits(rpp->dword, RTW89_PCI_RPP_TX_STATUS);
txch = rtw89_core_get_ch_dma(rtwdev, qsel);
if (txch == RTW89_TXCH_CH12) {
rtw89_warn(rtwdev, "should no fwcmd release report\n");
return;
}
tx_ring = &rtwpci->tx_rings[txch];
wd_ring = &tx_ring->wd_ring;
txwd = &wd_ring->pages[seq];
rtw89_pci_release_txwd_skb(rtwdev, tx_ring, txwd, seq, tx_status);
}
static void rtw89_pci_release_pending_txwd_skb(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
struct rtw89_pci_tx_wd *txwd;
int i;
for (i = 0; i < wd_ring->page_num; i++) {
txwd = &wd_ring->pages[i];
if (!list_empty(&txwd->list))
continue;
rtw89_pci_release_txwd_skb(rtwdev, tx_ring, txwd, i, RTW89_TX_MACID_DROP);
}
}
static u32 rtw89_pci_release_tx_skbs(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring,
u32 max_cnt)
{
struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring;
struct rtw89_pci_rx_info *rx_info;
struct rtw89_pci_rpp_fmt *rpp;
struct rtw89_rx_desc_info desc_info = {};
struct sk_buff *skb;
u32 cnt = 0;
u32 rpp_size = sizeof(struct rtw89_pci_rpp_fmt);
u32 rxinfo_size = sizeof(struct rtw89_pci_rxbd_info);
u32 skb_idx;
u32 offset;
int ret;
skb_idx = rtw89_pci_get_rx_skb_idx(rtwdev, bd_ring);
skb = rx_ring->buf[skb_idx];
ret = rtw89_pci_sync_skb_for_device_and_validate_rx_info(rtwdev, rx_ring, skb);
if (ret) {
rtw89_err(rtwdev, "failed to update %d RXBD info: %d\n",
bd_ring->wp, ret);
goto err_sync_device;
}
rx_info = RTW89_PCI_RX_SKB_CB(skb);
if (!rx_info->fs || !rx_info->ls) {
rtw89_err(rtwdev, "cannot process RP frame not set FS/LS\n");
return cnt;
}
rtw89_chip_query_rxdesc(rtwdev, &desc_info, skb->data, rxinfo_size);
/* first segment has RX desc */
offset = desc_info.offset + desc_info.rxd_len;
for (; offset + rpp_size <= rx_info->len; offset += rpp_size) {
rpp = (struct rtw89_pci_rpp_fmt *)(skb->data + offset);
rtw89_pci_release_rpp(rtwdev, rpp);
}
rtw89_pci_sync_skb_for_device(rtwdev, skb);
rtw89_pci_rxbd_increase(rx_ring, 1);
cnt++;
return cnt;
err_sync_device:
rtw89_pci_sync_skb_for_device(rtwdev, skb);
return 0;
}
static void rtw89_pci_release_tx(struct rtw89_dev *rtwdev,
struct rtw89_pci_rx_ring *rx_ring,
u32 cnt)
{
struct rtw89_pci_dma_ring *bd_ring = &rx_ring->bd_ring;
u32 release_cnt;
while (cnt) {
release_cnt = rtw89_pci_release_tx_skbs(rtwdev, rx_ring, cnt);
if (!release_cnt) {
rtw89_err(rtwdev, "failed to release TX skbs\n");
/* skip the rest RXBD bufs */
rtw89_pci_rxbd_increase(rx_ring, cnt);
break;
}
cnt -= release_cnt;
}
rtw89_write16(rtwdev, bd_ring->addr.idx, bd_ring->wp);
}
static int rtw89_pci_poll_rpq_dma(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci, int budget)
{
struct rtw89_pci_rx_ring *rx_ring;
u32 cnt;
int work_done;
rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RPQ];
spin_lock_bh(&rtwpci->trx_lock);
cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring);
if (cnt == 0)
goto out_unlock;
rtw89_pci_release_tx(rtwdev, rx_ring, cnt);
out_unlock:
spin_unlock_bh(&rtwpci->trx_lock);
/* always release all RPQ */
work_done = min_t(int, cnt, budget);
rtwdev->napi_budget_countdown -= work_done;
return work_done;
}
static void rtw89_pci_isr_rxd_unavail(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci)
{
struct rtw89_pci_rx_ring *rx_ring;
struct rtw89_pci_dma_ring *bd_ring;
u32 reg_idx;
u16 hw_idx, hw_idx_next, host_idx;
int i;
for (i = 0; i < RTW89_RXCH_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
bd_ring = &rx_ring->bd_ring;
reg_idx = rtw89_read32(rtwdev, bd_ring->addr.idx);
hw_idx = FIELD_GET(TXBD_HW_IDX_MASK, reg_idx);
host_idx = FIELD_GET(TXBD_HOST_IDX_MASK, reg_idx);
hw_idx_next = (hw_idx + 1) % bd_ring->len;
if (hw_idx_next == host_idx)
rtw89_debug(rtwdev, RTW89_DBG_UNEXP, "%d RXD unavailable\n", i);
rtw89_debug(rtwdev, RTW89_DBG_TXRX,
"%d RXD unavailable, idx=0x%08x, len=%d\n",
i, reg_idx, bd_ring->len);
}
}
void rtw89_pci_recognize_intrs(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci,
struct rtw89_pci_isrs *isrs)
{
isrs->halt_c2h_isrs = rtw89_read32(rtwdev, R_AX_HISR0) & rtwpci->halt_c2h_intrs;
isrs->isrs[0] = rtw89_read32(rtwdev, R_AX_PCIE_HISR00) & rtwpci->intrs[0];
isrs->isrs[1] = rtw89_read32(rtwdev, R_AX_PCIE_HISR10) & rtwpci->intrs[1];
rtw89_write32(rtwdev, R_AX_HISR0, isrs->halt_c2h_isrs);
rtw89_write32(rtwdev, R_AX_PCIE_HISR00, isrs->isrs[0]);
rtw89_write32(rtwdev, R_AX_PCIE_HISR10, isrs->isrs[1]);
}
EXPORT_SYMBOL(rtw89_pci_recognize_intrs);
void rtw89_pci_recognize_intrs_v1(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci,
struct rtw89_pci_isrs *isrs)
{
isrs->ind_isrs = rtw89_read32(rtwdev, R_AX_PCIE_HISR00_V1) & rtwpci->ind_intrs;
isrs->halt_c2h_isrs = isrs->ind_isrs & B_AX_HS0ISR_IND_INT_EN ?
rtw89_read32(rtwdev, R_AX_HISR0) & rtwpci->halt_c2h_intrs : 0;
isrs->isrs[0] = isrs->ind_isrs & B_AX_HCI_AXIDMA_INT_EN ?
rtw89_read32(rtwdev, R_AX_HAXI_HISR00) & rtwpci->intrs[0] : 0;
isrs->isrs[1] = isrs->ind_isrs & B_AX_HS1ISR_IND_INT_EN ?
rtw89_read32(rtwdev, R_AX_HISR1) & rtwpci->intrs[1] : 0;
if (isrs->halt_c2h_isrs)
rtw89_write32(rtwdev, R_AX_HISR0, isrs->halt_c2h_isrs);
if (isrs->isrs[0])
rtw89_write32(rtwdev, R_AX_HAXI_HISR00, isrs->isrs[0]);
if (isrs->isrs[1])
rtw89_write32(rtwdev, R_AX_HISR1, isrs->isrs[1]);
}
EXPORT_SYMBOL(rtw89_pci_recognize_intrs_v1);
void rtw89_pci_recognize_intrs_v2(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci,
struct rtw89_pci_isrs *isrs)
{
isrs->ind_isrs = rtw89_read32(rtwdev, R_BE_PCIE_HISR) & rtwpci->ind_intrs;
isrs->halt_c2h_isrs = isrs->ind_isrs & B_BE_HS0ISR_IND_INT ?
rtw89_read32(rtwdev, R_BE_HISR0) & rtwpci->halt_c2h_intrs : 0;
isrs->isrs[0] = isrs->ind_isrs & B_BE_HCI_AXIDMA_INT ?
rtw89_read32(rtwdev, R_BE_HAXI_HISR00) & rtwpci->intrs[0] : 0;
isrs->isrs[1] = rtw89_read32(rtwdev, R_BE_PCIE_DMA_ISR) & rtwpci->intrs[1];
if (isrs->halt_c2h_isrs)
rtw89_write32(rtwdev, R_BE_HISR0, isrs->halt_c2h_isrs);
if (isrs->isrs[0])
rtw89_write32(rtwdev, R_BE_HAXI_HISR00, isrs->isrs[0]);
if (isrs->isrs[1])
rtw89_write32(rtwdev, R_BE_PCIE_DMA_ISR, isrs->isrs[1]);
rtw89_write32(rtwdev, R_BE_PCIE_HISR, isrs->ind_isrs);
}
EXPORT_SYMBOL(rtw89_pci_recognize_intrs_v2);
void rtw89_pci_enable_intr(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_AX_HIMR0, rtwpci->halt_c2h_intrs);
rtw89_write32(rtwdev, R_AX_PCIE_HIMR00, rtwpci->intrs[0]);
rtw89_write32(rtwdev, R_AX_PCIE_HIMR10, rtwpci->intrs[1]);
}
EXPORT_SYMBOL(rtw89_pci_enable_intr);
void rtw89_pci_disable_intr(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_AX_HIMR0, 0);
rtw89_write32(rtwdev, R_AX_PCIE_HIMR00, 0);
rtw89_write32(rtwdev, R_AX_PCIE_HIMR10, 0);
}
EXPORT_SYMBOL(rtw89_pci_disable_intr);
void rtw89_pci_enable_intr_v1(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_AX_PCIE_HIMR00_V1, rtwpci->ind_intrs);
rtw89_write32(rtwdev, R_AX_HIMR0, rtwpci->halt_c2h_intrs);
rtw89_write32(rtwdev, R_AX_HAXI_HIMR00, rtwpci->intrs[0]);
rtw89_write32(rtwdev, R_AX_HIMR1, rtwpci->intrs[1]);
}
EXPORT_SYMBOL(rtw89_pci_enable_intr_v1);
void rtw89_pci_disable_intr_v1(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_AX_PCIE_HIMR00_V1, 0);
}
EXPORT_SYMBOL(rtw89_pci_disable_intr_v1);
void rtw89_pci_enable_intr_v2(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_BE_HIMR0, rtwpci->halt_c2h_intrs);
rtw89_write32(rtwdev, R_BE_HAXI_HIMR00, rtwpci->intrs[0]);
rtw89_write32(rtwdev, R_BE_PCIE_DMA_IMR_0_V1, rtwpci->intrs[1]);
rtw89_write32(rtwdev, R_BE_PCIE_HIMR0, rtwpci->ind_intrs);
}
EXPORT_SYMBOL(rtw89_pci_enable_intr_v2);
void rtw89_pci_disable_intr_v2(struct rtw89_dev *rtwdev, struct rtw89_pci *rtwpci)
{
rtw89_write32(rtwdev, R_BE_PCIE_HIMR0, 0);
rtw89_write32(rtwdev, R_BE_PCIE_DMA_IMR_0_V1, 0);
}
EXPORT_SYMBOL(rtw89_pci_disable_intr_v2);
static void rtw89_pci_ops_recovery_start(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long flags;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
rtw89_chip_disable_intr(rtwdev, rtwpci);
rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RECOVERY_START);
rtw89_chip_enable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
}
static void rtw89_pci_ops_recovery_complete(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long flags;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
rtw89_chip_disable_intr(rtwdev, rtwpci);
rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RECOVERY_COMPLETE);
rtw89_chip_enable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
}
static void rtw89_pci_low_power_interrupt_handler(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
int budget = NAPI_POLL_WEIGHT;
/* To prevent RXQ get stuck due to run out of budget. */
rtwdev->napi_budget_countdown = budget;
rtw89_pci_poll_rpq_dma(rtwdev, rtwpci, budget);
rtw89_pci_poll_rxq_dma(rtwdev, rtwpci, budget);
}
static irqreturn_t rtw89_pci_interrupt_threadfn(int irq, void *dev)
{
struct rtw89_dev *rtwdev = dev;
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
struct rtw89_pci_isrs isrs;
unsigned long flags;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
rtw89_chip_recognize_intrs(rtwdev, rtwpci, &isrs);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
if (unlikely(isrs.isrs[0] & gen_def->isr_rdu))
rtw89_pci_isr_rxd_unavail(rtwdev, rtwpci);
if (unlikely(isrs.halt_c2h_isrs & gen_def->isr_halt_c2h))
rtw89_ser_notify(rtwdev, rtw89_mac_get_err_status(rtwdev));
if (unlikely(isrs.halt_c2h_isrs & gen_def->isr_wdt_timeout))
rtw89_ser_notify(rtwdev, MAC_AX_ERR_L2_ERR_WDT_TIMEOUT_INT);
if (unlikely(rtwpci->under_recovery))
goto enable_intr;
if (unlikely(rtwpci->low_power)) {
rtw89_pci_low_power_interrupt_handler(rtwdev);
goto enable_intr;
}
if (likely(rtwpci->running)) {
local_bh_disable();
napi_schedule(&rtwdev->napi);
local_bh_enable();
}
return IRQ_HANDLED;
enable_intr:
spin_lock_irqsave(&rtwpci->irq_lock, flags);
if (likely(rtwpci->running))
rtw89_chip_enable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t rtw89_pci_interrupt_handler(int irq, void *dev)
{
struct rtw89_dev *rtwdev = dev;
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long flags;
irqreturn_t irqret = IRQ_WAKE_THREAD;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
/* If interrupt event is on the road, it is still trigger interrupt
* even we have done pci_stop() to turn off IMR.
*/
if (unlikely(!rtwpci->running)) {
irqret = IRQ_HANDLED;
goto exit;
}
rtw89_chip_disable_intr(rtwdev, rtwpci);
exit:
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
return irqret;
}
#define DEF_TXCHADDRS_TYPE2(gen, ch_idx, txch, v...) \
[RTW89_TXCH_##ch_idx] = { \
.num = R_##gen##_##txch##_TXBD_NUM ##v, \
.idx = R_##gen##_##txch##_TXBD_IDX ##v, \
.bdram = 0, \
.desa_l = R_##gen##_##txch##_TXBD_DESA_L ##v, \
.desa_h = R_##gen##_##txch##_TXBD_DESA_H ##v, \
}
#define DEF_TXCHADDRS_TYPE1(info, txch, v...) \
[RTW89_TXCH_##txch] = { \
.num = R_AX_##txch##_TXBD_NUM ##v, \
.idx = R_AX_##txch##_TXBD_IDX ##v, \
.bdram = R_AX_##txch##_BDRAM_CTRL ##v, \
.desa_l = R_AX_##txch##_TXBD_DESA_L ##v, \
.desa_h = R_AX_##txch##_TXBD_DESA_H ##v, \
}
#define DEF_TXCHADDRS(info, txch, v...) \
[RTW89_TXCH_##txch] = { \
.num = R_AX_##txch##_TXBD_NUM, \
.idx = R_AX_##txch##_TXBD_IDX, \
.bdram = R_AX_##txch##_BDRAM_CTRL ##v, \
.desa_l = R_AX_##txch##_TXBD_DESA_L ##v, \
.desa_h = R_AX_##txch##_TXBD_DESA_H ##v, \
}
#define DEF_RXCHADDRS(gen, ch_idx, rxch, v...) \
[RTW89_RXCH_##ch_idx] = { \
.num = R_##gen##_##rxch##_RXBD_NUM ##v, \
.idx = R_##gen##_##rxch##_RXBD_IDX ##v, \
.desa_l = R_##gen##_##rxch##_RXBD_DESA_L ##v, \
.desa_h = R_##gen##_##rxch##_RXBD_DESA_H ##v, \
}
const struct rtw89_pci_ch_dma_addr_set rtw89_pci_ch_dma_addr_set = {
.tx = {
DEF_TXCHADDRS(info, ACH0),
DEF_TXCHADDRS(info, ACH1),
DEF_TXCHADDRS(info, ACH2),
DEF_TXCHADDRS(info, ACH3),
DEF_TXCHADDRS(info, ACH4),
DEF_TXCHADDRS(info, ACH5),
DEF_TXCHADDRS(info, ACH6),
DEF_TXCHADDRS(info, ACH7),
DEF_TXCHADDRS(info, CH8),
DEF_TXCHADDRS(info, CH9),
DEF_TXCHADDRS_TYPE1(info, CH10),
DEF_TXCHADDRS_TYPE1(info, CH11),
DEF_TXCHADDRS(info, CH12),
},
.rx = {
DEF_RXCHADDRS(AX, RXQ, RXQ),
DEF_RXCHADDRS(AX, RPQ, RPQ),
},
};
EXPORT_SYMBOL(rtw89_pci_ch_dma_addr_set);
const struct rtw89_pci_ch_dma_addr_set rtw89_pci_ch_dma_addr_set_v1 = {
.tx = {
DEF_TXCHADDRS(info, ACH0, _V1),
DEF_TXCHADDRS(info, ACH1, _V1),
DEF_TXCHADDRS(info, ACH2, _V1),
DEF_TXCHADDRS(info, ACH3, _V1),
DEF_TXCHADDRS(info, ACH4, _V1),
DEF_TXCHADDRS(info, ACH5, _V1),
DEF_TXCHADDRS(info, ACH6, _V1),
DEF_TXCHADDRS(info, ACH7, _V1),
DEF_TXCHADDRS(info, CH8, _V1),
DEF_TXCHADDRS(info, CH9, _V1),
DEF_TXCHADDRS_TYPE1(info, CH10, _V1),
DEF_TXCHADDRS_TYPE1(info, CH11, _V1),
DEF_TXCHADDRS(info, CH12, _V1),
},
.rx = {
DEF_RXCHADDRS(AX, RXQ, RXQ, _V1),
DEF_RXCHADDRS(AX, RPQ, RPQ, _V1),
},
};
EXPORT_SYMBOL(rtw89_pci_ch_dma_addr_set_v1);
const struct rtw89_pci_ch_dma_addr_set rtw89_pci_ch_dma_addr_set_be = {
.tx = {
DEF_TXCHADDRS_TYPE2(BE, ACH0, CH0, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH1, CH1, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH2, CH2, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH3, CH3, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH4, CH4, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH5, CH5, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH6, CH6, _V1),
DEF_TXCHADDRS_TYPE2(BE, ACH7, CH7, _V1),
DEF_TXCHADDRS_TYPE2(BE, CH8, CH8, _V1),
DEF_TXCHADDRS_TYPE2(BE, CH9, CH9, _V1),
DEF_TXCHADDRS_TYPE2(BE, CH10, CH10, _V1),
DEF_TXCHADDRS_TYPE2(BE, CH11, CH11, _V1),
DEF_TXCHADDRS_TYPE2(BE, CH12, CH12, _V1),
},
.rx = {
DEF_RXCHADDRS(BE, RXQ, RXQ0, _V1),
DEF_RXCHADDRS(BE, RPQ, RPQ0, _V1),
},
};
EXPORT_SYMBOL(rtw89_pci_ch_dma_addr_set_be);
#undef DEF_TXCHADDRS_TYPE1
#undef DEF_TXCHADDRS
#undef DEF_RXCHADDRS
static int rtw89_pci_get_txch_addrs(struct rtw89_dev *rtwdev,
enum rtw89_tx_channel txch,
const struct rtw89_pci_ch_dma_addr **addr)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
if (txch >= RTW89_TXCH_NUM)
return -EINVAL;
*addr = &info->dma_addr_set->tx[txch];
return 0;
}
static int rtw89_pci_get_rxch_addrs(struct rtw89_dev *rtwdev,
enum rtw89_rx_channel rxch,
const struct rtw89_pci_ch_dma_addr **addr)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
if (rxch >= RTW89_RXCH_NUM)
return -EINVAL;
*addr = &info->dma_addr_set->rx[rxch];
return 0;
}
static u32 rtw89_pci_get_avail_txbd_num(struct rtw89_pci_tx_ring *ring)
{
struct rtw89_pci_dma_ring *bd_ring = &ring->bd_ring;
/* reserved 1 desc check ring is full or not */
if (bd_ring->rp > bd_ring->wp)
return bd_ring->rp - bd_ring->wp - 1;
return bd_ring->len - (bd_ring->wp - bd_ring->rp) - 1;
}
static
u32 __rtw89_pci_check_and_reclaim_tx_fwcmd_resource(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[RTW89_TXCH_CH12];
u32 cnt;
spin_lock_bh(&rtwpci->trx_lock);
rtw89_pci_reclaim_tx_fwcmd(rtwdev, rtwpci);
cnt = rtw89_pci_get_avail_txbd_num(tx_ring);
spin_unlock_bh(&rtwpci->trx_lock);
return cnt;
}
static
u32 __rtw89_pci_check_and_reclaim_tx_resource_noio(struct rtw89_dev *rtwdev,
u8 txch)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch];
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
u32 cnt;
spin_lock_bh(&rtwpci->trx_lock);
cnt = rtw89_pci_get_avail_txbd_num(tx_ring);
if (txch != RTW89_TXCH_CH12)
cnt = min(cnt, wd_ring->curr_num);
spin_unlock_bh(&rtwpci->trx_lock);
return cnt;
}
static u32 __rtw89_pci_check_and_reclaim_tx_resource(struct rtw89_dev *rtwdev,
u8 txch)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch];
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
const struct rtw89_chip_info *chip = rtwdev->chip;
u32 bd_cnt, wd_cnt, min_cnt = 0;
struct rtw89_pci_rx_ring *rx_ring;
enum rtw89_debug_mask debug_mask;
u32 cnt;
rx_ring = &rtwpci->rx_rings[RTW89_RXCH_RPQ];
spin_lock_bh(&rtwpci->trx_lock);
bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring);
wd_cnt = wd_ring->curr_num;
if (wd_cnt == 0 || bd_cnt == 0) {
cnt = rtw89_pci_rxbd_recalc(rtwdev, rx_ring);
if (cnt)
rtw89_pci_release_tx(rtwdev, rx_ring, cnt);
else if (wd_cnt == 0)
goto out_unlock;
bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring);
if (bd_cnt == 0)
rtw89_pci_reclaim_txbd(rtwdev, tx_ring);
}
bd_cnt = rtw89_pci_get_avail_txbd_num(tx_ring);
wd_cnt = wd_ring->curr_num;
min_cnt = min(bd_cnt, wd_cnt);
if (min_cnt == 0) {
/* This message can be frequently shown in low power mode or
* high traffic with small FIFO chips, and we have recognized it as normal
* behavior, so print with mask RTW89_DBG_TXRX in these situations.
*/
if (rtwpci->low_power || chip->small_fifo_size)
debug_mask = RTW89_DBG_TXRX;
else
debug_mask = RTW89_DBG_UNEXP;
rtw89_debug(rtwdev, debug_mask,
"still no tx resource after reclaim: wd_cnt=%d bd_cnt=%d\n",
wd_cnt, bd_cnt);
}
out_unlock:
spin_unlock_bh(&rtwpci->trx_lock);
return min_cnt;
}
static u32 rtw89_pci_check_and_reclaim_tx_resource(struct rtw89_dev *rtwdev,
u8 txch)
{
if (rtwdev->hci.paused)
return __rtw89_pci_check_and_reclaim_tx_resource_noio(rtwdev, txch);
if (txch == RTW89_TXCH_CH12)
return __rtw89_pci_check_and_reclaim_tx_fwcmd_resource(rtwdev);
return __rtw89_pci_check_and_reclaim_tx_resource(rtwdev, txch);
}
static void __rtw89_pci_tx_kick_off(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring;
u32 host_idx, addr;
spin_lock_bh(&rtwpci->trx_lock);
addr = bd_ring->addr.idx;
host_idx = bd_ring->wp;
rtw89_write16(rtwdev, addr, host_idx);
spin_unlock_bh(&rtwpci->trx_lock);
}
static void rtw89_pci_tx_bd_ring_update(struct rtw89_dev *rtwdev, struct rtw89_pci_tx_ring *tx_ring,
int n_txbd)
{
struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring;
u32 host_idx, len;
len = bd_ring->len;
host_idx = bd_ring->wp + n_txbd;
host_idx = host_idx < len ? host_idx : host_idx - len;
bd_ring->wp = host_idx;
}
static void rtw89_pci_ops_tx_kick_off(struct rtw89_dev *rtwdev, u8 txch)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch];
if (rtwdev->hci.paused) {
set_bit(txch, rtwpci->kick_map);
return;
}
__rtw89_pci_tx_kick_off(rtwdev, tx_ring);
}
static void rtw89_pci_tx_kick_off_pending(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring;
int txch;
for (txch = 0; txch < RTW89_TXCH_NUM; txch++) {
if (!test_and_clear_bit(txch, rtwpci->kick_map))
continue;
tx_ring = &rtwpci->tx_rings[txch];
__rtw89_pci_tx_kick_off(rtwdev, tx_ring);
}
}
static void __pci_flush_txch(struct rtw89_dev *rtwdev, u8 txch, bool drop)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring = &rtwpci->tx_rings[txch];
struct rtw89_pci_dma_ring *bd_ring = &tx_ring->bd_ring;
u32 cur_idx, cur_rp;
u8 i;
/* Because the time taked by the I/O is a bit dynamic, it's hard to
* define a reasonable fixed total timeout to use read_poll_timeout*
* helper. Instead, we can ensure a reasonable polling times, so we
* just use for loop with udelay here.
*/
for (i = 0; i < 60; i++) {
cur_idx = rtw89_read32(rtwdev, bd_ring->addr.idx);
cur_rp = FIELD_GET(TXBD_HW_IDX_MASK, cur_idx);
if (cur_rp == bd_ring->wp)
return;
udelay(1);
}
if (!drop)
rtw89_info(rtwdev, "timed out to flush pci txch: %d\n", txch);
}
static void __rtw89_pci_ops_flush_txchs(struct rtw89_dev *rtwdev, u32 txchs,
bool drop)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u8 i;
for (i = 0; i < RTW89_TXCH_NUM; i++) {
/* It may be unnecessary to flush FWCMD queue. */
if (i == RTW89_TXCH_CH12)
continue;
if (info->tx_dma_ch_mask & BIT(i))
continue;
if (txchs & BIT(i))
__pci_flush_txch(rtwdev, i, drop);
}
}
static void rtw89_pci_ops_flush_queues(struct rtw89_dev *rtwdev, u32 queues,
bool drop)
{
__rtw89_pci_ops_flush_txchs(rtwdev, BIT(RTW89_TXCH_NUM) - 1, drop);
}
u32 rtw89_pci_fill_txaddr_info(struct rtw89_dev *rtwdev,
void *txaddr_info_addr, u32 total_len,
dma_addr_t dma, u8 *add_info_nr)
{
struct rtw89_pci_tx_addr_info_32 *txaddr_info = txaddr_info_addr;
__le16 option;
txaddr_info->length = cpu_to_le16(total_len);
option = cpu_to_le16(RTW89_PCI_ADDR_MSDU_LS | RTW89_PCI_ADDR_NUM(1));
option |= le16_encode_bits(upper_32_bits(dma), RTW89_PCI_ADDR_HIGH_MASK);
txaddr_info->option = option;
txaddr_info->dma = cpu_to_le32(dma);
*add_info_nr = 1;
return sizeof(*txaddr_info);
}
EXPORT_SYMBOL(rtw89_pci_fill_txaddr_info);
u32 rtw89_pci_fill_txaddr_info_v1(struct rtw89_dev *rtwdev,
void *txaddr_info_addr, u32 total_len,
dma_addr_t dma, u8 *add_info_nr)
{
struct rtw89_pci_tx_addr_info_32_v1 *txaddr_info = txaddr_info_addr;
u32 remain = total_len;
u32 len;
u16 length_option;
int n;
for (n = 0; n < RTW89_TXADDR_INFO_NR_V1 && remain; n++) {
len = remain >= TXADDR_INFO_LENTHG_V1_MAX ?
TXADDR_INFO_LENTHG_V1_MAX : remain;
remain -= len;
length_option = FIELD_PREP(B_PCIADDR_LEN_V1_MASK, len) |
FIELD_PREP(B_PCIADDR_HIGH_SEL_V1_MASK, 0) |
FIELD_PREP(B_PCIADDR_LS_V1_MASK, remain == 0);
length_option |= u16_encode_bits(upper_32_bits(dma),
B_PCIADDR_HIGH_SEL_V1_MASK);
txaddr_info->length_opt = cpu_to_le16(length_option);
txaddr_info->dma_low_lsb = cpu_to_le16(FIELD_GET(GENMASK(15, 0), dma));
txaddr_info->dma_low_msb = cpu_to_le16(FIELD_GET(GENMASK(31, 16), dma));
dma += len;
txaddr_info++;
}
WARN_ONCE(remain, "length overflow remain=%u total_len=%u",
remain, total_len);
*add_info_nr = n;
return n * sizeof(*txaddr_info);
}
EXPORT_SYMBOL(rtw89_pci_fill_txaddr_info_v1);
static int rtw89_pci_txwd_submit(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring,
struct rtw89_pci_tx_wd *txwd,
struct rtw89_core_tx_request *tx_req)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info;
struct rtw89_pci_tx_wp_info *txwp_info;
void *txaddr_info_addr;
struct pci_dev *pdev = rtwpci->pdev;
struct sk_buff *skb = tx_req->skb;
struct rtw89_pci_tx_data *tx_data = RTW89_PCI_TX_SKB_CB(skb);
struct rtw89_tx_skb_data *skb_data = RTW89_TX_SKB_CB(skb);
bool en_wd_info = desc_info->en_wd_info;
u32 txwd_len;
u32 txwp_len;
u32 txaddr_info_len;
dma_addr_t dma;
int ret;
dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, dma)) {
rtw89_err(rtwdev, "failed to map skb dma data\n");
ret = -EBUSY;
goto err;
}
tx_data->dma = dma;
rcu_assign_pointer(skb_data->wait, NULL);
txwp_len = sizeof(*txwp_info);
txwd_len = chip->txwd_body_size;
txwd_len += en_wd_info ? chip->txwd_info_size : 0;
txwp_info = txwd->vaddr + txwd_len;
txwp_info->seq0 = cpu_to_le16(txwd->seq | RTW89_PCI_TXWP_VALID);
txwp_info->seq1 = 0;
txwp_info->seq2 = 0;
txwp_info->seq3 = 0;
tx_ring->tx_cnt++;
txaddr_info_addr = txwd->vaddr + txwd_len + txwp_len;
txaddr_info_len =
rtw89_chip_fill_txaddr_info(rtwdev, txaddr_info_addr, skb->len,
dma, &desc_info->addr_info_nr);
txwd->len = txwd_len + txwp_len + txaddr_info_len;
rtw89_chip_fill_txdesc(rtwdev, desc_info, txwd->vaddr);
skb_queue_tail(&txwd->queue, skb);
return 0;
err:
return ret;
}
static int rtw89_pci_fwcmd_submit(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring,
struct rtw89_pci_tx_bd_32 *txbd,
struct rtw89_core_tx_request *tx_req)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_chip_info *chip = rtwdev->chip;
struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info;
void *txdesc;
int txdesc_size = chip->h2c_desc_size;
struct pci_dev *pdev = rtwpci->pdev;
struct sk_buff *skb = tx_req->skb;
struct rtw89_pci_tx_data *tx_data = RTW89_PCI_TX_SKB_CB(skb);
dma_addr_t dma;
__le16 opt;
txdesc = skb_push(skb, txdesc_size);
memset(txdesc, 0, txdesc_size);
rtw89_chip_fill_txdesc_fwcmd(rtwdev, desc_info, txdesc);
dma = dma_map_single(&pdev->dev, skb->data, skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, dma)) {
rtw89_err(rtwdev, "failed to map fwcmd dma data\n");
return -EBUSY;
}
tx_data->dma = dma;
opt = cpu_to_le16(RTW89_PCI_TXBD_OPT_LS);
opt |= le16_encode_bits(upper_32_bits(dma), RTW89_PCI_TXBD_OPT_DMA_HI);
txbd->opt = opt;
txbd->length = cpu_to_le16(skb->len);
txbd->dma = cpu_to_le32(tx_data->dma);
skb_queue_tail(&rtwpci->h2c_queue, skb);
rtw89_pci_tx_bd_ring_update(rtwdev, tx_ring, 1);
return 0;
}
static int rtw89_pci_txbd_submit(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring,
struct rtw89_pci_tx_bd_32 *txbd,
struct rtw89_core_tx_request *tx_req)
{
struct rtw89_pci_tx_wd *txwd;
__le16 opt;
int ret;
/* FWCMD queue doesn't have wd pages. Instead, it submits the CMD
* buffer with WD BODY only. So here we don't need to check the free
* pages of the wd ring.
*/
if (tx_ring->txch == RTW89_TXCH_CH12)
return rtw89_pci_fwcmd_submit(rtwdev, tx_ring, txbd, tx_req);
txwd = rtw89_pci_dequeue_txwd(tx_ring);
if (!txwd) {
rtw89_err(rtwdev, "no available TXWD\n");
ret = -ENOSPC;
goto err;
}
ret = rtw89_pci_txwd_submit(rtwdev, tx_ring, txwd, tx_req);
if (ret) {
rtw89_err(rtwdev, "failed to submit TXWD %d\n", txwd->seq);
goto err_enqueue_wd;
}
list_add_tail(&txwd->list, &tx_ring->busy_pages);
opt = cpu_to_le16(RTW89_PCI_TXBD_OPT_LS);
opt |= le16_encode_bits(upper_32_bits(txwd->paddr), RTW89_PCI_TXBD_OPT_DMA_HI);
txbd->opt = opt;
txbd->length = cpu_to_le16(txwd->len);
txbd->dma = cpu_to_le32(txwd->paddr);
rtw89_pci_tx_bd_ring_update(rtwdev, tx_ring, 1);
return 0;
err_enqueue_wd:
rtw89_pci_enqueue_txwd(tx_ring, txwd);
err:
return ret;
}
static int rtw89_pci_tx_write(struct rtw89_dev *rtwdev, struct rtw89_core_tx_request *tx_req,
u8 txch)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_tx_ring *tx_ring;
struct rtw89_pci_tx_bd_32 *txbd;
u32 n_avail_txbd;
int ret = 0;
/* check the tx type and dma channel for fw cmd queue */
if ((txch == RTW89_TXCH_CH12 ||
tx_req->tx_type == RTW89_CORE_TX_TYPE_FWCMD) &&
(txch != RTW89_TXCH_CH12 ||
tx_req->tx_type != RTW89_CORE_TX_TYPE_FWCMD)) {
rtw89_err(rtwdev, "only fw cmd uses dma channel 12\n");
return -EINVAL;
}
tx_ring = &rtwpci->tx_rings[txch];
spin_lock_bh(&rtwpci->trx_lock);
n_avail_txbd = rtw89_pci_get_avail_txbd_num(tx_ring);
if (n_avail_txbd == 0) {
rtw89_err(rtwdev, "no available TXBD\n");
ret = -ENOSPC;
goto err_unlock;
}
txbd = rtw89_pci_get_next_txbd(tx_ring);
ret = rtw89_pci_txbd_submit(rtwdev, tx_ring, txbd, tx_req);
if (ret) {
rtw89_err(rtwdev, "failed to submit TXBD\n");
goto err_unlock;
}
spin_unlock_bh(&rtwpci->trx_lock);
return 0;
err_unlock:
spin_unlock_bh(&rtwpci->trx_lock);
return ret;
}
static int rtw89_pci_ops_tx_write(struct rtw89_dev *rtwdev, struct rtw89_core_tx_request *tx_req)
{
struct rtw89_tx_desc_info *desc_info = &tx_req->desc_info;
int ret;
ret = rtw89_pci_tx_write(rtwdev, tx_req, desc_info->ch_dma);
if (ret) {
rtw89_err(rtwdev, "failed to TX Queue %d\n", desc_info->ch_dma);
return ret;
}
return 0;
}
const struct rtw89_pci_bd_ram rtw89_bd_ram_table_dual[RTW89_TXCH_NUM] = {
[RTW89_TXCH_ACH0] = {.start_idx = 0, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH1] = {.start_idx = 5, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH2] = {.start_idx = 10, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH3] = {.start_idx = 15, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH4] = {.start_idx = 20, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH5] = {.start_idx = 25, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH6] = {.start_idx = 30, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH7] = {.start_idx = 35, .max_num = 5, .min_num = 2},
[RTW89_TXCH_CH8] = {.start_idx = 40, .max_num = 5, .min_num = 1},
[RTW89_TXCH_CH9] = {.start_idx = 45, .max_num = 5, .min_num = 1},
[RTW89_TXCH_CH10] = {.start_idx = 50, .max_num = 5, .min_num = 1},
[RTW89_TXCH_CH11] = {.start_idx = 55, .max_num = 5, .min_num = 1},
[RTW89_TXCH_CH12] = {.start_idx = 60, .max_num = 4, .min_num = 1},
};
EXPORT_SYMBOL(rtw89_bd_ram_table_dual);
const struct rtw89_pci_bd_ram rtw89_bd_ram_table_single[RTW89_TXCH_NUM] = {
[RTW89_TXCH_ACH0] = {.start_idx = 0, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH1] = {.start_idx = 5, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH2] = {.start_idx = 10, .max_num = 5, .min_num = 2},
[RTW89_TXCH_ACH3] = {.start_idx = 15, .max_num = 5, .min_num = 2},
[RTW89_TXCH_CH8] = {.start_idx = 20, .max_num = 4, .min_num = 1},
[RTW89_TXCH_CH9] = {.start_idx = 24, .max_num = 4, .min_num = 1},
[RTW89_TXCH_CH12] = {.start_idx = 28, .max_num = 4, .min_num = 1},
};
EXPORT_SYMBOL(rtw89_bd_ram_table_single);
static void rtw89_pci_init_wp_16sel(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 addr = info->wp_sel_addr;
u32 val;
int i;
if (!info->wp_sel_addr)
return;
for (i = 0; i < 16; i += 4) {
val = u32_encode_bits(i + 0, MASKBYTE0) |
u32_encode_bits(i + 1, MASKBYTE1) |
u32_encode_bits(i + 2, MASKBYTE2) |
u32_encode_bits(i + 3, MASKBYTE3);
rtw89_write32(rtwdev, addr + i, val);
}
}
static void rtw89_pci_reset_trx_rings(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_bd_ram *bd_ram_table = *info->bd_ram_table;
struct rtw89_pci_tx_ring *tx_ring;
struct rtw89_pci_rx_ring *rx_ring;
struct rtw89_pci_dma_ring *bd_ring;
const struct rtw89_pci_bd_ram *bd_ram;
u32 addr_num;
u32 addr_idx;
u32 addr_bdram;
u32 addr_desa_l;
u32 val32;
int i;
for (i = 0; i < RTW89_TXCH_NUM; i++) {
if (info->tx_dma_ch_mask & BIT(i))
continue;
tx_ring = &rtwpci->tx_rings[i];
bd_ring = &tx_ring->bd_ring;
bd_ram = bd_ram_table ? &bd_ram_table[i] : NULL;
addr_num = bd_ring->addr.num;
addr_bdram = bd_ring->addr.bdram;
addr_desa_l = bd_ring->addr.desa_l;
bd_ring->wp = 0;
bd_ring->rp = 0;
rtw89_write16(rtwdev, addr_num, bd_ring->len);
if (addr_bdram && bd_ram) {
val32 = FIELD_PREP(BDRAM_SIDX_MASK, bd_ram->start_idx) |
FIELD_PREP(BDRAM_MAX_MASK, bd_ram->max_num) |
FIELD_PREP(BDRAM_MIN_MASK, bd_ram->min_num);
rtw89_write32(rtwdev, addr_bdram, val32);
}
rtw89_write32(rtwdev, addr_desa_l, bd_ring->dma);
rtw89_write32(rtwdev, addr_desa_l + 4, upper_32_bits(bd_ring->dma));
}
for (i = 0; i < RTW89_RXCH_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
bd_ring = &rx_ring->bd_ring;
addr_num = bd_ring->addr.num;
addr_idx = bd_ring->addr.idx;
addr_desa_l = bd_ring->addr.desa_l;
if (info->rx_ring_eq_is_full)
bd_ring->wp = bd_ring->len - 1;
else
bd_ring->wp = 0;
bd_ring->rp = 0;
rx_ring->diliver_skb = NULL;
rx_ring->diliver_desc.ready = false;
rx_ring->target_rx_tag = 0;
rtw89_write16(rtwdev, addr_num, bd_ring->len);
rtw89_write32(rtwdev, addr_desa_l, bd_ring->dma);
rtw89_write32(rtwdev, addr_desa_l + 4, upper_32_bits(bd_ring->dma));
if (info->rx_ring_eq_is_full)
rtw89_write16(rtwdev, addr_idx, bd_ring->wp);
}
rtw89_pci_init_wp_16sel(rtwdev);
}
static void rtw89_pci_release_tx_ring(struct rtw89_dev *rtwdev,
struct rtw89_pci_tx_ring *tx_ring)
{
rtw89_pci_release_busy_txwd(rtwdev, tx_ring);
rtw89_pci_release_pending_txwd_skb(rtwdev, tx_ring);
}
void rtw89_pci_ops_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
int txch;
rtw89_pci_reset_trx_rings(rtwdev);
spin_lock_bh(&rtwpci->trx_lock);
for (txch = 0; txch < RTW89_TXCH_NUM; txch++) {
if (info->tx_dma_ch_mask & BIT(txch))
continue;
if (txch == RTW89_TXCH_CH12) {
rtw89_pci_release_fwcmd(rtwdev, rtwpci,
skb_queue_len(&rtwpci->h2c_queue), true);
continue;
}
rtw89_pci_release_tx_ring(rtwdev, &rtwpci->tx_rings[txch]);
}
spin_unlock_bh(&rtwpci->trx_lock);
}
static void rtw89_pci_enable_intr_lock(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long flags;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
rtwpci->running = true;
rtw89_chip_enable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
}
static void rtw89_pci_disable_intr_lock(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long flags;
spin_lock_irqsave(&rtwpci->irq_lock, flags);
rtwpci->running = false;
rtw89_chip_disable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
}
static int rtw89_pci_ops_start(struct rtw89_dev *rtwdev)
{
rtw89_core_napi_start(rtwdev);
rtw89_pci_enable_intr_lock(rtwdev);
return 0;
}
static void rtw89_pci_ops_stop(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
rtw89_pci_disable_intr_lock(rtwdev);
synchronize_irq(pdev->irq);
rtw89_core_napi_stop(rtwdev);
}
static void rtw89_pci_ops_pause(struct rtw89_dev *rtwdev, bool pause)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
if (pause) {
rtw89_pci_disable_intr_lock(rtwdev);
synchronize_irq(pdev->irq);
if (test_bit(RTW89_FLAG_NAPI_RUNNING, rtwdev->flags))
napi_synchronize(&rtwdev->napi);
} else {
rtw89_pci_enable_intr_lock(rtwdev);
rtw89_pci_tx_kick_off_pending(rtwdev);
}
}
static
void rtw89_pci_switch_bd_idx_addr(struct rtw89_dev *rtwdev, bool low_power)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_bd_idx_addr *bd_idx_addr = info->bd_idx_addr_low_power;
const struct rtw89_pci_ch_dma_addr_set *dma_addr_set = info->dma_addr_set;
struct rtw89_pci_tx_ring *tx_ring;
struct rtw89_pci_rx_ring *rx_ring;
int i;
if (WARN(!bd_idx_addr, "only HCI with low power mode needs this\n"))
return;
for (i = 0; i < RTW89_TXCH_NUM; i++) {
tx_ring = &rtwpci->tx_rings[i];
tx_ring->bd_ring.addr.idx = low_power ?
bd_idx_addr->tx_bd_addrs[i] :
dma_addr_set->tx[i].idx;
}
for (i = 0; i < RTW89_RXCH_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
rx_ring->bd_ring.addr.idx = low_power ?
bd_idx_addr->rx_bd_addrs[i] :
dma_addr_set->rx[i].idx;
}
}
static void rtw89_pci_ops_switch_mode(struct rtw89_dev *rtwdev, bool low_power)
{
enum rtw89_pci_intr_mask_cfg cfg;
WARN(!rtwdev->hci.paused, "HCI isn't paused\n");
cfg = low_power ? RTW89_PCI_INTR_MASK_LOW_POWER : RTW89_PCI_INTR_MASK_NORMAL;
rtw89_chip_config_intr_mask(rtwdev, cfg);
rtw89_pci_switch_bd_idx_addr(rtwdev, low_power);
}
static void rtw89_pci_ops_write32(struct rtw89_dev *rtwdev, u32 addr, u32 data);
static u32 rtw89_pci_ops_read32_cmac(struct rtw89_dev *rtwdev, u32 addr)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
u32 val = readl(rtwpci->mmap + addr);
int count;
for (count = 0; ; count++) {
if (val != RTW89_R32_DEAD)
return val;
if (count >= MAC_REG_POOL_COUNT) {
rtw89_warn(rtwdev, "addr %#x = %#x\n", addr, val);
return RTW89_R32_DEAD;
}
rtw89_pci_ops_write32(rtwdev, R_AX_CK_EN, B_AX_CMAC_ALLCKEN);
val = readl(rtwpci->mmap + addr);
}
return val;
}
static u8 rtw89_pci_ops_read8(struct rtw89_dev *rtwdev, u32 addr)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
u32 addr32, val32, shift;
if (!ACCESS_CMAC(addr))
return readb(rtwpci->mmap + addr);
addr32 = addr & ~0x3;
shift = (addr & 0x3) * 8;
val32 = rtw89_pci_ops_read32_cmac(rtwdev, addr32);
return val32 >> shift;
}
static u16 rtw89_pci_ops_read16(struct rtw89_dev *rtwdev, u32 addr)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
u32 addr32, val32, shift;
if (!ACCESS_CMAC(addr))
return readw(rtwpci->mmap + addr);
addr32 = addr & ~0x3;
shift = (addr & 0x3) * 8;
val32 = rtw89_pci_ops_read32_cmac(rtwdev, addr32);
return val32 >> shift;
}
static u32 rtw89_pci_ops_read32(struct rtw89_dev *rtwdev, u32 addr)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
if (!ACCESS_CMAC(addr))
return readl(rtwpci->mmap + addr);
return rtw89_pci_ops_read32_cmac(rtwdev, addr);
}
static void rtw89_pci_ops_write8(struct rtw89_dev *rtwdev, u32 addr, u8 data)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
writeb(data, rtwpci->mmap + addr);
}
static void rtw89_pci_ops_write16(struct rtw89_dev *rtwdev, u32 addr, u16 data)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
writew(data, rtwpci->mmap + addr);
}
static void rtw89_pci_ops_write32(struct rtw89_dev *rtwdev, u32 addr, u32 data)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
writel(data, rtwpci->mmap + addr);
}
static void rtw89_pci_ctrl_dma_trx(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
if (enable)
rtw89_write32_set(rtwdev, info->init_cfg_reg,
info->rxhci_en_bit | info->txhci_en_bit);
else
rtw89_write32_clr(rtwdev, info->init_cfg_reg,
info->rxhci_en_bit | info->txhci_en_bit);
}
static void rtw89_pci_ctrl_dma_io(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_reg_def *reg = &info->dma_io_stop;
if (enable)
rtw89_write32_clr(rtwdev, reg->addr, reg->mask);
else
rtw89_write32_set(rtwdev, reg->addr, reg->mask);
}
void rtw89_pci_ctrl_dma_all(struct rtw89_dev *rtwdev, bool enable)
{
rtw89_pci_ctrl_dma_io(rtwdev, enable);
rtw89_pci_ctrl_dma_trx(rtwdev, enable);
}
static int rtw89_pci_check_mdio(struct rtw89_dev *rtwdev, u8 addr, u8 speed, u16 rw_bit)
{
u16 val;
rtw89_write8(rtwdev, R_AX_MDIO_CFG, addr & 0x1F);
val = rtw89_read16(rtwdev, R_AX_MDIO_CFG);
switch (speed) {
case PCIE_PHY_GEN1:
if (addr < 0x20)
val = u16_replace_bits(val, MDIO_PG0_G1, B_AX_MDIO_PHY_ADDR_MASK);
else
val = u16_replace_bits(val, MDIO_PG1_G1, B_AX_MDIO_PHY_ADDR_MASK);
break;
case PCIE_PHY_GEN2:
if (addr < 0x20)
val = u16_replace_bits(val, MDIO_PG0_G2, B_AX_MDIO_PHY_ADDR_MASK);
else
val = u16_replace_bits(val, MDIO_PG1_G2, B_AX_MDIO_PHY_ADDR_MASK);
break;
default:
rtw89_err(rtwdev, "[ERR]Error Speed %d!\n", speed);
return -EINVAL;
}
rtw89_write16(rtwdev, R_AX_MDIO_CFG, val);
rtw89_write16_set(rtwdev, R_AX_MDIO_CFG, rw_bit);
return read_poll_timeout(rtw89_read16, val, !(val & rw_bit), 10, 2000,
false, rtwdev, R_AX_MDIO_CFG);
}
static int
rtw89_read16_mdio(struct rtw89_dev *rtwdev, u8 addr, u8 speed, u16 *val)
{
int ret;
ret = rtw89_pci_check_mdio(rtwdev, addr, speed, B_AX_MDIO_RFLAG);
if (ret) {
rtw89_err(rtwdev, "[ERR]MDIO R16 0x%X fail ret=%d!\n", addr, ret);
return ret;
}
*val = rtw89_read16(rtwdev, R_AX_MDIO_RDATA);
return 0;
}
static int
rtw89_write16_mdio(struct rtw89_dev *rtwdev, u8 addr, u16 data, u8 speed)
{
int ret;
rtw89_write16(rtwdev, R_AX_MDIO_WDATA, data);
ret = rtw89_pci_check_mdio(rtwdev, addr, speed, B_AX_MDIO_WFLAG);
if (ret) {
rtw89_err(rtwdev, "[ERR]MDIO W16 0x%X = %x fail ret=%d!\n", addr, data, ret);
return ret;
}
return 0;
}
static int
rtw89_write16_mdio_mask(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u16 data, u8 speed)
{
u32 shift;
int ret;
u16 val;
ret = rtw89_read16_mdio(rtwdev, addr, speed, &val);
if (ret)
return ret;
shift = __ffs(mask);
val &= ~mask;
val |= ((data << shift) & mask);
ret = rtw89_write16_mdio(rtwdev, addr, val, speed);
if (ret)
return ret;
return 0;
}
static int rtw89_write16_mdio_set(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u8 speed)
{
int ret;
u16 val;
ret = rtw89_read16_mdio(rtwdev, addr, speed, &val);
if (ret)
return ret;
ret = rtw89_write16_mdio(rtwdev, addr, val | mask, speed);
if (ret)
return ret;
return 0;
}
static int rtw89_write16_mdio_clr(struct rtw89_dev *rtwdev, u8 addr, u16 mask, u8 speed)
{
int ret;
u16 val;
ret = rtw89_read16_mdio(rtwdev, addr, speed, &val);
if (ret)
return ret;
ret = rtw89_write16_mdio(rtwdev, addr, val & ~mask, speed);
if (ret)
return ret;
return 0;
}
static int rtw89_dbi_write8(struct rtw89_dev *rtwdev, u16 addr, u8 data)
{
u16 addr_2lsb = addr & B_AX_DBI_2LSB;
u16 write_addr;
u8 flag;
int ret;
write_addr = addr & B_AX_DBI_ADDR_MSK;
write_addr |= u16_encode_bits(BIT(addr_2lsb), B_AX_DBI_WREN_MSK);
rtw89_write8(rtwdev, R_AX_DBI_WDATA + addr_2lsb, data);
rtw89_write16(rtwdev, R_AX_DBI_FLAG, write_addr);
rtw89_write8(rtwdev, R_AX_DBI_FLAG + 2, B_AX_DBI_WFLAG >> 16);
ret = read_poll_timeout_atomic(rtw89_read8, flag, !flag, 10,
10 * RTW89_PCI_WR_RETRY_CNT, false,
rtwdev, R_AX_DBI_FLAG + 2);
if (ret)
rtw89_err(rtwdev, "failed to write DBI register, addr=0x%X\n",
addr);
return ret;
}
static int rtw89_dbi_read8(struct rtw89_dev *rtwdev, u16 addr, u8 *value)
{
u16 read_addr = addr & B_AX_DBI_ADDR_MSK;
u8 flag;
int ret;
rtw89_write16(rtwdev, R_AX_DBI_FLAG, read_addr);
rtw89_write8(rtwdev, R_AX_DBI_FLAG + 2, B_AX_DBI_RFLAG >> 16);
ret = read_poll_timeout_atomic(rtw89_read8, flag, !flag, 10,
10 * RTW89_PCI_WR_RETRY_CNT, false,
rtwdev, R_AX_DBI_FLAG + 2);
if (ret) {
rtw89_err(rtwdev, "failed to read DBI register, addr=0x%X\n",
addr);
return ret;
}
read_addr = R_AX_DBI_RDATA + (addr & 3);
*value = rtw89_read8(rtwdev, read_addr);
return 0;
}
static int rtw89_pci_write_config_byte(struct rtw89_dev *rtwdev, u16 addr,
u8 data)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
struct pci_dev *pdev = rtwpci->pdev;
int ret;
ret = pci_write_config_byte(pdev, addr, data);
if (!ret)
return 0;
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev))
ret = rtw89_dbi_write8(rtwdev, addr, data);
return ret;
}
static int rtw89_pci_read_config_byte(struct rtw89_dev *rtwdev, u16 addr,
u8 *value)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
struct pci_dev *pdev = rtwpci->pdev;
int ret;
ret = pci_read_config_byte(pdev, addr, value);
if (!ret)
return 0;
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev))
ret = rtw89_dbi_read8(rtwdev, addr, value);
return ret;
}
static int rtw89_pci_config_byte_set(struct rtw89_dev *rtwdev, u16 addr,
u8 bit)
{
u8 value;
int ret;
ret = rtw89_pci_read_config_byte(rtwdev, addr, &value);
if (ret)
return ret;
value |= bit;
ret = rtw89_pci_write_config_byte(rtwdev, addr, value);
return ret;
}
static int rtw89_pci_config_byte_clr(struct rtw89_dev *rtwdev, u16 addr,
u8 bit)
{
u8 value;
int ret;
ret = rtw89_pci_read_config_byte(rtwdev, addr, &value);
if (ret)
return ret;
value &= ~bit;
ret = rtw89_pci_write_config_byte(rtwdev, addr, value);
return ret;
}
static int
__get_target(struct rtw89_dev *rtwdev, u16 *target, enum rtw89_pcie_phy phy_rate)
{
u16 val, tar;
int ret;
/* Enable counter */
ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val);
if (ret)
return ret;
ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val & ~B_AX_CLK_CALIB_EN,
phy_rate);
if (ret)
return ret;
ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val | B_AX_CLK_CALIB_EN,
phy_rate);
if (ret)
return ret;
fsleep(300);
ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &tar);
if (ret)
return ret;
ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val & ~B_AX_CLK_CALIB_EN,
phy_rate);
if (ret)
return ret;
tar = tar & 0x0FFF;
if (tar == 0 || tar == 0x0FFF) {
rtw89_err(rtwdev, "[ERR]Get target failed.\n");
return -EINVAL;
}
*target = tar;
return 0;
}
static int rtw89_pci_autok_x(struct rtw89_dev *rtwdev)
{
int ret;
if (!rtw89_is_rtl885xb(rtwdev))
return 0;
ret = rtw89_write16_mdio_mask(rtwdev, RAC_REG_FLD_0, BAC_AUTOK_N_MASK,
PCIE_AUTOK_4, PCIE_PHY_GEN1);
return ret;
}
static int rtw89_pci_auto_refclk_cal(struct rtw89_dev *rtwdev, bool autook_en)
{
enum rtw89_pcie_phy phy_rate;
u16 val16, mgn_set, div_set, tar;
u8 val8, bdr_ori;
bool l1_flag = false;
int ret = 0;
if (!rtw89_is_rtl885xb(rtwdev))
return 0;
ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_PHY_RATE, &val8);
if (ret) {
rtw89_err(rtwdev, "[ERR]pci config read %X\n",
RTW89_PCIE_PHY_RATE);
return ret;
}
if (FIELD_GET(RTW89_PCIE_PHY_RATE_MASK, val8) == 0x1) {
phy_rate = PCIE_PHY_GEN1;
} else if (FIELD_GET(RTW89_PCIE_PHY_RATE_MASK, val8) == 0x2) {
phy_rate = PCIE_PHY_GEN2;
} else {
rtw89_err(rtwdev, "[ERR]PCIe PHY rate %#x not support\n", val8);
return -EOPNOTSUPP;
}
/* Disable L1BD */
ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_L1_CTRL, &bdr_ori);
if (ret) {
rtw89_err(rtwdev, "[ERR]pci config read %X\n", RTW89_PCIE_L1_CTRL);
return ret;
}
if (bdr_ori & RTW89_PCIE_BIT_L1) {
ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_L1_CTRL,
bdr_ori & ~RTW89_PCIE_BIT_L1);
if (ret) {
rtw89_err(rtwdev, "[ERR]pci config write %X\n",
RTW89_PCIE_L1_CTRL);
return ret;
}
l1_flag = true;
}
ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val16);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_r16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
if (val16 & B_AX_CALIB_EN) {
ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1,
val16 & ~B_AX_CALIB_EN, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
}
if (!autook_en)
goto end;
/* Set div */
ret = rtw89_write16_mdio_clr(rtwdev, RAC_CTRL_PPR_V1, B_AX_DIV, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
/* Obtain div and margin */
ret = __get_target(rtwdev, &tar, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]1st get target fail %d\n", ret);
goto end;
}
mgn_set = tar * INTF_INTGRA_HOSTREF_V1 / INTF_INTGRA_MINREF_V1 - tar;
if (mgn_set >= 128) {
div_set = 0x0003;
mgn_set = 0x000F;
} else if (mgn_set >= 64) {
div_set = 0x0003;
mgn_set >>= 3;
} else if (mgn_set >= 32) {
div_set = 0x0002;
mgn_set >>= 2;
} else if (mgn_set >= 16) {
div_set = 0x0001;
mgn_set >>= 1;
} else if (mgn_set == 0) {
rtw89_err(rtwdev, "[ERR]cal mgn is 0,tar = %d\n", tar);
goto end;
} else {
div_set = 0x0000;
}
ret = rtw89_read16_mdio(rtwdev, RAC_CTRL_PPR_V1, phy_rate, &val16);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_r16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
val16 |= u16_encode_bits(div_set, B_AX_DIV);
ret = rtw89_write16_mdio(rtwdev, RAC_CTRL_PPR_V1, val16, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
ret = __get_target(rtwdev, &tar, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]2nd get target fail %d\n", ret);
goto end;
}
rtw89_debug(rtwdev, RTW89_DBG_HCI, "[TRACE]target = 0x%X, div = 0x%X, margin = 0x%X\n",
tar, div_set, mgn_set);
ret = rtw89_write16_mdio(rtwdev, RAC_SET_PPR_V1,
(tar & 0x0FFF) | (mgn_set << 12), phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_SET_PPR_V1);
goto end;
}
/* Enable function */
ret = rtw89_write16_mdio_set(rtwdev, RAC_CTRL_PPR_V1, B_AX_CALIB_EN, phy_rate);
if (ret) {
rtw89_err(rtwdev, "[ERR]mdio_w16_pcie %X\n", RAC_CTRL_PPR_V1);
goto end;
}
/* CLK delay = 0 */
ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_CLK_CTRL,
PCIE_CLKDLY_HW_0);
end:
/* Set L1BD to ori */
if (l1_flag) {
ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_L1_CTRL,
bdr_ori);
if (ret) {
rtw89_err(rtwdev, "[ERR]pci config write %X\n",
RTW89_PCIE_L1_CTRL);
return ret;
}
}
return ret;
}
static int rtw89_pci_deglitch_setting(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
int ret;
if (chip_id == RTL8852A) {
ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA24, B_AX_DEGLITCH,
PCIE_PHY_GEN1);
if (ret)
return ret;
ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA24, B_AX_DEGLITCH,
PCIE_PHY_GEN2);
if (ret)
return ret;
} else if (chip_id == RTL8852C) {
rtw89_write16_clr(rtwdev, R_RAC_DIRECT_OFFSET_G1 + RAC_ANA24 * 2,
B_AX_DEGLITCH);
rtw89_write16_clr(rtwdev, R_RAC_DIRECT_OFFSET_G2 + RAC_ANA24 * 2,
B_AX_DEGLITCH);
}
return 0;
}
static void rtw89_pci_disable_eq_ax(struct rtw89_dev *rtwdev)
{
u16 g1_oobs, g2_oobs;
u32 backup_aspm;
u32 phy_offset;
u16 offset_cal;
u16 oobs_val;
int ret;
u8 gen;
if (rtwdev->chip->chip_id != RTL8852C)
return;
g1_oobs = rtw89_read16_mask(rtwdev, R_RAC_DIRECT_OFFSET_G1 +
RAC_ANA09 * RAC_MULT, BAC_OOBS_SEL);
g2_oobs = rtw89_read16_mask(rtwdev, R_RAC_DIRECT_OFFSET_G2 +
RAC_ANA09 * RAC_MULT, BAC_OOBS_SEL);
if (g1_oobs && g2_oobs)
return;
backup_aspm = rtw89_read32(rtwdev, R_AX_PCIE_MIX_CFG_V1);
rtw89_write32_clr(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_ASPM_CTRL_MASK);
ret = rtw89_pci_get_phy_offset_by_link_speed(rtwdev, &phy_offset);
if (ret)
goto out;
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA0D * RAC_MULT, BAC_RX_TEST_EN);
rtw89_write16(rtwdev, phy_offset + RAC_ANA10 * RAC_MULT, ADDR_SEL_PINOUT_DIS_VAL);
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA19 * RAC_MULT, B_PCIE_BIT_RD_SEL);
oobs_val = rtw89_read16_mask(rtwdev, phy_offset + RAC_ANA1F * RAC_MULT,
OOBS_LEVEL_MASK);
rtw89_write16_mask(rtwdev, R_RAC_DIRECT_OFFSET_G1 + RAC_ANA03 * RAC_MULT,
OOBS_SEN_MASK, oobs_val);
rtw89_write16_set(rtwdev, R_RAC_DIRECT_OFFSET_G1 + RAC_ANA09 * RAC_MULT,
BAC_OOBS_SEL);
rtw89_write16_mask(rtwdev, R_RAC_DIRECT_OFFSET_G2 + RAC_ANA03 * RAC_MULT,
OOBS_SEN_MASK, oobs_val);
rtw89_write16_set(rtwdev, R_RAC_DIRECT_OFFSET_G2 + RAC_ANA09 * RAC_MULT,
BAC_OOBS_SEL);
/* offset K */
for (gen = 1; gen <= 2; gen++) {
phy_offset = gen == 1 ? R_RAC_DIRECT_OFFSET_G1 :
R_RAC_DIRECT_OFFSET_G2;
rtw89_write16_clr(rtwdev, phy_offset + RAC_ANA19 * RAC_MULT,
B_PCIE_BIT_RD_SEL);
}
offset_cal = rtw89_read16_mask(rtwdev, R_RAC_DIRECT_OFFSET_G1 +
RAC_ANA1F * RAC_MULT, OFFSET_CAL_MASK);
for (gen = 1; gen <= 2; gen++) {
phy_offset = gen == 1 ? R_RAC_DIRECT_OFFSET_G1 :
R_RAC_DIRECT_OFFSET_G2;
rtw89_write16_mask(rtwdev, phy_offset + RAC_ANA0B * RAC_MULT,
MANUAL_LVL_MASK, offset_cal);
rtw89_write16_clr(rtwdev, phy_offset + RAC_ANA0D * RAC_MULT,
OFFSET_CAL_MODE);
}
out:
rtw89_write32(rtwdev, R_AX_PCIE_MIX_CFG_V1, backup_aspm);
}
static void rtw89_pci_ber(struct rtw89_dev *rtwdev)
{
u32 phy_offset;
if (!test_bit(RTW89_QUIRK_PCI_BER, rtwdev->quirks))
return;
phy_offset = R_RAC_DIRECT_OFFSET_G1;
rtw89_write16(rtwdev, phy_offset + RAC_ANA1E * RAC_MULT, RAC_ANA1E_G1_VAL);
rtw89_write16(rtwdev, phy_offset + RAC_ANA2E * RAC_MULT, RAC_ANA2E_VAL);
phy_offset = R_RAC_DIRECT_OFFSET_G2;
rtw89_write16(rtwdev, phy_offset + RAC_ANA1E * RAC_MULT, RAC_ANA1E_G2_VAL);
rtw89_write16(rtwdev, phy_offset + RAC_ANA2E * RAC_MULT, RAC_ANA2E_VAL);
}
static void rtw89_pci_rxdma_prefth(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id != RTL8852A)
return;
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_DIS_RXDMA_PRE);
}
static void rtw89_pci_l1off_pwroff(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
if (chip_id != RTL8852A && !rtw89_is_rtl885xb(rtwdev))
return;
rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL, B_AX_L1OFF_PWR_OFF_EN);
}
static u32 rtw89_pci_l2_rxen_lat(struct rtw89_dev *rtwdev)
{
int ret;
if (rtwdev->chip->chip_id != RTL8852A)
return 0;
ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA26, B_AX_RXEN,
PCIE_PHY_GEN1);
if (ret)
return ret;
ret = rtw89_write16_mdio_clr(rtwdev, RAC_ANA26, B_AX_RXEN,
PCIE_PHY_GEN2);
if (ret)
return ret;
return 0;
}
static void rtw89_pci_aphy_pwrcut(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
if (chip_id != RTL8852A && !rtw89_is_rtl885xb(rtwdev))
return;
rtw89_write32_clr(rtwdev, R_AX_SYS_PW_CTRL, B_AX_PSUS_OFF_CAPC_EN);
}
static void rtw89_pci_hci_ldo(struct rtw89_dev *rtwdev)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL,
B_AX_PCIE_DIS_L2_CTRL_LDO_HCI);
rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL,
B_AX_PCIE_DIS_WLSUS_AFT_PDN);
} else if (rtwdev->chip->chip_id == RTL8852C) {
rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL,
B_AX_PCIE_DIS_L2_CTRL_LDO_HCI);
}
}
static int rtw89_pci_dphy_delay(struct rtw89_dev *rtwdev)
{
if (!rtw89_is_rtl885xb(rtwdev))
return 0;
return rtw89_write16_mdio_mask(rtwdev, RAC_REG_REV2, BAC_CMU_EN_DLY_MASK,
PCIE_DPHY_DLY_25US, PCIE_PHY_GEN1);
}
static void rtw89_pci_power_wake_ax(struct rtw89_dev *rtwdev, bool pwr_up)
{
if (pwr_up)
rtw89_write32_set(rtwdev, R_AX_HCI_OPT_CTRL, BIT_WAKE_CTRL);
else
rtw89_write32_clr(rtwdev, R_AX_HCI_OPT_CTRL, BIT_WAKE_CTRL);
}
static void rtw89_pci_autoload_hang(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id != RTL8852C)
return;
rtw89_write32_set(rtwdev, R_AX_PCIE_BG_CLR, B_AX_BG_CLR_ASYNC_M3);
rtw89_write32_clr(rtwdev, R_AX_PCIE_BG_CLR, B_AX_BG_CLR_ASYNC_M3);
}
static void rtw89_pci_l12_vmain(struct rtw89_dev *rtwdev)
{
if (!(rtwdev->chip->chip_id == RTL8852C && rtwdev->hal.cv == CHIP_CAV))
return;
rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL, B_AX_PCIE_FORCE_PWR_NGAT);
}
static void rtw89_pci_gen2_force_ib(struct rtw89_dev *rtwdev)
{
if (!(rtwdev->chip->chip_id == RTL8852C && rtwdev->hal.cv == CHIP_CAV))
return;
rtw89_write32_set(rtwdev, R_AX_PMC_DBG_CTRL2,
B_AX_SYSON_DIS_PMCR_AX_WRMSK);
rtw89_write32_set(rtwdev, R_AX_HCI_BG_CTRL, B_AX_BG_CLR_ASYNC_M3);
rtw89_write32_clr(rtwdev, R_AX_PMC_DBG_CTRL2,
B_AX_SYSON_DIS_PMCR_AX_WRMSK);
}
static void rtw89_pci_l1_ent_lat(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id != RTL8852C)
return;
rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_SEL_REQ_ENTR_L1);
}
static void rtw89_pci_wd_exit_l1(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id != RTL8852C)
return;
rtw89_write32_set(rtwdev, R_AX_PCIE_PS_CTRL_V1, B_AX_DMAC0_EXIT_L1_EN);
}
static void rtw89_pci_set_sic(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id == RTL8852C)
return;
rtw89_write32_clr(rtwdev, R_AX_PCIE_EXP_CTRL,
B_AX_SIC_EN_FORCE_CLKREQ);
}
static void rtw89_pci_set_lbc(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 lbc;
if (rtwdev->chip->chip_id == RTL8852C)
return;
lbc = rtw89_read32(rtwdev, R_AX_LBC_WATCHDOG);
if (info->lbc_en == MAC_AX_PCIE_ENABLE) {
lbc = u32_replace_bits(lbc, info->lbc_tmr, B_AX_LBC_TIMER);
lbc |= B_AX_LBC_FLAG | B_AX_LBC_EN;
rtw89_write32(rtwdev, R_AX_LBC_WATCHDOG, lbc);
} else {
lbc &= ~B_AX_LBC_EN;
}
rtw89_write32_set(rtwdev, R_AX_LBC_WATCHDOG, lbc);
}
static void rtw89_pci_set_io_rcy(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 val32;
if (rtwdev->chip->chip_id != RTL8852C)
return;
if (info->io_rcy_en == MAC_AX_PCIE_ENABLE) {
val32 = FIELD_PREP(B_AX_PCIE_WDT_TIMER_M1_MASK,
info->io_rcy_tmr);
rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_M1, val32);
rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_M2, val32);
rtw89_write32(rtwdev, R_AX_PCIE_WDT_TIMER_E0, val32);
rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_M1, B_AX_PCIE_IO_RCY_WDT_MODE_M1);
rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_M2, B_AX_PCIE_IO_RCY_WDT_MODE_M2);
rtw89_write32_set(rtwdev, R_AX_PCIE_IO_RCY_E0, B_AX_PCIE_IO_RCY_WDT_MODE_E0);
} else {
rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_M1, B_AX_PCIE_IO_RCY_WDT_MODE_M1);
rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_M2, B_AX_PCIE_IO_RCY_WDT_MODE_M2);
rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_E0, B_AX_PCIE_IO_RCY_WDT_MODE_E0);
}
rtw89_write32_clr(rtwdev, R_AX_PCIE_IO_RCY_S1, B_AX_PCIE_IO_RCY_WDT_MODE_S1);
}
static void rtw89_pci_set_dbg(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id == RTL8852C)
return;
rtw89_write32_set(rtwdev, R_AX_PCIE_DBG_CTRL,
B_AX_ASFF_FULL_NO_STK | B_AX_EN_STUCK_DBG);
rtw89_write32_mask(rtwdev, R_AX_PCIE_EXP_CTRL,
B_AX_EN_STUCK_DBG | B_AX_ASFF_FULL_NO_STK,
B_AX_EN_STUCK_DBG);
if (rtwdev->chip->chip_id == RTL8852A)
rtw89_write32_set(rtwdev, R_AX_PCIE_EXP_CTRL,
B_AX_EN_CHKDSC_NO_RX_STUCK);
}
static void rtw89_pci_set_keep_reg(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id == RTL8852C)
return;
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1,
B_AX_PCIE_TXRST_KEEP_REG | B_AX_PCIE_RXRST_KEEP_REG);
}
static void rtw89_pci_clr_idx_all_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
u32 val = B_AX_CLR_ACH0_IDX | B_AX_CLR_ACH1_IDX | B_AX_CLR_ACH2_IDX |
B_AX_CLR_ACH3_IDX | B_AX_CLR_CH8_IDX | B_AX_CLR_CH9_IDX |
B_AX_CLR_CH12_IDX;
u32 rxbd_rwptr_clr = info->rxbd_rwptr_clr_reg;
u32 txbd_rwptr_clr2 = info->txbd_rwptr_clr2_reg;
if (chip_id == RTL8852A || chip_id == RTL8852C)
val |= B_AX_CLR_ACH4_IDX | B_AX_CLR_ACH5_IDX |
B_AX_CLR_ACH6_IDX | B_AX_CLR_ACH7_IDX;
/* clear DMA indexes */
rtw89_write32_set(rtwdev, R_AX_TXBD_RWPTR_CLR1, val);
if (chip_id == RTL8852A || chip_id == RTL8852C)
rtw89_write32_set(rtwdev, txbd_rwptr_clr2,
B_AX_CLR_CH10_IDX | B_AX_CLR_CH11_IDX);
rtw89_write32_set(rtwdev, rxbd_rwptr_clr,
B_AX_CLR_RXQ_IDX | B_AX_CLR_RPQ_IDX);
}
static int rtw89_pci_poll_txdma_ch_idle_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 dma_busy1 = info->dma_busy1.addr;
u32 dma_busy2 = info->dma_busy2_reg;
u32 check, dma_busy;
int ret;
check = info->dma_busy1.mask;
ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0,
10, 100, false, rtwdev, dma_busy1);
if (ret)
return ret;
if (!dma_busy2)
return 0;
check = B_AX_CH10_BUSY | B_AX_CH11_BUSY;
ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0,
10, 100, false, rtwdev, dma_busy2);
if (ret)
return ret;
return 0;
}
static int rtw89_pci_poll_rxdma_ch_idle_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
u32 dma_busy3 = info->dma_busy3_reg;
u32 check, dma_busy;
int ret;
check = B_AX_RXQ_BUSY | B_AX_RPQ_BUSY;
ret = read_poll_timeout(rtw89_read32, dma_busy, (dma_busy & check) == 0,
10, 100, false, rtwdev, dma_busy3);
if (ret)
return ret;
return 0;
}
static int rtw89_pci_poll_dma_all_idle(struct rtw89_dev *rtwdev)
{
u32 ret;
ret = rtw89_pci_poll_txdma_ch_idle_ax(rtwdev);
if (ret) {
rtw89_err(rtwdev, "txdma ch busy\n");
return ret;
}
ret = rtw89_pci_poll_rxdma_ch_idle_ax(rtwdev);
if (ret) {
rtw89_err(rtwdev, "rxdma ch busy\n");
return ret;
}
return 0;
}
static int rtw89_pci_mode_op(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
enum mac_ax_bd_trunc_mode txbd_trunc_mode = info->txbd_trunc_mode;
enum mac_ax_bd_trunc_mode rxbd_trunc_mode = info->rxbd_trunc_mode;
enum mac_ax_rxbd_mode rxbd_mode = info->rxbd_mode;
enum mac_ax_tag_mode tag_mode = info->tag_mode;
enum mac_ax_wd_dma_intvl wd_dma_idle_intvl = info->wd_dma_idle_intvl;
enum mac_ax_wd_dma_intvl wd_dma_act_intvl = info->wd_dma_act_intvl;
enum mac_ax_tx_burst tx_burst = info->tx_burst;
enum mac_ax_rx_burst rx_burst = info->rx_burst;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
u8 cv = rtwdev->hal.cv;
u32 val32;
if (txbd_trunc_mode == MAC_AX_BD_TRUNC) {
if (chip_id == RTL8852A && cv == CHIP_CBV)
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_TX_TRUNC_MODE);
} else if (txbd_trunc_mode == MAC_AX_BD_NORM) {
if (chip_id == RTL8852A || chip_id == RTL8852B)
rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_TX_TRUNC_MODE);
}
if (rxbd_trunc_mode == MAC_AX_BD_TRUNC) {
if (chip_id == RTL8852A && cv == CHIP_CBV)
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_RX_TRUNC_MODE);
} else if (rxbd_trunc_mode == MAC_AX_BD_NORM) {
if (chip_id == RTL8852A || chip_id == RTL8852B)
rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_RX_TRUNC_MODE);
}
if (rxbd_mode == MAC_AX_RXBD_PKT) {
rtw89_write32_clr(rtwdev, info->init_cfg_reg, info->rxbd_mode_bit);
} else if (rxbd_mode == MAC_AX_RXBD_SEP) {
rtw89_write32_set(rtwdev, info->init_cfg_reg, info->rxbd_mode_bit);
if (chip_id == RTL8852A || chip_id == RTL8852B)
rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2,
B_AX_PCIE_RX_APPLEN_MASK, 0);
}
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_MAX_TXDMA_MASK, tx_burst);
rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG1, B_AX_PCIE_MAX_RXDMA_MASK, rx_burst);
} else if (chip_id == RTL8852C) {
rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_HAXI_MAX_TXDMA_MASK, tx_burst);
rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_HAXI_MAX_RXDMA_MASK, rx_burst);
}
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
if (tag_mode == MAC_AX_TAG_SGL) {
val32 = rtw89_read32(rtwdev, R_AX_PCIE_INIT_CFG1) &
~B_AX_LATENCY_CONTROL;
rtw89_write32(rtwdev, R_AX_PCIE_INIT_CFG1, val32);
} else if (tag_mode == MAC_AX_TAG_MULTI) {
val32 = rtw89_read32(rtwdev, R_AX_PCIE_INIT_CFG1) |
B_AX_LATENCY_CONTROL;
rtw89_write32(rtwdev, R_AX_PCIE_INIT_CFG1, val32);
}
}
rtw89_write32_mask(rtwdev, info->exp_ctrl_reg, info->max_tag_num_mask,
info->multi_tag_num);
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2, B_AX_WD_ITVL_IDLE,
wd_dma_idle_intvl);
rtw89_write32_mask(rtwdev, R_AX_PCIE_INIT_CFG2, B_AX_WD_ITVL_ACT,
wd_dma_act_intvl);
} else if (chip_id == RTL8852C) {
rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_WD_ITVL_IDLE_V1_MASK,
wd_dma_idle_intvl);
rtw89_write32_mask(rtwdev, R_AX_HAXI_INIT_CFG1, B_AX_WD_ITVL_ACT_V1_MASK,
wd_dma_act_intvl);
}
if (txbd_trunc_mode == MAC_AX_BD_TRUNC) {
rtw89_write32_set(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING,
B_AX_HOST_ADDR_INFO_8B_SEL);
rtw89_write32_clr(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH);
} else if (txbd_trunc_mode == MAC_AX_BD_NORM) {
rtw89_write32_clr(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING,
B_AX_HOST_ADDR_INFO_8B_SEL);
rtw89_write32_set(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH);
}
return 0;
}
static int rtw89_pci_ops_deinit(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
rtw89_pci_power_wake(rtwdev, false);
if (rtwdev->chip->chip_id == RTL8852A) {
/* ltr sw trigger */
rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_APP_LTR_IDLE);
}
info->ltr_set(rtwdev, false);
rtw89_pci_ctrl_dma_all(rtwdev, false);
rtw89_pci_clr_idx_all(rtwdev);
return 0;
}
static int rtw89_pci_ops_mac_pre_init_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
int ret;
rtw89_pci_ber(rtwdev);
rtw89_pci_rxdma_prefth(rtwdev);
rtw89_pci_l1off_pwroff(rtwdev);
rtw89_pci_deglitch_setting(rtwdev);
ret = rtw89_pci_l2_rxen_lat(rtwdev);
if (ret) {
rtw89_err(rtwdev, "[ERR] pcie l2 rxen lat %d\n", ret);
return ret;
}
rtw89_pci_aphy_pwrcut(rtwdev);
rtw89_pci_hci_ldo(rtwdev);
rtw89_pci_dphy_delay(rtwdev);
ret = rtw89_pci_autok_x(rtwdev);
if (ret) {
rtw89_err(rtwdev, "[ERR] pcie autok_x fail %d\n", ret);
return ret;
}
ret = rtw89_pci_auto_refclk_cal(rtwdev, false);
if (ret) {
rtw89_err(rtwdev, "[ERR] pcie autok fail %d\n", ret);
return ret;
}
rtw89_pci_power_wake_ax(rtwdev, true);
rtw89_pci_autoload_hang(rtwdev);
rtw89_pci_l12_vmain(rtwdev);
rtw89_pci_gen2_force_ib(rtwdev);
rtw89_pci_l1_ent_lat(rtwdev);
rtw89_pci_wd_exit_l1(rtwdev);
rtw89_pci_set_sic(rtwdev);
rtw89_pci_set_lbc(rtwdev);
rtw89_pci_set_io_rcy(rtwdev);
rtw89_pci_set_dbg(rtwdev);
rtw89_pci_set_keep_reg(rtwdev);
rtw89_write32_set(rtwdev, info->dma_stop1.addr, B_AX_STOP_WPDMA);
/* stop DMA activities */
rtw89_pci_ctrl_dma_all(rtwdev, false);
ret = rtw89_pci_poll_dma_all_idle(rtwdev);
if (ret) {
rtw89_err(rtwdev, "[ERR] poll pcie dma all idle\n");
return ret;
}
rtw89_pci_clr_idx_all(rtwdev);
rtw89_pci_mode_op(rtwdev);
/* fill TRX BD indexes */
rtw89_pci_ops_reset(rtwdev);
ret = rtw89_pci_rst_bdram_ax(rtwdev);
if (ret) {
rtw89_warn(rtwdev, "reset bdram busy\n");
return ret;
}
/* disable all channels except to FW CMD channel to download firmware */
rtw89_pci_ctrl_txdma_ch_ax(rtwdev, false);
rtw89_pci_ctrl_txdma_fw_ch_ax(rtwdev, true);
/* start DMA activities */
rtw89_pci_ctrl_dma_all(rtwdev, true);
return 0;
}
static int rtw89_pci_ops_mac_pre_deinit_ax(struct rtw89_dev *rtwdev)
{
rtw89_pci_power_wake_ax(rtwdev, false);
return 0;
}
int rtw89_pci_ltr_set(struct rtw89_dev *rtwdev, bool en)
{
u32 val;
if (!en)
return 0;
val = rtw89_read32(rtwdev, R_AX_LTR_CTRL_0);
if (rtw89_pci_ltr_is_err_reg_val(val))
return -EINVAL;
val = rtw89_read32(rtwdev, R_AX_LTR_CTRL_1);
if (rtw89_pci_ltr_is_err_reg_val(val))
return -EINVAL;
val = rtw89_read32(rtwdev, R_AX_LTR_IDLE_LATENCY);
if (rtw89_pci_ltr_is_err_reg_val(val))
return -EINVAL;
val = rtw89_read32(rtwdev, R_AX_LTR_ACTIVE_LATENCY);
if (rtw89_pci_ltr_is_err_reg_val(val))
return -EINVAL;
rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_HW_EN | B_AX_LTR_EN |
B_AX_LTR_WD_NOEMP_CHK);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_SPACE_IDX_MASK,
PCI_LTR_SPC_500US);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_IDLE_TIMER_IDX_MASK,
PCI_LTR_IDLE_TIMER_3_2MS);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX0_TH_MASK, 0x28);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX1_TH_MASK, 0x28);
rtw89_write32(rtwdev, R_AX_LTR_IDLE_LATENCY, 0x90039003);
rtw89_write32(rtwdev, R_AX_LTR_ACTIVE_LATENCY, 0x880b880b);
return 0;
}
EXPORT_SYMBOL(rtw89_pci_ltr_set);
int rtw89_pci_ltr_set_v1(struct rtw89_dev *rtwdev, bool en)
{
u32 dec_ctrl;
u32 val32;
val32 = rtw89_read32(rtwdev, R_AX_LTR_CTRL_0);
if (rtw89_pci_ltr_is_err_reg_val(val32))
return -EINVAL;
val32 = rtw89_read32(rtwdev, R_AX_LTR_CTRL_1);
if (rtw89_pci_ltr_is_err_reg_val(val32))
return -EINVAL;
dec_ctrl = rtw89_read32(rtwdev, R_AX_LTR_DEC_CTRL);
if (rtw89_pci_ltr_is_err_reg_val(dec_ctrl))
return -EINVAL;
val32 = rtw89_read32(rtwdev, R_AX_LTR_LATENCY_IDX3);
if (rtw89_pci_ltr_is_err_reg_val(val32))
return -EINVAL;
val32 = rtw89_read32(rtwdev, R_AX_LTR_LATENCY_IDX0);
if (rtw89_pci_ltr_is_err_reg_val(val32))
return -EINVAL;
if (!en) {
dec_ctrl &= ~(LTR_EN_BITS | B_AX_LTR_IDX_DRV_MASK | B_AX_LTR_HW_DEC_EN);
dec_ctrl |= FIELD_PREP(B_AX_LTR_IDX_DRV_MASK, PCIE_LTR_IDX_IDLE) |
B_AX_LTR_REQ_DRV;
} else {
dec_ctrl |= B_AX_LTR_HW_DEC_EN;
}
dec_ctrl &= ~B_AX_LTR_SPACE_IDX_V1_MASK;
dec_ctrl |= FIELD_PREP(B_AX_LTR_SPACE_IDX_V1_MASK, PCI_LTR_SPC_500US);
if (en)
rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0,
B_AX_LTR_WD_NOEMP_CHK_V1 | B_AX_LTR_HW_EN);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_0, B_AX_LTR_IDLE_TIMER_IDX_MASK,
PCI_LTR_IDLE_TIMER_3_2MS);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX0_TH_MASK, 0x28);
rtw89_write32_mask(rtwdev, R_AX_LTR_CTRL_1, B_AX_LTR_RX1_TH_MASK, 0x28);
rtw89_write32(rtwdev, R_AX_LTR_DEC_CTRL, dec_ctrl);
rtw89_write32(rtwdev, R_AX_LTR_LATENCY_IDX3, 0x90039003);
rtw89_write32(rtwdev, R_AX_LTR_LATENCY_IDX0, 0x880b880b);
return 0;
}
EXPORT_SYMBOL(rtw89_pci_ltr_set_v1);
static int rtw89_pci_ops_mac_post_init_ax(struct rtw89_dev *rtwdev)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
int ret;
ret = info->ltr_set(rtwdev, true);
if (ret) {
rtw89_err(rtwdev, "pci ltr set fail\n");
return ret;
}
if (chip_id == RTL8852A) {
/* ltr sw trigger */
rtw89_write32_set(rtwdev, R_AX_LTR_CTRL_0, B_AX_APP_LTR_ACT);
}
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
/* ADDR info 8-byte mode */
rtw89_write32_set(rtwdev, R_AX_TX_ADDRESS_INFO_MODE_SETTING,
B_AX_HOST_ADDR_INFO_8B_SEL);
rtw89_write32_clr(rtwdev, R_AX_PKTIN_SETTING, B_AX_WD_ADDR_INFO_LENGTH);
}
/* enable DMA for all queues */
rtw89_pci_ctrl_txdma_ch_ax(rtwdev, true);
/* Release PCI IO */
rtw89_write32_clr(rtwdev, info->dma_stop1.addr,
B_AX_STOP_WPDMA | B_AX_STOP_PCIEIO);
return 0;
}
static int rtw89_pci_claim_device(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
int ret;
ret = pci_enable_device(pdev);
if (ret) {
rtw89_err(rtwdev, "failed to enable pci device\n");
return ret;
}
pci_set_master(pdev);
pci_set_drvdata(pdev, rtwdev->hw);
rtwpci->pdev = pdev;
return 0;
}
static void rtw89_pci_declaim_device(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
pci_disable_device(pdev);
}
static bool rtw89_pci_chip_is_manual_dac(struct rtw89_dev *rtwdev)
{
const struct rtw89_chip_info *chip = rtwdev->chip;
switch (chip->chip_id) {
case RTL8852A:
case RTL8852B:
case RTL8851B:
case RTL8852BT:
return true;
default:
return false;
}
}
static bool rtw89_pci_is_dac_compatible_bridge(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *bridge = pci_upstream_bridge(rtwpci->pdev);
if (!rtw89_pci_chip_is_manual_dac(rtwdev))
return true;
if (!bridge)
return false;
switch (bridge->vendor) {
case PCI_VENDOR_ID_INTEL:
return true;
case PCI_VENDOR_ID_ASMEDIA:
if (bridge->device == 0x2806)
return true;
break;
}
return false;
}
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
static int rtw89_pci_cfg_dac(struct rtw89_dev *rtwdev, bool force)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
struct pci_dev *pdev = rtwpci->pdev;
int ret;
u8 val;
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
if (!rtwpci->enable_dac && !force)
return 0;
if (!rtw89_pci_chip_is_manual_dac(rtwdev))
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
return 0;
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
/* Configure DAC only via PCI config API, not DBI interfaces */
ret = pci_read_config_byte(pdev, RTW89_PCIE_L1_CTRL, &val);
if (ret)
return ret;
val |= RTW89_PCIE_BIT_EN_64BITS;
return pci_write_config_byte(pdev, RTW89_PCIE_L1_CTRL, val);
}
static int rtw89_pci_setup_mapping(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
unsigned long resource_len;
u8 bar_id = 2;
int ret;
ret = pci_request_regions(pdev, KBUILD_MODNAME);
if (ret) {
rtw89_err(rtwdev, "failed to request pci regions\n");
goto err;
}
if (!rtw89_pci_is_dac_compatible_bridge(rtwdev))
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
goto try_dac_done;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(36));
if (!ret) {
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
ret = rtw89_pci_cfg_dac(rtwdev, true);
if (!ret) {
rtwpci->enable_dac = true;
goto try_dac_done;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
rtw89_err(rtwdev,
"failed to set dma and consistent mask to 32/36-bit\n");
goto err_release_regions;
}
}
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
try_dac_done:
resource_len = pci_resource_len(pdev, bar_id);
rtwpci->mmap = pci_iomap(pdev, bar_id, resource_len);
if (!rtwpci->mmap) {
rtw89_err(rtwdev, "failed to map pci io\n");
ret = -EIO;
goto err_release_regions;
}
return 0;
err_release_regions:
pci_release_regions(pdev);
err:
return ret;
}
static void rtw89_pci_clear_mapping(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
if (rtwpci->mmap) {
pci_iounmap(pdev, rtwpci->mmap);
pci_release_regions(pdev);
}
}
static void rtw89_pci_free_tx_wd_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_tx_ring *tx_ring)
{
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
u8 *head = wd_ring->head;
dma_addr_t dma = wd_ring->dma;
u32 page_size = wd_ring->page_size;
u32 page_num = wd_ring->page_num;
u32 ring_sz = page_size * page_num;
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
wd_ring->head = NULL;
}
static void rtw89_pci_free_tx_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_tx_ring *tx_ring)
{
int ring_sz;
u8 *head;
dma_addr_t dma;
head = tx_ring->bd_ring.head;
dma = tx_ring->bd_ring.dma;
ring_sz = tx_ring->bd_ring.desc_size * tx_ring->bd_ring.len;
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
tx_ring->bd_ring.head = NULL;
}
static void rtw89_pci_free_tx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
struct rtw89_pci_tx_ring *tx_ring;
int i;
for (i = 0; i < RTW89_TXCH_NUM; i++) {
if (info->tx_dma_ch_mask & BIT(i))
continue;
tx_ring = &rtwpci->tx_rings[i];
rtw89_pci_free_tx_wd_ring(rtwdev, pdev, tx_ring);
rtw89_pci_free_tx_ring(rtwdev, pdev, tx_ring);
}
}
static void rtw89_pci_free_rx_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_rx_ring *rx_ring)
{
struct rtw89_pci_rx_info *rx_info;
struct sk_buff *skb;
dma_addr_t dma;
u32 buf_sz;
u8 *head;
int ring_sz = rx_ring->bd_ring.desc_size * rx_ring->bd_ring.len;
int i;
buf_sz = rx_ring->buf_sz;
for (i = 0; i < rx_ring->bd_ring.len; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
rx_info = RTW89_PCI_RX_SKB_CB(skb);
dma = rx_info->dma;
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_ring->buf[i] = NULL;
}
head = rx_ring->bd_ring.head;
dma = rx_ring->bd_ring.dma;
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
rx_ring->bd_ring.head = NULL;
}
static void rtw89_pci_free_rx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_rx_ring *rx_ring;
int i;
for (i = 0; i < RTW89_RXCH_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
rtw89_pci_free_rx_ring(rtwdev, pdev, rx_ring);
}
}
static void rtw89_pci_free_trx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
rtw89_pci_free_rx_rings(rtwdev, pdev);
rtw89_pci_free_tx_rings(rtwdev, pdev);
}
static int rtw89_pci_init_rx_bd(struct rtw89_dev *rtwdev, struct pci_dev *pdev,
struct rtw89_pci_rx_ring *rx_ring,
struct sk_buff *skb, int buf_sz, u32 idx)
{
struct rtw89_pci_rx_info *rx_info;
struct rtw89_pci_rx_bd_32 *rx_bd;
dma_addr_t dma;
if (!skb)
return -EINVAL;
dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, dma))
return -EBUSY;
rx_info = RTW89_PCI_RX_SKB_CB(skb);
rx_bd = RTW89_PCI_RX_BD(rx_ring, idx);
memset(rx_bd, 0, sizeof(*rx_bd));
rx_bd->buf_size = cpu_to_le16(buf_sz);
rx_bd->dma = cpu_to_le32(dma);
rx_bd->opt = le16_encode_bits(upper_32_bits(dma), RTW89_PCI_RXBD_OPT_DMA_HI);
rx_info->dma = dma;
return 0;
}
static int rtw89_pci_alloc_tx_wd_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_tx_ring *tx_ring,
enum rtw89_tx_channel txch)
{
struct rtw89_pci_tx_wd_ring *wd_ring = &tx_ring->wd_ring;
struct rtw89_pci_tx_wd *txwd;
dma_addr_t dma;
dma_addr_t cur_paddr;
u8 *head;
u8 *cur_vaddr;
u32 page_size = RTW89_PCI_TXWD_PAGE_SIZE;
u32 page_num = RTW89_PCI_TXWD_NUM_MAX;
u32 ring_sz = page_size * page_num;
u32 page_offset;
int i;
/* FWCMD queue doesn't use txwd as pages */
if (txch == RTW89_TXCH_CH12)
return 0;
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head)
return -ENOMEM;
INIT_LIST_HEAD(&wd_ring->free_pages);
wd_ring->head = head;
wd_ring->dma = dma;
wd_ring->page_size = page_size;
wd_ring->page_num = page_num;
page_offset = 0;
for (i = 0; i < page_num; i++) {
txwd = &wd_ring->pages[i];
cur_paddr = dma + page_offset;
cur_vaddr = head + page_offset;
skb_queue_head_init(&txwd->queue);
INIT_LIST_HEAD(&txwd->list);
txwd->paddr = cur_paddr;
txwd->vaddr = cur_vaddr;
txwd->len = page_size;
txwd->seq = i;
rtw89_pci_enqueue_txwd(tx_ring, txwd);
page_offset += page_size;
}
return 0;
}
static int rtw89_pci_alloc_tx_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_tx_ring *tx_ring,
u32 desc_size, u32 len,
enum rtw89_tx_channel txch)
{
const struct rtw89_pci_ch_dma_addr *txch_addr;
int ring_sz = desc_size * len;
u8 *head;
dma_addr_t dma;
int ret;
ret = rtw89_pci_alloc_tx_wd_ring(rtwdev, pdev, tx_ring, txch);
if (ret) {
rtw89_err(rtwdev, "failed to alloc txwd ring of txch %d\n", txch);
goto err;
}
ret = rtw89_pci_get_txch_addrs(rtwdev, txch, &txch_addr);
if (ret) {
rtw89_err(rtwdev, "failed to get address of txch %d", txch);
goto err_free_wd_ring;
}
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
ret = -ENOMEM;
goto err_free_wd_ring;
}
INIT_LIST_HEAD(&tx_ring->busy_pages);
tx_ring->bd_ring.head = head;
tx_ring->bd_ring.dma = dma;
tx_ring->bd_ring.len = len;
tx_ring->bd_ring.desc_size = desc_size;
tx_ring->bd_ring.addr = *txch_addr;
tx_ring->bd_ring.wp = 0;
tx_ring->bd_ring.rp = 0;
tx_ring->txch = txch;
return 0;
err_free_wd_ring:
rtw89_pci_free_tx_wd_ring(rtwdev, pdev, tx_ring);
err:
return ret;
}
static int rtw89_pci_alloc_tx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
struct rtw89_pci_tx_ring *tx_ring;
u32 desc_size;
u32 len;
u32 i, tx_allocated;
int ret;
for (i = 0; i < RTW89_TXCH_NUM; i++) {
if (info->tx_dma_ch_mask & BIT(i))
continue;
tx_ring = &rtwpci->tx_rings[i];
desc_size = sizeof(struct rtw89_pci_tx_bd_32);
len = RTW89_PCI_TXBD_NUM_MAX;
ret = rtw89_pci_alloc_tx_ring(rtwdev, pdev, tx_ring,
desc_size, len, i);
if (ret) {
rtw89_err(rtwdev, "failed to alloc tx ring %d\n", i);
goto err_free;
}
}
return 0;
err_free:
tx_allocated = i;
for (i = 0; i < tx_allocated; i++) {
tx_ring = &rtwpci->tx_rings[i];
rtw89_pci_free_tx_ring(rtwdev, pdev, tx_ring);
}
return ret;
}
static int rtw89_pci_alloc_rx_ring(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
struct rtw89_pci_rx_ring *rx_ring,
u32 desc_size, u32 len, u32 rxch)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_ch_dma_addr *rxch_addr;
struct sk_buff *skb;
u8 *head;
dma_addr_t dma;
int ring_sz = desc_size * len;
int buf_sz = RTW89_PCI_RX_BUF_SIZE;
int i, allocated;
int ret;
ret = rtw89_pci_get_rxch_addrs(rtwdev, rxch, &rxch_addr);
if (ret) {
rtw89_err(rtwdev, "failed to get address of rxch %d", rxch);
return ret;
}
head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
if (!head) {
ret = -ENOMEM;
goto err;
}
rx_ring->bd_ring.head = head;
rx_ring->bd_ring.dma = dma;
rx_ring->bd_ring.len = len;
rx_ring->bd_ring.desc_size = desc_size;
rx_ring->bd_ring.addr = *rxch_addr;
if (info->rx_ring_eq_is_full)
rx_ring->bd_ring.wp = len - 1;
else
rx_ring->bd_ring.wp = 0;
rx_ring->bd_ring.rp = 0;
rx_ring->buf_sz = buf_sz;
rx_ring->diliver_skb = NULL;
rx_ring->diliver_desc.ready = false;
rx_ring->target_rx_tag = 0;
for (i = 0; i < len; i++) {
skb = dev_alloc_skb(buf_sz);
if (!skb) {
ret = -ENOMEM;
goto err_free;
}
memset(skb->data, 0, buf_sz);
rx_ring->buf[i] = skb;
ret = rtw89_pci_init_rx_bd(rtwdev, pdev, rx_ring, skb,
buf_sz, i);
if (ret) {
rtw89_err(rtwdev, "failed to init rx buf %d\n", i);
dev_kfree_skb_any(skb);
rx_ring->buf[i] = NULL;
goto err_free;
}
}
return 0;
err_free:
allocated = i;
for (i = 0; i < allocated; i++) {
skb = rx_ring->buf[i];
if (!skb)
continue;
dma = *((dma_addr_t *)skb->cb);
dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb(skb);
rx_ring->buf[i] = NULL;
}
head = rx_ring->bd_ring.head;
dma = rx_ring->bd_ring.dma;
dma_free_coherent(&pdev->dev, ring_sz, head, dma);
rx_ring->bd_ring.head = NULL;
err:
return ret;
}
static int rtw89_pci_alloc_rx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct rtw89_pci_rx_ring *rx_ring;
u32 desc_size;
u32 len;
int i, rx_allocated;
int ret;
for (i = 0; i < RTW89_RXCH_NUM; i++) {
rx_ring = &rtwpci->rx_rings[i];
desc_size = sizeof(struct rtw89_pci_rx_bd_32);
len = RTW89_PCI_RXBD_NUM_MAX;
ret = rtw89_pci_alloc_rx_ring(rtwdev, pdev, rx_ring,
desc_size, len, i);
if (ret) {
rtw89_err(rtwdev, "failed to alloc rx ring %d\n", i);
goto err_free;
}
}
return 0;
err_free:
rx_allocated = i;
for (i = 0; i < rx_allocated; i++) {
rx_ring = &rtwpci->rx_rings[i];
rtw89_pci_free_rx_ring(rtwdev, pdev, rx_ring);
}
return ret;
}
static int rtw89_pci_alloc_trx_rings(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
int ret;
ret = rtw89_pci_alloc_tx_rings(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to alloc dma tx rings\n");
goto err;
}
ret = rtw89_pci_alloc_rx_rings(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to alloc dma rx rings\n");
goto err_free_tx_rings;
}
return 0;
err_free_tx_rings:
rtw89_pci_free_tx_rings(rtwdev, pdev);
err:
return ret;
}
static void rtw89_pci_h2c_init(struct rtw89_dev *rtwdev,
struct rtw89_pci *rtwpci)
{
skb_queue_head_init(&rtwpci->h2c_queue);
skb_queue_head_init(&rtwpci->h2c_release_queue);
}
static int rtw89_pci_setup_resource(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
int ret;
ret = rtw89_pci_setup_mapping(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to setup pci mapping\n");
goto err;
}
ret = rtw89_pci_alloc_trx_rings(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to alloc pci trx rings\n");
goto err_pci_unmap;
}
rtw89_pci_h2c_init(rtwdev, rtwpci);
spin_lock_init(&rtwpci->irq_lock);
spin_lock_init(&rtwpci->trx_lock);
return 0;
err_pci_unmap:
rtw89_pci_clear_mapping(rtwdev, pdev);
err:
return ret;
}
static void rtw89_pci_clear_resource(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtw89_pci_free_trx_rings(rtwdev, pdev);
rtw89_pci_clear_mapping(rtwdev, pdev);
rtw89_pci_release_fwcmd(rtwdev, rtwpci,
skb_queue_len(&rtwpci->h2c_queue), true);
}
void rtw89_pci_config_intr_mask(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_chip_info *chip = rtwdev->chip;
u32 hs0isr_ind_int_en = B_AX_HS0ISR_IND_INT_EN;
if (chip->chip_id == RTL8851B)
hs0isr_ind_int_en = B_AX_HS0ISR_IND_INT_EN_WKARND;
rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | 0;
if (rtwpci->under_recovery) {
rtwpci->intrs[0] = hs0isr_ind_int_en;
rtwpci->intrs[1] = 0;
} else {
rtwpci->intrs[0] = B_AX_TXDMA_STUCK_INT_EN |
B_AX_RXDMA_INT_EN |
B_AX_RXP1DMA_INT_EN |
B_AX_RPQDMA_INT_EN |
B_AX_RXDMA_STUCK_INT_EN |
B_AX_RDU_INT_EN |
B_AX_RPQBD_FULL_INT_EN |
hs0isr_ind_int_en;
rtwpci->intrs[1] = B_AX_HC10ISR_IND_INT_EN;
}
}
EXPORT_SYMBOL(rtw89_pci_config_intr_mask);
static void rtw89_pci_recovery_intr_mask_v1(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_AX_HS0ISR_IND_INT_EN;
rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = 0;
rtwpci->intrs[1] = 0;
}
static void rtw89_pci_default_intr_mask_v1(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_AX_HCI_AXIDMA_INT_EN |
B_AX_HS1ISR_IND_INT_EN |
B_AX_HS0ISR_IND_INT_EN;
rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = B_AX_TXDMA_STUCK_INT_EN |
B_AX_RXDMA_INT_EN |
B_AX_RXP1DMA_INT_EN |
B_AX_RPQDMA_INT_EN |
B_AX_RXDMA_STUCK_INT_EN |
B_AX_RDU_INT_EN |
B_AX_RPQBD_FULL_INT_EN;
rtwpci->intrs[1] = B_AX_GPIO18_INT_EN;
}
static void rtw89_pci_low_power_intr_mask_v1(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_AX_HS1ISR_IND_INT_EN |
B_AX_HS0ISR_IND_INT_EN;
rtwpci->halt_c2h_intrs = B_AX_HALT_C2H_INT_EN | B_AX_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = 0;
rtwpci->intrs[1] = B_AX_GPIO18_INT_EN;
}
void rtw89_pci_config_intr_mask_v1(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
if (rtwpci->under_recovery)
rtw89_pci_recovery_intr_mask_v1(rtwdev);
else if (rtwpci->low_power)
rtw89_pci_low_power_intr_mask_v1(rtwdev);
else
rtw89_pci_default_intr_mask_v1(rtwdev);
}
EXPORT_SYMBOL(rtw89_pci_config_intr_mask_v1);
static void rtw89_pci_recovery_intr_mask_v2(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_BE_HS0_IND_INT_EN0;
rtwpci->halt_c2h_intrs = B_BE_HALT_C2H_INT_EN | B_BE_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = 0;
rtwpci->intrs[1] = 0;
}
static void rtw89_pci_default_intr_mask_v2(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_BE_HCI_AXIDMA_INT_EN0 |
B_BE_HS0_IND_INT_EN0;
rtwpci->halt_c2h_intrs = B_BE_HALT_C2H_INT_EN | B_BE_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = B_BE_RDU_CH1_INT_IMR_V1 |
B_BE_RDU_CH0_INT_IMR_V1;
rtwpci->intrs[1] = B_BE_PCIE_RX_RX0P2_IMR0_V1 |
B_BE_PCIE_RX_RPQ0_IMR0_V1;
}
static void rtw89_pci_low_power_intr_mask_v2(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
rtwpci->ind_intrs = B_BE_HS0_IND_INT_EN0 |
B_BE_HS1_IND_INT_EN0;
rtwpci->halt_c2h_intrs = B_BE_HALT_C2H_INT_EN | B_BE_WDT_TIMEOUT_INT_EN;
rtwpci->intrs[0] = 0;
rtwpci->intrs[1] = B_BE_PCIE_RX_RX0P2_IMR0_V1 |
B_BE_PCIE_RX_RPQ0_IMR0_V1;
}
void rtw89_pci_config_intr_mask_v2(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
if (rtwpci->under_recovery)
rtw89_pci_recovery_intr_mask_v2(rtwdev);
else if (rtwpci->low_power)
rtw89_pci_low_power_intr_mask_v2(rtwdev);
else
rtw89_pci_default_intr_mask_v2(rtwdev);
}
EXPORT_SYMBOL(rtw89_pci_config_intr_mask_v2);
static int rtw89_pci_request_irq(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
unsigned long flags = 0;
int ret;
flags |= PCI_IRQ_INTX | PCI_IRQ_MSI;
ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
if (ret < 0) {
rtw89_err(rtwdev, "failed to alloc irq vectors, ret %d\n", ret);
goto err;
}
ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
rtw89_pci_interrupt_handler,
rtw89_pci_interrupt_threadfn,
IRQF_SHARED, KBUILD_MODNAME, rtwdev);
if (ret) {
rtw89_err(rtwdev, "failed to request threaded irq\n");
goto err_free_vector;
}
rtw89_chip_config_intr_mask(rtwdev, RTW89_PCI_INTR_MASK_RESET);
return 0;
err_free_vector:
pci_free_irq_vectors(pdev);
err:
return ret;
}
static void rtw89_pci_free_irq(struct rtw89_dev *rtwdev,
struct pci_dev *pdev)
{
devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
pci_free_irq_vectors(pdev);
}
static u16 gray_code_to_bin(u16 gray_code)
{
u16 binary = gray_code;
while (gray_code) {
gray_code >>= 1;
binary ^= gray_code;
}
return binary;
}
static int rtw89_pci_filter_out(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u16 val16, filter_out_val;
u32 val, phy_offset;
int ret;
if (rtwdev->chip->chip_id != RTL8852C)
return 0;
val = rtw89_read32_mask(rtwdev, R_AX_PCIE_MIX_CFG_V1, B_AX_ASPM_CTRL_MASK);
if (val == B_AX_ASPM_CTRL_L1)
return 0;
ret = pci_read_config_dword(pdev, RTW89_PCIE_L1_STS_V1, &val);
if (ret)
return ret;
val = FIELD_GET(RTW89_BCFG_LINK_SPEED_MASK, val);
if (val == RTW89_PCIE_GEN1_SPEED) {
phy_offset = R_RAC_DIRECT_OFFSET_G1;
} else if (val == RTW89_PCIE_GEN2_SPEED) {
phy_offset = R_RAC_DIRECT_OFFSET_G2;
val16 = rtw89_read16(rtwdev, phy_offset + RAC_ANA10 * RAC_MULT);
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA10 * RAC_MULT,
val16 | B_PCIE_BIT_PINOUT_DIS);
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA19 * RAC_MULT,
val16 & ~B_PCIE_BIT_RD_SEL);
val16 = rtw89_read16_mask(rtwdev,
phy_offset + RAC_ANA1F * RAC_MULT,
FILTER_OUT_EQ_MASK);
val16 = gray_code_to_bin(val16);
filter_out_val = rtw89_read16(rtwdev, phy_offset + RAC_ANA24 *
RAC_MULT);
filter_out_val &= ~REG_FILTER_OUT_MASK;
filter_out_val |= FIELD_PREP(REG_FILTER_OUT_MASK, val16);
rtw89_write16(rtwdev, phy_offset + RAC_ANA24 * RAC_MULT,
filter_out_val);
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA0A * RAC_MULT,
B_BAC_EQ_SEL);
rtw89_write16_set(rtwdev,
R_RAC_DIRECT_OFFSET_G1 + RAC_ANA0C * RAC_MULT,
B_PCIE_BIT_PSAVE);
} else {
return -EOPNOTSUPP;
}
rtw89_write16_set(rtwdev, phy_offset + RAC_ANA0C * RAC_MULT,
B_PCIE_BIT_PSAVE);
return 0;
}
static void rtw89_pci_clkreq_set(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
if (rtw89_pci_disable_clkreq)
return;
gen_def->clkreq_set(rtwdev, enable);
}
static void rtw89_pci_clkreq_set_ax(struct rtw89_dev *rtwdev, bool enable)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
int ret;
ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_CLK_CTRL,
PCIE_CLKDLY_HW_30US);
if (ret)
rtw89_err(rtwdev, "failed to set CLKREQ Delay\n");
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
if (enable)
ret = rtw89_pci_config_byte_set(rtwdev,
RTW89_PCIE_L1_CTRL,
RTW89_PCIE_BIT_CLK);
else
ret = rtw89_pci_config_byte_clr(rtwdev,
RTW89_PCIE_L1_CTRL,
RTW89_PCIE_BIT_CLK);
if (ret)
rtw89_err(rtwdev, "failed to %s CLKREQ_L1, ret=%d",
enable ? "set" : "unset", ret);
} else if (chip_id == RTL8852C) {
rtw89_write32_set(rtwdev, R_AX_PCIE_LAT_CTRL,
B_AX_CLK_REQ_SEL_OPT | B_AX_CLK_REQ_SEL);
if (enable)
rtw89_write32_set(rtwdev, R_AX_L1_CLK_CTRL,
B_AX_CLK_REQ_N);
else
rtw89_write32_clr(rtwdev, R_AX_L1_CLK_CTRL,
B_AX_CLK_REQ_N);
}
}
static void rtw89_pci_aspm_set(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
if (rtw89_pci_disable_aspm_l1)
return;
gen_def->aspm_set(rtwdev, enable);
}
static void rtw89_pci_aspm_set_ax(struct rtw89_dev *rtwdev, bool enable)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
u8 value = 0;
int ret;
ret = rtw89_pci_read_config_byte(rtwdev, RTW89_PCIE_ASPM_CTRL, &value);
if (ret)
rtw89_warn(rtwdev, "failed to read ASPM Delay\n");
u8p_replace_bits(&value, PCIE_L1DLY_16US, RTW89_L1DLY_MASK);
u8p_replace_bits(&value, PCIE_L0SDLY_4US, RTW89_L0DLY_MASK);
ret = rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_ASPM_CTRL, value);
if (ret)
rtw89_warn(rtwdev, "failed to read ASPM Delay\n");
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
if (enable)
ret = rtw89_pci_config_byte_set(rtwdev,
RTW89_PCIE_L1_CTRL,
RTW89_PCIE_BIT_L1);
else
ret = rtw89_pci_config_byte_clr(rtwdev,
RTW89_PCIE_L1_CTRL,
RTW89_PCIE_BIT_L1);
} else if (chip_id == RTL8852C) {
if (enable)
rtw89_write32_set(rtwdev, R_AX_PCIE_MIX_CFG_V1,
B_AX_ASPM_CTRL_L1);
else
rtw89_write32_clr(rtwdev, R_AX_PCIE_MIX_CFG_V1,
B_AX_ASPM_CTRL_L1);
}
if (ret)
rtw89_err(rtwdev, "failed to %s ASPM L1, ret=%d",
enable ? "set" : "unset", ret);
}
static void rtw89_pci_recalc_int_mit(struct rtw89_dev *rtwdev)
{
enum rtw89_chip_gen chip_gen = rtwdev->chip->chip_gen;
const struct rtw89_pci_info *info = rtwdev->pci_info;
struct rtw89_traffic_stats *stats = &rtwdev->stats;
enum rtw89_tfc_lv tx_tfc_lv = stats->tx_tfc_lv;
enum rtw89_tfc_lv rx_tfc_lv = stats->rx_tfc_lv;
u32 val = 0;
if (rtwdev->scanning ||
(tx_tfc_lv < RTW89_TFC_HIGH && rx_tfc_lv < RTW89_TFC_HIGH))
goto out;
if (chip_gen == RTW89_CHIP_BE)
val = B_BE_PCIE_MIT_RX0P2_EN | B_BE_PCIE_MIT_RX0P1_EN;
else
val = B_AX_RXMIT_RXP2_SEL | B_AX_RXMIT_RXP1_SEL |
FIELD_PREP(B_AX_RXCOUNTER_MATCH_MASK, RTW89_PCI_RXBD_NUM_MAX / 2) |
FIELD_PREP(B_AX_RXTIMER_UNIT_MASK, AX_RXTIMER_UNIT_64US) |
FIELD_PREP(B_AX_RXTIMER_MATCH_MASK, 2048 / 64);
out:
rtw89_write32(rtwdev, info->mit_addr, val);
}
static void rtw89_pci_link_cfg(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u16 link_ctrl;
int ret;
/* Though there is standard PCIE configuration space to set the
* link control register, but by Realtek's design, driver should
* check if host supports CLKREQ/ASPM to enable the HW module.
*
* These functions are implemented by two HW modules associated,
* one is responsible to access PCIE configuration space to
* follow the host settings, and another is in charge of doing
* CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
* the host does not support it, and due to some reasons or wrong
* settings (ex. CLKREQ# not Bi-Direction), it could lead to device
* loss if HW misbehaves on the link.
*
* Hence it's designed that driver should first check the PCIE
* configuration space is sync'ed and enabled, then driver can turn
* on the other module that is actually working on the mechanism.
*/
ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
if (ret) {
rtw89_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
return;
}
if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
rtw89_pci_clkreq_set(rtwdev, true);
if (link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
rtw89_pci_aspm_set(rtwdev, true);
}
static void rtw89_pci_l1ss_set(struct rtw89_dev *rtwdev, bool enable)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
if (rtw89_pci_disable_l1ss)
return;
gen_def->l1ss_set(rtwdev, enable);
}
static void rtw89_pci_l1ss_set_ax(struct rtw89_dev *rtwdev, bool enable)
{
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
int ret;
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
if (enable)
ret = rtw89_pci_config_byte_set(rtwdev,
RTW89_PCIE_TIMER_CTRL,
RTW89_PCIE_BIT_L1SUB);
else
ret = rtw89_pci_config_byte_clr(rtwdev,
RTW89_PCIE_TIMER_CTRL,
RTW89_PCIE_BIT_L1SUB);
if (ret)
rtw89_err(rtwdev, "failed to %s L1SS, ret=%d",
enable ? "set" : "unset", ret);
} else if (chip_id == RTL8852C) {
ret = rtw89_pci_config_byte_clr(rtwdev, RTW89_PCIE_L1SS_STS_V1,
RTW89_PCIE_BIT_ASPM_L11 |
RTW89_PCIE_BIT_PCI_L11);
if (ret)
rtw89_warn(rtwdev, "failed to unset ASPM L1.1, ret=%d", ret);
if (enable)
rtw89_write32_clr(rtwdev, R_AX_PCIE_MIX_CFG_V1,
B_AX_L1SUB_DISABLE);
else
rtw89_write32_set(rtwdev, R_AX_PCIE_MIX_CFG_V1,
B_AX_L1SUB_DISABLE);
}
}
static void rtw89_pci_l1ss_cfg(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
u32 l1ss_cap_ptr, l1ss_ctrl;
if (rtw89_pci_disable_l1ss)
return;
l1ss_cap_ptr = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_L1SS);
if (!l1ss_cap_ptr)
return;
pci_read_config_dword(pdev, l1ss_cap_ptr + PCI_L1SS_CTL1, &l1ss_ctrl);
if (l1ss_ctrl & PCI_L1SS_CTL1_L1SS_MASK)
rtw89_pci_l1ss_set(rtwdev, true);
}
static void rtw89_pci_cpl_timeout_cfg(struct rtw89_dev *rtwdev)
{
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
struct pci_dev *pdev = rtwpci->pdev;
pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
}
static int rtw89_pci_poll_io_idle_ax(struct rtw89_dev *rtwdev)
{
int ret = 0;
u32 sts;
u32 busy = B_AX_PCIEIO_BUSY | B_AX_PCIEIO_TX_BUSY | B_AX_PCIEIO_RX_BUSY;
ret = read_poll_timeout_atomic(rtw89_read32, sts, (sts & busy) == 0x0,
10, 1000, false, rtwdev,
R_AX_PCIE_DMA_BUSY1);
if (ret) {
rtw89_err(rtwdev, "pci dmach busy1 0x%X\n",
rtw89_read32(rtwdev, R_AX_PCIE_DMA_BUSY1));
return -EINVAL;
}
return ret;
}
static int rtw89_pci_lv1rst_stop_dma_ax(struct rtw89_dev *rtwdev)
{
u32 val;
int ret;
if (rtwdev->chip->chip_id == RTL8852C)
return 0;
rtw89_pci_ctrl_dma_all(rtwdev, false);
ret = rtw89_pci_poll_io_idle_ax(rtwdev);
if (ret) {
val = rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG);
rtw89_debug(rtwdev, RTW89_DBG_HCI,
"[PCIe] poll_io_idle fail, before 0x%08x: 0x%08x\n",
R_AX_DBG_ERR_FLAG, val);
if (val & B_AX_TX_STUCK || val & B_AX_PCIE_TXBD_LEN0)
rtw89_mac_ctrl_hci_dma_tx(rtwdev, false);
if (val & B_AX_RX_STUCK)
rtw89_mac_ctrl_hci_dma_rx(rtwdev, false);
rtw89_mac_ctrl_hci_dma_trx(rtwdev, true);
ret = rtw89_pci_poll_io_idle_ax(rtwdev);
val = rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG);
rtw89_debug(rtwdev, RTW89_DBG_HCI,
"[PCIe] poll_io_idle fail, after 0x%08x: 0x%08x\n",
R_AX_DBG_ERR_FLAG, val);
}
return ret;
}
static int rtw89_pci_lv1rst_start_dma_ax(struct rtw89_dev *rtwdev)
{
u32 ret;
if (rtwdev->chip->chip_id == RTL8852C)
return 0;
rtw89_mac_ctrl_hci_dma_trx(rtwdev, false);
rtw89_mac_ctrl_hci_dma_trx(rtwdev, true);
rtw89_pci_clr_idx_all(rtwdev);
ret = rtw89_pci_rst_bdram_ax(rtwdev);
if (ret)
return ret;
rtw89_pci_ctrl_dma_all(rtwdev, true);
return ret;
}
static int rtw89_pci_ops_mac_lv1_recovery(struct rtw89_dev *rtwdev,
enum rtw89_lv1_rcvy_step step)
{
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
int ret;
switch (step) {
case RTW89_LV1_RCVY_STEP_1:
ret = gen_def->lv1rst_stop_dma(rtwdev);
if (ret)
rtw89_err(rtwdev, "lv1 rcvy pci stop dma fail\n");
break;
case RTW89_LV1_RCVY_STEP_2:
ret = gen_def->lv1rst_start_dma(rtwdev);
if (ret)
rtw89_err(rtwdev, "lv1 rcvy pci start dma fail\n");
break;
default:
return -EINVAL;
}
return ret;
}
static void rtw89_pci_ops_dump_err_status(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_gen == RTW89_CHIP_BE)
return;
if (rtwdev->chip->chip_id == RTL8852C) {
rtw89_info(rtwdev, "R_AX_DBG_ERR_FLAG=0x%08x\n",
rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG_V1));
rtw89_info(rtwdev, "R_AX_LBC_WATCHDOG=0x%08x\n",
rtw89_read32(rtwdev, R_AX_LBC_WATCHDOG_V1));
} else {
rtw89_info(rtwdev, "R_AX_RPQ_RXBD_IDX =0x%08x\n",
rtw89_read32(rtwdev, R_AX_RPQ_RXBD_IDX));
rtw89_info(rtwdev, "R_AX_DBG_ERR_FLAG=0x%08x\n",
rtw89_read32(rtwdev, R_AX_DBG_ERR_FLAG));
rtw89_info(rtwdev, "R_AX_LBC_WATCHDOG=0x%08x\n",
rtw89_read32(rtwdev, R_AX_LBC_WATCHDOG));
}
}
static int rtw89_pci_napi_poll(struct napi_struct *napi, int budget)
{
struct rtw89_dev *rtwdev = container_of(napi, struct rtw89_dev, napi);
struct rtw89_pci *rtwpci = (struct rtw89_pci *)rtwdev->priv;
const struct rtw89_pci_info *info = rtwdev->pci_info;
const struct rtw89_pci_gen_def *gen_def = info->gen_def;
unsigned long flags;
int work_done;
rtwdev->napi_budget_countdown = budget;
rtw89_write32(rtwdev, gen_def->isr_clear_rpq.addr, gen_def->isr_clear_rpq.data);
work_done = rtw89_pci_poll_rpq_dma(rtwdev, rtwpci, rtwdev->napi_budget_countdown);
if (work_done == budget)
return budget;
rtw89_write32(rtwdev, gen_def->isr_clear_rxq.addr, gen_def->isr_clear_rxq.data);
work_done += rtw89_pci_poll_rxq_dma(rtwdev, rtwpci, rtwdev->napi_budget_countdown);
if (work_done < budget && napi_complete_done(napi, work_done)) {
spin_lock_irqsave(&rtwpci->irq_lock, flags);
if (likely(rtwpci->running))
rtw89_chip_enable_intr(rtwdev, rtwpci);
spin_unlock_irqrestore(&rtwpci->irq_lock, flags);
}
return work_done;
}
static
void rtw89_check_pci_ssid_quirks(struct rtw89_dev *rtwdev,
struct pci_dev *pdev,
const struct rtw89_pci_ssid_quirk *ssid_quirks)
{
int i;
if (!ssid_quirks)
return;
for (i = 0; i < 200; i++, ssid_quirks++) {
if (ssid_quirks->vendor == 0 && ssid_quirks->device == 0)
break;
if (ssid_quirks->vendor != pdev->vendor ||
ssid_quirks->device != pdev->device ||
ssid_quirks->subsystem_vendor != pdev->subsystem_vendor ||
ssid_quirks->subsystem_device != pdev->subsystem_device)
continue;
bitmap_or(rtwdev->quirks, rtwdev->quirks, &ssid_quirks->bitmap,
NUM_OF_RTW89_QUIRKS);
rtwdev->custid = ssid_quirks->custid;
break;
}
rtw89_debug(rtwdev, RTW89_DBG_HCI, "quirks=%*ph custid=%d\n",
(int)sizeof(rtwdev->quirks), rtwdev->quirks, rtwdev->custid);
}
static int __maybe_unused rtw89_pci_suspend(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw89_dev *rtwdev = hw->priv;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6);
rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_R_DIS_PRST);
rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6);
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
rtw89_write32_clr(rtwdev, R_AX_SYS_SDIO_CTRL,
B_AX_PCIE_DIS_L2_CTRL_LDO_HCI);
rtw89_write32_set(rtwdev, R_AX_PCIE_INIT_CFG1,
B_AX_PCIE_PERST_KEEP_REG | B_AX_PCIE_TRAIN_KEEP_REG);
} else {
rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1,
B_AX_CMAC_EXIT_L1_EN | B_AX_DMAC0_EXIT_L1_EN);
}
return 0;
}
static void rtw89_pci_l2_hci_ldo(struct rtw89_dev *rtwdev)
{
if (rtwdev->chip->chip_id == RTL8852C)
return;
/* Hardware need write the reg twice to ensure the setting work */
rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_RST_MSTATE,
RTW89_PCIE_BIT_CFG_RST_MSTATE);
rtw89_pci_write_config_byte(rtwdev, RTW89_PCIE_RST_MSTATE,
RTW89_PCIE_BIT_CFG_RST_MSTATE);
}
void rtw89_pci_basic_cfg(struct rtw89_dev *rtwdev, bool resume)
{
if (resume)
wifi: rtw89: pci: configure manual DAC mode via PCI config API only To support 36-bit DMA, configure chip proprietary bit via PCI config API or chip DBI interface. However, the PCI device mmap isn't set yet and the DBI is also inaccessible via mmap, so only if the bit can be accessible via PCI config API, chip can support 36-bit DMA. Otherwise, fallback to 32-bit DMA. With NULL mmap address, kernel throws trace: BUG: unable to handle page fault for address: 0000000000001090 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 71 Comm: irq/26-pciehp Tainted: G OE 6.14.2-061402-generic #202504101348 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE RIP: 0010:rtw89_pci_ops_write16+0x12/0x30 [rtw89_pci] RSP: 0018:ffffb0ffc0acf9d8 EFLAGS: 00010206 RAX: ffffffffc158f9c0 RBX: ffff94865e702020 RCX: 0000000000000000 RDX: 0000000000000718 RSI: 0000000000001090 RDI: ffff94865e702020 RBP: ffffb0ffc0acf9d8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000015 R13: 0000000000000719 R14: ffffb0ffc0acfa1f R15: ffffffffc1813060 FS: 0000000000000000(0000) GS:ffff9486f3480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000001090 CR3: 0000000090440001 CR4: 00000000000626f0 Call Trace: <TASK> rtw89_pci_read_config_byte+0x6d/0x120 [rtw89_pci] rtw89_pci_cfg_dac+0x5b/0xb0 [rtw89_pci] rtw89_pci_probe+0xa96/0xbd0 [rtw89_pci] ? __pfx___device_attach_driver+0x10/0x10 ? __pfx___device_attach_driver+0x10/0x10 local_pci_probe+0x47/0xa0 pci_call_probe+0x5d/0x190 pci_device_probe+0xa7/0x160 really_probe+0xf9/0x370 ? pm_runtime_barrier+0x55/0xa0 __driver_probe_device+0x8c/0x140 driver_probe_device+0x24/0xd0 __device_attach_driver+0xcd/0x170 bus_for_each_drv+0x99/0x100 __device_attach+0xb4/0x1d0 device_attach+0x10/0x20 pci_bus_add_device+0x59/0x90 pci_bus_add_devices+0x31/0x80 pciehp_configure_device+0xaa/0x170 pciehp_enable_slot+0xd6/0x240 pciehp_handle_presence_or_link_change+0xf1/0x180 pciehp_ist+0x162/0x1c0 irq_thread_fn+0x24/0x70 irq_thread+0xef/0x1c0 ? __pfx_irq_thread_fn+0x10/0x10 ? __pfx_irq_thread_dtor+0x10/0x10 ? __pfx_irq_thread+0x10/0x10 kthread+0xfc/0x230 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x47/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Fixes: 1fd4b3fe52ef ("wifi: rtw89: pci: support 36-bit PCI DMA address") Reported-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Closes: https://lore.kernel.org/linux-wireless/ccaf49b6-ff41-4917-90f1-f53cadaaa0da@gmail.com/T/#u Closes: https://github.com/openwrt/openwrt/issues/17025 Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/20250506015356.7995-1-pkshih@realtek.com
2025-05-06 09:53:56 +08:00
rtw89_pci_cfg_dac(rtwdev, false);
rtw89_pci_disable_eq(rtwdev);
rtw89_pci_filter_out(rtwdev);
rtw89_pci_cpl_timeout_cfg(rtwdev);
rtw89_pci_link_cfg(rtwdev);
rtw89_pci_l1ss_cfg(rtwdev);
}
static int __maybe_unused rtw89_pci_resume(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtw89_dev *rtwdev = hw->priv;
enum rtw89_core_chip_id chip_id = rtwdev->chip->chip_id;
rtw89_write32_set(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6);
rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_R_DIS_PRST);
rtw89_write32_clr(rtwdev, R_AX_RSV_CTRL, B_AX_WLOCK_1C_BIT6);
if (chip_id == RTL8852A || rtw89_is_rtl885xb(rtwdev)) {
rtw89_write32_set(rtwdev, R_AX_SYS_SDIO_CTRL,
B_AX_PCIE_DIS_L2_CTRL_LDO_HCI);
rtw89_write32_clr(rtwdev, R_AX_PCIE_INIT_CFG1,
B_AX_PCIE_PERST_KEEP_REG | B_AX_PCIE_TRAIN_KEEP_REG);
} else {
rtw89_write32_set(rtwdev, R_AX_PCIE_PS_CTRL_V1,
B_AX_CMAC_EXIT_L1_EN | B_AX_DMAC0_EXIT_L1_EN);
rtw89_write32_clr(rtwdev, R_AX_PCIE_PS_CTRL_V1,
B_AX_SEL_REQ_ENTR_L1);
}
rtw89_pci_l2_hci_ldo(rtwdev);
rtw89_pci_basic_cfg(rtwdev, true);
return 0;
}
SIMPLE_DEV_PM_OPS(rtw89_pm_ops, rtw89_pci_suspend, rtw89_pci_resume);
EXPORT_SYMBOL(rtw89_pm_ops);
static pci_ers_result_t rtw89_pci_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
netif_device_detach(netdev);
return PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t rtw89_pci_io_slot_reset(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw89_dev *rtwdev = hw->priv;
rtw89_ser_notify(rtwdev, MAC_AX_ERR_ASSERTION);
return PCI_ERS_RESULT_RECOVERED;
}
static void rtw89_pci_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
/* ack any pending wake events, disable PME */
pci_enable_wake(pdev, PCI_D0, 0);
netif_device_attach(netdev);
}
const struct pci_error_handlers rtw89_pci_err_handler = {
.error_detected = rtw89_pci_io_error_detected,
.slot_reset = rtw89_pci_io_slot_reset,
.resume = rtw89_pci_io_resume,
};
EXPORT_SYMBOL(rtw89_pci_err_handler);
const struct rtw89_pci_gen_def rtw89_pci_gen_ax = {
.isr_rdu = B_AX_RDU_INT,
.isr_halt_c2h = B_AX_HALT_C2H_INT_EN,
.isr_wdt_timeout = B_AX_WDT_TIMEOUT_INT_EN,
.isr_clear_rpq = {R_AX_PCIE_HISR00, B_AX_RPQDMA_INT | B_AX_RPQBD_FULL_INT},
.isr_clear_rxq = {R_AX_PCIE_HISR00, B_AX_RXP1DMA_INT | B_AX_RXDMA_INT |
B_AX_RDU_INT},
.mac_pre_init = rtw89_pci_ops_mac_pre_init_ax,
.mac_pre_deinit = rtw89_pci_ops_mac_pre_deinit_ax,
.mac_post_init = rtw89_pci_ops_mac_post_init_ax,
.clr_idx_all = rtw89_pci_clr_idx_all_ax,
.rst_bdram = rtw89_pci_rst_bdram_ax,
.lv1rst_stop_dma = rtw89_pci_lv1rst_stop_dma_ax,
.lv1rst_start_dma = rtw89_pci_lv1rst_start_dma_ax,
.ctrl_txdma_ch = rtw89_pci_ctrl_txdma_ch_ax,
.ctrl_txdma_fw_ch = rtw89_pci_ctrl_txdma_fw_ch_ax,
.poll_txdma_ch_idle = rtw89_pci_poll_txdma_ch_idle_ax,
.aspm_set = rtw89_pci_aspm_set_ax,
.clkreq_set = rtw89_pci_clkreq_set_ax,
.l1ss_set = rtw89_pci_l1ss_set_ax,
.disable_eq = rtw89_pci_disable_eq_ax,
.power_wake = rtw89_pci_power_wake_ax,
};
EXPORT_SYMBOL(rtw89_pci_gen_ax);
static const struct rtw89_hci_ops rtw89_pci_ops = {
.tx_write = rtw89_pci_ops_tx_write,
.tx_kick_off = rtw89_pci_ops_tx_kick_off,
.flush_queues = rtw89_pci_ops_flush_queues,
.reset = rtw89_pci_ops_reset,
.start = rtw89_pci_ops_start,
.stop = rtw89_pci_ops_stop,
.pause = rtw89_pci_ops_pause,
.switch_mode = rtw89_pci_ops_switch_mode,
.recalc_int_mit = rtw89_pci_recalc_int_mit,
.read8 = rtw89_pci_ops_read8,
.read16 = rtw89_pci_ops_read16,
.read32 = rtw89_pci_ops_read32,
.write8 = rtw89_pci_ops_write8,
.write16 = rtw89_pci_ops_write16,
.write32 = rtw89_pci_ops_write32,
.mac_pre_init = rtw89_pci_ops_mac_pre_init,
.mac_pre_deinit = rtw89_pci_ops_mac_pre_deinit,
.mac_post_init = rtw89_pci_ops_mac_post_init,
.deinit = rtw89_pci_ops_deinit,
.check_and_reclaim_tx_resource = rtw89_pci_check_and_reclaim_tx_resource,
.mac_lv1_rcvy = rtw89_pci_ops_mac_lv1_recovery,
.dump_err_status = rtw89_pci_ops_dump_err_status,
.napi_poll = rtw89_pci_napi_poll,
.recovery_start = rtw89_pci_ops_recovery_start,
.recovery_complete = rtw89_pci_ops_recovery_complete,
.ctrl_txdma_ch = rtw89_pci_ctrl_txdma_ch,
.ctrl_txdma_fw_ch = rtw89_pci_ctrl_txdma_fw_ch,
.ctrl_trxhci = rtw89_pci_ctrl_dma_trx,
.poll_txdma_ch_idle = rtw89_pci_poll_txdma_ch_idle,
.clr_idx_all = rtw89_pci_clr_idx_all,
.clear = rtw89_pci_clear_resource,
.disable_intr = rtw89_pci_disable_intr_lock,
.enable_intr = rtw89_pci_enable_intr_lock,
.rst_bdram = rtw89_pci_reset_bdram,
};
rtw89: extract modules by chipset We are planning to support more chipsets, e.g. 8852C. Before that, we consider architecutre to handle multiple kinds of chipsets. Obviosuly, based on original design, rtw89_core module will have large size even if there is only one chipset under running. It is because all chipset related things are put in rtw89_core now. To reduce such overhead, we extract modules of rtw89 and adjust dependencies between modules. The following assumes that 8852AE, 8852AU, and 8852CE are all supported, we describe the difference before and after extraction. [Before extraction] ------------- |------------------------------------ | rtw89_usb | V ------------- --------------------------------------- ------------- | rtw89_core (including 8852A, 8852C) | <--- | rtw89_pci | --------------------------------------- ------------- The data of 8852A and 8852C are built in rtw89_core. And rtw89_pci is the entry of 8852AE and 8852CE. And rtw89_usb is the entry of 8852AU. [After extraction] ------------- ---------------- |----------- | rtw89_usb | <-------- | rtw89_8852au | | ------------- ---------------- V --------------- | -------------- | | <--------------- | rtw89_core | <--- | rtw89_8852a | -------------- | | <--------------- ^ ^ --------------- | | | ------------- ---------------- | | | | <-------- | rtw89_8852ae | | |----------- | rtw89_pci | ---------------- | | | <----------------- | ------------- | | --------------- ---------------- |--------------- | rtw89_8852c | <------ | rtw89_8852ce | --------------- ---------------- The data of 8852A/8852C is extracted to rtw89_8852a/rtw89_8852c. And rtw89_pci/rtw89_usb handles only common flow of pci/usb bus. Finally, 8852AE, 8852AU, and 8852CE have individual entry modules, i.e. rtw89_8852ae, rtw89_8852au, and rtw89_8852ce correspondingly. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20211221025828.25092-1-pkshih@realtek.com
2021-12-21 10:58:28 +08:00
int rtw89_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct rtw89_dev *rtwdev;
rtw89: extract modules by chipset We are planning to support more chipsets, e.g. 8852C. Before that, we consider architecutre to handle multiple kinds of chipsets. Obviosuly, based on original design, rtw89_core module will have large size even if there is only one chipset under running. It is because all chipset related things are put in rtw89_core now. To reduce such overhead, we extract modules of rtw89 and adjust dependencies between modules. The following assumes that 8852AE, 8852AU, and 8852CE are all supported, we describe the difference before and after extraction. [Before extraction] ------------- |------------------------------------ | rtw89_usb | V ------------- --------------------------------------- ------------- | rtw89_core (including 8852A, 8852C) | <--- | rtw89_pci | --------------------------------------- ------------- The data of 8852A and 8852C are built in rtw89_core. And rtw89_pci is the entry of 8852AE and 8852CE. And rtw89_usb is the entry of 8852AU. [After extraction] ------------- ---------------- |----------- | rtw89_usb | <-------- | rtw89_8852au | | ------------- ---------------- V --------------- | -------------- | | <--------------- | rtw89_core | <--- | rtw89_8852a | -------------- | | <--------------- ^ ^ --------------- | | | ------------- ---------------- | | | | <-------- | rtw89_8852ae | | |----------- | rtw89_pci | ---------------- | | | <----------------- | ------------- | | --------------- ---------------- |--------------- | rtw89_8852c | <------ | rtw89_8852ce | --------------- ---------------- The data of 8852A/8852C is extracted to rtw89_8852a/rtw89_8852c. And rtw89_pci/rtw89_usb handles only common flow of pci/usb bus. Finally, 8852AE, 8852AU, and 8852CE have individual entry modules, i.e. rtw89_8852ae, rtw89_8852au, and rtw89_8852ce correspondingly. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20211221025828.25092-1-pkshih@realtek.com
2021-12-21 10:58:28 +08:00
const struct rtw89_driver_info *info;
const struct rtw89_pci_info *pci_info;
int ret;
info = (const struct rtw89_driver_info *)id->driver_data;
rtwdev = rtw89_alloc_ieee80211_hw(&pdev->dev,
sizeof(struct rtw89_pci),
info->chip, info->variant);
if (!rtwdev) {
dev_err(&pdev->dev, "failed to allocate hw\n");
return -ENOMEM;
}
pci_info = info->bus.pci;
rtwdev->pci_info = info->bus.pci;
rtwdev->hci.ops = &rtw89_pci_ops;
rtwdev->hci.type = RTW89_HCI_TYPE_PCIE;
rtwdev->hci.dle_type = RTW89_HCI_DLE_TYPE_PCIE;
rtwdev->hci.rpwm_addr = pci_info->rpwm_addr;
rtwdev->hci.cpwm_addr = pci_info->cpwm_addr;
rtw89_check_quirks(rtwdev, info->quirks);
rtw89_check_pci_ssid_quirks(rtwdev, pdev, pci_info->ssid_quirks);
SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
ret = rtw89_core_init(rtwdev);
if (ret) {
rtw89_err(rtwdev, "failed to initialise core\n");
goto err_release_hw;
}
ret = rtw89_pci_claim_device(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to claim pci device\n");
goto err_core_deinit;
}
ret = rtw89_pci_setup_resource(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to setup pci resource\n");
goto err_declaim_pci;
}
ret = rtw89_chip_info_setup(rtwdev);
if (ret) {
rtw89_err(rtwdev, "failed to setup chip information\n");
goto err_clear_resource;
}
rtw89_pci_basic_cfg(rtwdev, false);
ret = rtw89_core_napi_init(rtwdev);
if (ret) {
rtw89_err(rtwdev, "failed to init napi\n");
goto err_clear_resource;
}
ret = rtw89_pci_request_irq(rtwdev, pdev);
if (ret) {
rtw89_err(rtwdev, "failed to request pci irq\n");
wifi: rtw89: fix potential race condition between napi_init and napi_enable A race condition can happen if netdev is registered, but NAPI isn't initialized yet, and meanwhile user space starts the netdev that will enable NAPI. Then, it hits BUG_ON(): kernel BUG at net/core/dev.c:6423! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 417 Comm: iwd Not tainted 6.2.7-slab-dirty #3 eb0f5a8a9d91 Hardware name: LENOVO 21DL/LNVNB161216, BIOS JPCN20WW(V1.06) 09/20/2022 RIP: 0010:napi_enable+0x3f/0x50 Code: 48 89 c2 48 83 e2 f6 f6 81 89 08 00 00 02 74 0d 48 83 ... RSP: 0018:ffffada1414f3548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa01425802080 RCX: 0000000000000000 RDX: 00000000000002ff RSI: ffffada14e50c614 RDI: ffffa01425808dc0 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000100 R12: ffffa01425808f58 R13: 0000000000000000 R14: ffffa01423498940 R15: 0000000000000001 FS: 00007f5577c0a740(0000) GS:ffffa0169fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5577a19972 CR3: 0000000125a7a000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> rtw89_pci_ops_start+0x1c/0x70 [rtw89_pci 6cbc75429515c181cbc386478d5cfb32ffc5a0f8] rtw89_core_start+0xbe/0x160 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] rtw89_ops_start+0x26/0x40 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] drv_start+0x42/0x100 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_do_open+0x311/0x7d0 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_open+0x6a/0x90 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] __dev_open+0xe0/0x180 __dev_change_flags+0x1da/0x250 dev_change_flags+0x26/0x70 do_setlink+0x37c/0x12c0 ? ep_poll_callback+0x246/0x290 ? __nla_validate_parse+0x61/0xd00 ? __wake_up_common_lock+0x8f/0xd0 To fix this, follow Jonas' suggestion to switch the order of these functions and move register netdev to be the last step of PCI probe. Also, correct the error handling of rtw89_core_register_hw(). Fixes: e3ec7017f6a2 ("rtw89: add Realtek 802.11ax driver") Cc: stable@vger.kernel.org Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Link: https://lore.kernel.org/linux-wireless/CAOiHx=n7EwK2B9CnBR07FVA=sEzFagb8TkS4XC_qBNq8OwcYUg@mail.gmail.com/T/#t Suggested-by: Jonas Gorski <jonas.gorski@gmail.com> Tested-by: Larry Finger<Larry.Finger@lwfinger.net> Reviewed-by: Larry Finger<Larry.Finger@lwfinger.net> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230323082839.20474-1-pkshih@realtek.com
2023-03-23 16:28:39 +08:00
goto err_deinit_napi;
}
ret = rtw89_core_register(rtwdev);
if (ret) {
rtw89_err(rtwdev, "failed to register core\n");
goto err_free_irq;
}
set_bit(RTW89_FLAG_PROBE_DONE, rtwdev->flags);
return 0;
wifi: rtw89: fix potential race condition between napi_init and napi_enable A race condition can happen if netdev is registered, but NAPI isn't initialized yet, and meanwhile user space starts the netdev that will enable NAPI. Then, it hits BUG_ON(): kernel BUG at net/core/dev.c:6423! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 417 Comm: iwd Not tainted 6.2.7-slab-dirty #3 eb0f5a8a9d91 Hardware name: LENOVO 21DL/LNVNB161216, BIOS JPCN20WW(V1.06) 09/20/2022 RIP: 0010:napi_enable+0x3f/0x50 Code: 48 89 c2 48 83 e2 f6 f6 81 89 08 00 00 02 74 0d 48 83 ... RSP: 0018:ffffada1414f3548 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa01425802080 RCX: 0000000000000000 RDX: 00000000000002ff RSI: ffffada14e50c614 RDI: ffffa01425808dc0 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000100 R12: ffffa01425808f58 R13: 0000000000000000 R14: ffffa01423498940 R15: 0000000000000001 FS: 00007f5577c0a740(0000) GS:ffffa0169fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5577a19972 CR3: 0000000125a7a000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> rtw89_pci_ops_start+0x1c/0x70 [rtw89_pci 6cbc75429515c181cbc386478d5cfb32ffc5a0f8] rtw89_core_start+0xbe/0x160 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] rtw89_ops_start+0x26/0x40 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22] drv_start+0x42/0x100 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_do_open+0x311/0x7d0 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] ieee80211_open+0x6a/0x90 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2] __dev_open+0xe0/0x180 __dev_change_flags+0x1da/0x250 dev_change_flags+0x26/0x70 do_setlink+0x37c/0x12c0 ? ep_poll_callback+0x246/0x290 ? __nla_validate_parse+0x61/0xd00 ? __wake_up_common_lock+0x8f/0xd0 To fix this, follow Jonas' suggestion to switch the order of these functions and move register netdev to be the last step of PCI probe. Also, correct the error handling of rtw89_core_register_hw(). Fixes: e3ec7017f6a2 ("rtw89: add Realtek 802.11ax driver") Cc: stable@vger.kernel.org Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com> Link: https://lore.kernel.org/linux-wireless/CAOiHx=n7EwK2B9CnBR07FVA=sEzFagb8TkS4XC_qBNq8OwcYUg@mail.gmail.com/T/#t Suggested-by: Jonas Gorski <jonas.gorski@gmail.com> Tested-by: Larry Finger<Larry.Finger@lwfinger.net> Reviewed-by: Larry Finger<Larry.Finger@lwfinger.net> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230323082839.20474-1-pkshih@realtek.com
2023-03-23 16:28:39 +08:00
err_free_irq:
rtw89_pci_free_irq(rtwdev, pdev);
err_deinit_napi:
rtw89_core_napi_deinit(rtwdev);
err_clear_resource:
rtw89_pci_clear_resource(rtwdev, pdev);
err_declaim_pci:
rtw89_pci_declaim_device(rtwdev, pdev);
err_core_deinit:
rtw89_core_deinit(rtwdev);
err_release_hw:
rtw89_free_ieee80211_hw(rtwdev);
return ret;
}
rtw89: extract modules by chipset We are planning to support more chipsets, e.g. 8852C. Before that, we consider architecutre to handle multiple kinds of chipsets. Obviosuly, based on original design, rtw89_core module will have large size even if there is only one chipset under running. It is because all chipset related things are put in rtw89_core now. To reduce such overhead, we extract modules of rtw89 and adjust dependencies between modules. The following assumes that 8852AE, 8852AU, and 8852CE are all supported, we describe the difference before and after extraction. [Before extraction] ------------- |------------------------------------ | rtw89_usb | V ------------- --------------------------------------- ------------- | rtw89_core (including 8852A, 8852C) | <--- | rtw89_pci | --------------------------------------- ------------- The data of 8852A and 8852C are built in rtw89_core. And rtw89_pci is the entry of 8852AE and 8852CE. And rtw89_usb is the entry of 8852AU. [After extraction] ------------- ---------------- |----------- | rtw89_usb | <-------- | rtw89_8852au | | ------------- ---------------- V --------------- | -------------- | | <--------------- | rtw89_core | <--- | rtw89_8852a | -------------- | | <--------------- ^ ^ --------------- | | | ------------- ---------------- | | | | <-------- | rtw89_8852ae | | |----------- | rtw89_pci | ---------------- | | | <----------------- | ------------- | | --------------- ---------------- |--------------- | rtw89_8852c | <------ | rtw89_8852ce | --------------- ---------------- The data of 8852A/8852C is extracted to rtw89_8852a/rtw89_8852c. And rtw89_pci/rtw89_usb handles only common flow of pci/usb bus. Finally, 8852AE, 8852AU, and 8852CE have individual entry modules, i.e. rtw89_8852ae, rtw89_8852au, and rtw89_8852ce correspondingly. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20211221025828.25092-1-pkshih@realtek.com
2021-12-21 10:58:28 +08:00
EXPORT_SYMBOL(rtw89_pci_probe);
rtw89: extract modules by chipset We are planning to support more chipsets, e.g. 8852C. Before that, we consider architecutre to handle multiple kinds of chipsets. Obviosuly, based on original design, rtw89_core module will have large size even if there is only one chipset under running. It is because all chipset related things are put in rtw89_core now. To reduce such overhead, we extract modules of rtw89 and adjust dependencies between modules. The following assumes that 8852AE, 8852AU, and 8852CE are all supported, we describe the difference before and after extraction. [Before extraction] ------------- |------------------------------------ | rtw89_usb | V ------------- --------------------------------------- ------------- | rtw89_core (including 8852A, 8852C) | <--- | rtw89_pci | --------------------------------------- ------------- The data of 8852A and 8852C are built in rtw89_core. And rtw89_pci is the entry of 8852AE and 8852CE. And rtw89_usb is the entry of 8852AU. [After extraction] ------------- ---------------- |----------- | rtw89_usb | <-------- | rtw89_8852au | | ------------- ---------------- V --------------- | -------------- | | <--------------- | rtw89_core | <--- | rtw89_8852a | -------------- | | <--------------- ^ ^ --------------- | | | ------------- ---------------- | | | | <-------- | rtw89_8852ae | | |----------- | rtw89_pci | ---------------- | | | <----------------- | ------------- | | --------------- ---------------- |--------------- | rtw89_8852c | <------ | rtw89_8852ce | --------------- ---------------- The data of 8852A/8852C is extracted to rtw89_8852a/rtw89_8852c. And rtw89_pci/rtw89_usb handles only common flow of pci/usb bus. Finally, 8852AE, 8852AU, and 8852CE have individual entry modules, i.e. rtw89_8852ae, rtw89_8852au, and rtw89_8852ce correspondingly. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20211221025828.25092-1-pkshih@realtek.com
2021-12-21 10:58:28 +08:00
void rtw89_pci_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtw89_dev *rtwdev;
rtwdev = hw->priv;
rtw89_pci_free_irq(rtwdev, pdev);
rtw89_core_napi_deinit(rtwdev);
rtw89_core_unregister(rtwdev);
rtw89_pci_clear_resource(rtwdev, pdev);
rtw89_pci_declaim_device(rtwdev, pdev);
rtw89_core_deinit(rtwdev);
rtw89_free_ieee80211_hw(rtwdev);
}
rtw89: extract modules by chipset We are planning to support more chipsets, e.g. 8852C. Before that, we consider architecutre to handle multiple kinds of chipsets. Obviosuly, based on original design, rtw89_core module will have large size even if there is only one chipset under running. It is because all chipset related things are put in rtw89_core now. To reduce such overhead, we extract modules of rtw89 and adjust dependencies between modules. The following assumes that 8852AE, 8852AU, and 8852CE are all supported, we describe the difference before and after extraction. [Before extraction] ------------- |------------------------------------ | rtw89_usb | V ------------- --------------------------------------- ------------- | rtw89_core (including 8852A, 8852C) | <--- | rtw89_pci | --------------------------------------- ------------- The data of 8852A and 8852C are built in rtw89_core. And rtw89_pci is the entry of 8852AE and 8852CE. And rtw89_usb is the entry of 8852AU. [After extraction] ------------- ---------------- |----------- | rtw89_usb | <-------- | rtw89_8852au | | ------------- ---------------- V --------------- | -------------- | | <--------------- | rtw89_core | <--- | rtw89_8852a | -------------- | | <--------------- ^ ^ --------------- | | | ------------- ---------------- | | | | <-------- | rtw89_8852ae | | |----------- | rtw89_pci | ---------------- | | | <----------------- | ------------- | | --------------- ---------------- |--------------- | rtw89_8852c | <------ | rtw89_8852ce | --------------- ---------------- The data of 8852A/8852C is extracted to rtw89_8852a/rtw89_8852c. And rtw89_pci/rtw89_usb handles only common flow of pci/usb bus. Finally, 8852AE, 8852AU, and 8852CE have individual entry modules, i.e. rtw89_8852ae, rtw89_8852au, and rtw89_8852ce correspondingly. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20211221025828.25092-1-pkshih@realtek.com
2021-12-21 10:58:28 +08:00
EXPORT_SYMBOL(rtw89_pci_remove);
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek PCI 802.11ax wireless driver");
MODULE_LICENSE("Dual BSD/GPL");