linux/drivers/net/wireless/realtek/rtw88/main.c

2489 lines
65 KiB
C
Raw Permalink Normal View History

rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2018-2019 Realtek Corporation
*/
#include <linux/devcoredump.h>
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#include "main.h"
#include "regd.h"
#include "fw.h"
#include "ps.h"
#include "sec.h"
#include "mac.h"
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
#include "coex.h"
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#include "phy.h"
#include "reg.h"
#include "efuse.h"
#include "tx.h"
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#include "debug.h"
#include "bf.h"
#include "sar.h"
#include "sdio.h"
#include "led.h"
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
bool rtw_disable_lps_deep_mode;
EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
bool rtw_bf_support = true;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
unsigned int rtw_debug_mask;
EXPORT_SYMBOL(rtw_debug_mask);
/* EDCCA is enabled during normal behavior. For debugging purpose in
* a noisy environment, it can be disabled via edcca debugfs. Because
* all rtw88 devices will probably be affected if environment is noisy,
* rtw_edcca_enabled is just declared by driver instead of by device.
* So, turning it off will take effect for all rtw88 devices before
* there is a tough reason to maintain rtw_edcca_enabled by device.
*/
bool rtw_edcca_enabled = true;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
module_param_named(support_bf, rtw_bf_support, bool, 0644);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
MODULE_PARM_DESC(debug_mask, "Debugging mask");
static struct ieee80211_channel rtw_channeltable_2g[] = {
{.center_freq = 2412, .hw_value = 1,},
{.center_freq = 2417, .hw_value = 2,},
{.center_freq = 2422, .hw_value = 3,},
{.center_freq = 2427, .hw_value = 4,},
{.center_freq = 2432, .hw_value = 5,},
{.center_freq = 2437, .hw_value = 6,},
{.center_freq = 2442, .hw_value = 7,},
{.center_freq = 2447, .hw_value = 8,},
{.center_freq = 2452, .hw_value = 9,},
{.center_freq = 2457, .hw_value = 10,},
{.center_freq = 2462, .hw_value = 11,},
{.center_freq = 2467, .hw_value = 12,},
{.center_freq = 2472, .hw_value = 13,},
{.center_freq = 2484, .hw_value = 14,},
};
static struct ieee80211_channel rtw_channeltable_5g[] = {
{.center_freq = 5180, .hw_value = 36,},
{.center_freq = 5200, .hw_value = 40,},
{.center_freq = 5220, .hw_value = 44,},
{.center_freq = 5240, .hw_value = 48,},
{.center_freq = 5260, .hw_value = 52,},
{.center_freq = 5280, .hw_value = 56,},
{.center_freq = 5300, .hw_value = 60,},
{.center_freq = 5320, .hw_value = 64,},
{.center_freq = 5500, .hw_value = 100,},
{.center_freq = 5520, .hw_value = 104,},
{.center_freq = 5540, .hw_value = 108,},
{.center_freq = 5560, .hw_value = 112,},
{.center_freq = 5580, .hw_value = 116,},
{.center_freq = 5600, .hw_value = 120,},
{.center_freq = 5620, .hw_value = 124,},
{.center_freq = 5640, .hw_value = 128,},
{.center_freq = 5660, .hw_value = 132,},
{.center_freq = 5680, .hw_value = 136,},
{.center_freq = 5700, .hw_value = 140,},
{.center_freq = 5720, .hw_value = 144,},
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{.center_freq = 5745, .hw_value = 149,},
{.center_freq = 5765, .hw_value = 153,},
{.center_freq = 5785, .hw_value = 157,},
{.center_freq = 5805, .hw_value = 161,},
{.center_freq = 5825, .hw_value = 165,
.flags = IEEE80211_CHAN_NO_HT40MINUS},
};
static struct ieee80211_rate rtw_ratetable[] = {
{.bitrate = 10, .hw_value = 0x00,},
{.bitrate = 20, .hw_value = 0x01,},
{.bitrate = 55, .hw_value = 0x02,},
{.bitrate = 110, .hw_value = 0x03,},
{.bitrate = 60, .hw_value = 0x04,},
{.bitrate = 90, .hw_value = 0x05,},
{.bitrate = 120, .hw_value = 0x06,},
{.bitrate = 180, .hw_value = 0x07,},
{.bitrate = 240, .hw_value = 0x08,},
{.bitrate = 360, .hw_value = 0x09,},
{.bitrate = 480, .hw_value = 0x0a,},
{.bitrate = 540, .hw_value = 0x0b,},
};
static const struct ieee80211_iface_limit rtw_iface_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_STATION),
},
{
.max = 1,
.types = BIT(NL80211_IFTYPE_AP),
}
};
static const struct ieee80211_iface_combination rtw_iface_combs[] = {
{
.limits = rtw_iface_limits,
.n_limits = ARRAY_SIZE(rtw_iface_limits),
.max_interfaces = 2,
.num_different_channels = 1,
}
};
u16 rtw_desc_to_bitrate(u8 desc_rate)
{
struct ieee80211_rate rate;
if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
return 0;
rate = rtw_ratetable[desc_rate];
return rate.bitrate;
}
static const struct ieee80211_supported_band rtw_band_2ghz = {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
.band = NL80211_BAND_2GHZ,
.channels = rtw_channeltable_2g,
.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
.bitrates = rtw_ratetable,
.n_bitrates = ARRAY_SIZE(rtw_ratetable),
.ht_cap = {0},
.vht_cap = {0},
};
static const struct ieee80211_supported_band rtw_band_5ghz = {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
.band = NL80211_BAND_5GHZ,
.channels = rtw_channeltable_5g,
.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
/* 5G has no CCK rates */
.bitrates = rtw_ratetable + 4,
.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
.ht_cap = {0},
.vht_cap = {0},
};
struct rtw_watch_dog_iter_data {
struct rtw_dev *rtwdev;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_vif *rtwvif;
};
static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
{
struct rtw_bf_info *bf_info = &rtwdev->bf_info;
u8 fix_rate_enable = 0;
u8 new_csi_rate_idx;
if (rtwvif->bfee.role != RTW_BFEE_SU &&
rtwvif->bfee.role != RTW_BFEE_MU)
return;
rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
bf_info->cur_csi_rpt_rate,
fix_rate_enable, &new_csi_rate_idx);
if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
}
static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
struct rtw_watch_dog_iter_data *iter_data = data;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
if (vif->type == NL80211_IFTYPE_STATION)
if (vif->cfg.assoc)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
iter_data->rtwvif = rtwvif;
rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtwvif->stats.tx_unicast = 0;
rtwvif->stats.rx_unicast = 0;
rtwvif->stats.tx_cnt = 0;
rtwvif->stats.rx_cnt = 0;
}
static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif, int received_beacons)
{
int watchdog_delay = 2000000 / 1024; /* TU */
int beacon_int, expected_beacons;
if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif)
return;
beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int;
expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int);
rtwdev->beacon_loss = received_beacons < expected_beacons / 2;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
/* process TX/RX statistics periodically for hardware,
* the information helps hardware to enhance performance
*/
static void rtw_watch_dog_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
watch_dog_work.work);
struct rtw_traffic_stats *stats = &rtwdev->stats;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_watch_dog_iter_data data = {};
bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt;
u32 tx_unicast_mbps, rx_unicast_mbps;
bool ps_active;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
mutex_lock(&rtwdev->mutex);
if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
goto unlock;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
else
clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
rtw_coex_wl_status_change_notify(rtwdev, 0);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
stats->rx_cnt > RTW_LPS_THRESHOLD)
ps_active = true;
else
ps_active = false;
tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT;
rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT;
ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps);
ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps);
stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
/* reset tx/rx statictics */
stats->tx_unicast = 0;
stats->rx_unicast = 0;
stats->tx_cnt = 0;
stats->rx_cnt = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
goto unlock;
/* make sure BB/RF is working for dynamic mech */
rtw_leave_lps(rtwdev);
rtw_coex_wl_status_check(rtwdev);
rtw_coex_query_bt_hid_list(rtwdev);
rtw_coex_active_query_bt_info(rtwdev);
rtw_phy_dynamic_mechanism(rtwdev);
rtw_hci_dynamic_rx_agg(rtwdev,
tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1);
data.rtwdev = rtwdev;
/* rtw_iterate_vifs internally uses an atomic iterator which is needed
* to avoid taking local->iflist_mtx mutex
*/
rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
/* fw supports only one station associated to enter lps, if there are
* more than two stations associated to the AP, then we can not enter
* lps, because fw does not handle the overlapped beacon interval
*
* rtw_recalc_lps() iterate vifs and determine if driver can enter
* ps by vif->type and vif->cfg.ps, all we need to do here is to
* get that vif and check if device is having traffic more than the
* threshold.
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
*/
if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
!rtwdev->beacon_loss && !rtwdev->ap_active)
rtw_enter_lps(rtwdev, data.rtwvif->port);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtwdev->watch_dog_cnt++;
unlock:
mutex_unlock(&rtwdev->mutex);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static void rtw_c2h_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
struct sk_buff *skb, *tmp;
skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
skb_unlink(skb, &rtwdev->c2h_queue);
rtw_fw_c2h_cmd_handle(rtwdev, skb);
dev_kfree_skb_any(skb);
}
}
static void rtw_ips_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
mutex_lock(&rtwdev->mutex);
if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
rtw_enter_ips(rtwdev);
mutex_unlock(&rtwdev->mutex);
}
wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK> Cc: stable@vger.kernel.org Fixes: c1edc86472fc ("rtw88: add ieee80211:sta_rc_update ops") Reported-by: Larry Finger <Larry.Finger@lwfinger.net> Link: https://lore.kernel.org/linux-wireless/f1e31e8e-f84e-3791-50fb-663a83c5c6e9@lwfinger.net/T/#t Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230508085429.46653-1-pkshih@realtek.com
2023-05-08 16:54:29 +08:00
static void rtw_sta_rc_work(struct work_struct *work)
{
struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
rc_work);
struct rtw_dev *rtwdev = si->rtwdev;
mutex_lock(&rtwdev->mutex);
rtw_update_sta_info(rtwdev, si, true);
mutex_unlock(&rtwdev->mutex);
}
int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
struct ieee80211_vif *vif)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
int i;
if (vif->type == NL80211_IFTYPE_STATION && !sta->tdls) {
si->mac_id = rtwvif->mac_id;
} else {
si->mac_id = rtw_acquire_macid(rtwdev);
if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
return -ENOSPC;
}
wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK> Cc: stable@vger.kernel.org Fixes: c1edc86472fc ("rtw88: add ieee80211:sta_rc_update ops") Reported-by: Larry Finger <Larry.Finger@lwfinger.net> Link: https://lore.kernel.org/linux-wireless/f1e31e8e-f84e-3791-50fb-663a83c5c6e9@lwfinger.net/T/#t Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230508085429.46653-1-pkshih@realtek.com
2023-05-08 16:54:29 +08:00
si->rtwdev = rtwdev;
si->sta = sta;
si->vif = vif;
si->init_ra_lv = 1;
ewma_rssi_init(&si->avg_rssi);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
rtw_txq_init(rtwdev, sta->txq[i]);
wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK> Cc: stable@vger.kernel.org Fixes: c1edc86472fc ("rtw88: add ieee80211:sta_rc_update ops") Reported-by: Larry Finger <Larry.Finger@lwfinger.net> Link: https://lore.kernel.org/linux-wireless/f1e31e8e-f84e-3791-50fb-663a83c5c6e9@lwfinger.net/T/#t Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230508085429.46653-1-pkshih@realtek.com
2023-05-08 16:54:29 +08:00
INIT_WORK(&si->rc_work, rtw_sta_rc_work);
rtw_update_sta_info(rtwdev, si, true);
rtw_fw_media_status_report(rtwdev, si->mac_id, true);
rtwdev->sta_cnt++;
rtwdev->beacon_loss = false;
rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
sta->addr, si->mac_id);
return 0;
}
void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
bool fw_exist)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
struct ieee80211_vif *vif = si->vif;
int i;
wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK> Cc: stable@vger.kernel.org Fixes: c1edc86472fc ("rtw88: add ieee80211:sta_rc_update ops") Reported-by: Larry Finger <Larry.Finger@lwfinger.net> Link: https://lore.kernel.org/linux-wireless/f1e31e8e-f84e-3791-50fb-663a83c5c6e9@lwfinger.net/T/#t Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Larry Finger <Larry.Finger@lwfinger.net> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20230508085429.46653-1-pkshih@realtek.com
2023-05-08 16:54:29 +08:00
cancel_work_sync(&si->rc_work);
if (vif->type != NL80211_IFTYPE_STATION || sta->tdls)
rtw_release_macid(rtwdev, si->mac_id);
if (fw_exist)
rtw_fw_media_status_report(rtwdev, si->mac_id, false);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
rtw_txq_cleanup(rtwdev, sta->txq[i]);
kfree(si->mask);
rtwdev->sta_cnt--;
rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
sta->addr, si->mac_id);
}
struct rtw_fwcd_hdr {
u32 item;
u32 size;
u32 padding1;
u32 padding2;
} __packed;
static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
u8 i;
if (segs) {
prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
for (i = 0; i < segs->num; i++)
prep_size += segs->segs[i];
}
desc->data = vmalloc(prep_size);
if (!desc->data)
return -ENOMEM;
desc->size = prep_size;
desc->next = desc->data;
return 0;
}
static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
struct rtw_fwcd_hdr *hdr;
u8 *next;
if (!desc->data) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
return NULL;
}
next = desc->next + sizeof(struct rtw_fwcd_hdr);
if (next - desc->data + size > desc->size) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
return NULL;
}
hdr = (struct rtw_fwcd_hdr *)(desc->next);
hdr->item = item;
hdr->size = size;
hdr->padding1 = 0x01234567;
hdr->padding2 = 0x89abcdef;
desc->next = next + size;
return next;
}
static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
/* Data will be freed after lifetime of device coredump. After calling
* dev_coredump, data is supposed to be handled by the device coredump
* framework. Note that a new dump will be discarded if a previous one
* hasn't been released yet.
*/
dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
}
static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
{
struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
if (free_self) {
rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
vfree(desc->data);
}
desc->data = NULL;
desc->next = NULL;
}
static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
{
u32 size = rtwdev->chip->fw_rxff_size;
u32 *buf;
u8 seq;
buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
if (!buf)
return -ENOMEM;
if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
return -EINVAL;
}
if (GET_FW_DUMP_LEN(buf) == 0) {
rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
return -EINVAL;
}
seq = GET_FW_DUMP_SEQ(buf);
if (seq > 0) {
rtw_dbg(rtwdev, RTW_DBG_FW,
"fw crash dump's seq is wrong: %d\n", seq);
return -EINVAL;
}
return 0;
}
int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
u32 fwcd_item)
{
u32 rxff = rtwdev->chip->fw_rxff_size;
u32 dump_size, done_size = 0;
u8 *buf;
int ret;
buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
if (!buf)
return -ENOMEM;
while (size) {
dump_size = size > rxff ? rxff : size;
ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
dump_size);
if (ret) {
rtw_err(rtwdev,
"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
ocp_src, done_size);
return ret;
}
ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
dump_size, (u32 *)(buf + done_size));
if (ret) {
rtw_err(rtwdev,
"dump fw 0x%x [+0x%x] from fw fifo fail\n",
ocp_src, done_size);
return ret;
}
size -= dump_size;
done_size += dump_size;
}
return 0;
}
EXPORT_SYMBOL(rtw_dump_fw);
int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
{
u8 *buf;
u32 i;
if (addr & 0x3) {
WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
return -EINVAL;
}
buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
if (!buf)
return -ENOMEM;
for (i = 0; i < size; i += 4)
*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
return 0;
}
EXPORT_SYMBOL(rtw_dump_reg);
void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
struct ieee80211_bss_conf *conf)
{
struct ieee80211_vif *vif = NULL;
if (conf)
vif = container_of(conf, struct ieee80211_vif, bss_conf);
if (conf && vif->cfg.assoc) {
rtwvif->aid = vif->cfg.aid;
rtwvif->net_type = RTW_NET_MGD_LINKED;
} else {
rtwvif->aid = 0;
rtwvif->net_type = RTW_NET_NO_LINK;
}
}
static void rtw_reset_key_iter(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
struct rtw_sec_desc *sec = &rtwdev->sec;
rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
}
static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
if (rtwdev->sta_cnt == 0) {
rtw_warn(rtwdev, "sta count before reset should not be 0\n");
return;
}
rtw_sta_remove(rtwdev, sta, false);
}
static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
rtw_bf_disassoc(rtwdev, vif, NULL);
rtw_vif_assoc_changed(rtwvif, NULL);
rtw_txq_cleanup(rtwdev, vif->txq);
rtw_release_macid(rtwdev, rtwvif->mac_id);
}
void rtw_fw_recovery(struct rtw_dev *rtwdev)
{
if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
}
EXPORT_SYMBOL(rtw_fw_recovery);
static void __fw_recovery_work(struct rtw_dev *rtwdev)
{
int ret = 0;
set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
ret = rtw_fwcd_prep(rtwdev);
if (ret)
goto free;
ret = rtw_fw_dump_crash_log(rtwdev);
if (ret)
goto free;
ret = rtw_chip_dump_fw_crash(rtwdev);
if (ret)
goto free;
rtw_fwcd_dump(rtwdev);
free:
rtw_fwcd_free(rtwdev, !!ret);
rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
WARN(1, "firmware crash, start reset and recover\n");
rcu_read_lock();
rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
rcu_read_unlock();
rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
rtw_enter_ips(rtwdev);
}
static void rtw_fw_recovery_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
fw_recovery_work);
mutex_lock(&rtwdev->mutex);
__fw_recovery_work(rtwdev);
mutex_unlock(&rtwdev->mutex);
ieee80211_restart_hw(rtwdev->hw);
}
struct rtw_txq_ba_iter_data {
};
static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
{
struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
int ret;
u8 tid;
tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
while (tid != IEEE80211_NUM_TIDS) {
clear_bit(tid, si->tid_ba);
ret = ieee80211_start_tx_ba_session(sta, tid, 0);
if (ret == -EINVAL) {
struct ieee80211_txq *txq;
struct rtw_txq *rtwtxq;
txq = sta->txq[tid];
rtwtxq = (struct rtw_txq *)txq->drv_priv;
set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
}
tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
}
}
static void rtw_txq_ba_work(struct work_struct *work)
{
struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
struct rtw_txq_ba_iter_data data;
rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
}
void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
{
if (IS_CH_2G_BAND(channel))
pkt_stat->band = NL80211_BAND_2GHZ;
else if (IS_CH_5G_BAND(channel))
pkt_stat->band = NL80211_BAND_5GHZ;
else
return;
pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
}
EXPORT_SYMBOL(rtw_set_rx_freq_band);
void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
{
rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
}
void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
u8 primary_channel, enum rtw_supported_band band,
enum rtw_bandwidth bandwidth)
{
enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
struct rtw_hal *hal = &rtwdev->hal;
u8 *cch_by_bw = hal->cch_by_bw;
u32 center_freq, primary_freq;
enum rtw_sar_bands sar_band;
u8 primary_channel_idx;
center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
/* assign the center channel used while 20M bw is selected */
cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
/* assign the center channel used while current bw is selected */
cch_by_bw[bandwidth] = center_channel;
switch (bandwidth) {
case RTW_CHANNEL_WIDTH_20:
default:
primary_channel_idx = RTW_SC_DONT_CARE;
break;
case RTW_CHANNEL_WIDTH_40:
if (primary_freq > center_freq)
primary_channel_idx = RTW_SC_20_UPPER;
else
primary_channel_idx = RTW_SC_20_LOWER;
break;
case RTW_CHANNEL_WIDTH_80:
if (primary_freq > center_freq) {
if (primary_freq - center_freq == 10)
primary_channel_idx = RTW_SC_20_UPPER;
else
primary_channel_idx = RTW_SC_20_UPMOST;
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
} else {
if (center_freq - primary_freq == 10)
primary_channel_idx = RTW_SC_20_LOWER;
else
primary_channel_idx = RTW_SC_20_LOWEST;
/* assign the center channel used
* while 40M bw is selected
*/
cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
}
break;
}
switch (center_channel) {
case 1 ... 14:
sar_band = RTW_SAR_BAND_0;
break;
case 36 ... 64:
sar_band = RTW_SAR_BAND_1;
break;
case 100 ... 144:
sar_band = RTW_SAR_BAND_3;
break;
case 149 ... 177:
sar_band = RTW_SAR_BAND_4;
break;
default:
WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
sar_band = RTW_SAR_BAND_0;
break;
}
hal->current_primary_channel_index = primary_channel_idx;
hal->current_band_width = bandwidth;
hal->primary_channel = primary_channel;
hal->current_channel = center_channel;
hal->current_band_type = band;
hal->sar_band = sar_band;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
struct rtw_channel_params *chan_params)
{
struct ieee80211_channel *channel = chandef->chan;
enum nl80211_chan_width width = chandef->width;
u32 primary_freq, center_freq;
u8 center_chan;
u8 bandwidth = RTW_CHANNEL_WIDTH_20;
center_chan = channel->hw_value;
primary_freq = channel->center_freq;
center_freq = chandef->center_freq1;
switch (width) {
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bandwidth = RTW_CHANNEL_WIDTH_20;
break;
case NL80211_CHAN_WIDTH_40:
bandwidth = RTW_CHANNEL_WIDTH_40;
if (primary_freq > center_freq)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan -= 2;
else
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan += 2;
break;
case NL80211_CHAN_WIDTH_80:
bandwidth = RTW_CHANNEL_WIDTH_80;
if (primary_freq > center_freq) {
if (primary_freq - center_freq == 10)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan -= 2;
else
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan -= 6;
} else {
if (center_freq - primary_freq == 10)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan += 2;
else
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
center_chan += 6;
}
break;
default:
center_chan = 0;
break;
}
chan_params->center_chan = center_chan;
chan_params->bandwidth = bandwidth;
chan_params->primary_chan = channel->hw_value;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
void rtw_set_channel(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct ieee80211_hw *hw = rtwdev->hw;
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_channel_params ch_param;
u8 center_chan, primary_chan, bandwidth, band;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_get_channel_params(&hw->conf.chandef, &ch_param);
if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
return;
center_chan = ch_param.center_chan;
primary_chan = ch_param.primary_chan;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
bandwidth = ch_param.bandwidth;
band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
if (rtwdev->scan_info.op_chan)
rtw_store_op_chan(rtwdev, true);
chip->ops->set_channel(rtwdev, center_chan, bandwidth,
hal->current_primary_channel_index);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
if (hal->current_band_type == RTW_BAND_5G) {
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
} else {
if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
else
rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_phy_set_tx_power_level(rtwdev, center_chan);
/* if the channel isn't set for scanning, we will do RF calibration
* in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
* during scanning on each channel takes too long.
*/
if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
rtwdev->need_rfk = true;
}
void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (rtwdev->need_rfk) {
rtwdev->need_rfk = false;
chip->ops->phy_calibration(rtwdev);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
{
int i;
for (i = 0; i < ETH_ALEN; i++)
rtw_write8(rtwdev, start + i, addr[i]);
}
void rtw_vif_port_config(struct rtw_dev *rtwdev,
struct rtw_vif *rtwvif,
u32 config)
{
u32 addr, mask;
if (config & PORT_SET_MAC_ADDR) {
addr = rtwvif->conf->mac_addr.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
}
if (config & PORT_SET_BSSID) {
addr = rtwvif->conf->bssid.addr;
rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
}
if (config & PORT_SET_NET_TYPE) {
addr = rtwvif->conf->net_type.addr;
mask = rtwvif->conf->net_type.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
}
if (config & PORT_SET_AID) {
addr = rtwvif->conf->aid.addr;
mask = rtwvif->conf->aid.mask;
rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
}
if (config & PORT_SET_BCN_CTRL) {
addr = rtwvif->conf->bcn_ctrl.addr;
mask = rtwvif->conf->bcn_ctrl.mask;
rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
{
u8 bw = 0;
switch (bw_cap) {
case EFUSE_HW_CAP_IGNORE:
case EFUSE_HW_CAP_SUPP_BW80:
bw |= BIT(RTW_CHANNEL_WIDTH_80);
fallthrough;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
case EFUSE_HW_CAP_SUPP_BW40:
bw |= BIT(RTW_CHANNEL_WIDTH_40);
fallthrough;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
default:
bw |= BIT(RTW_CHANNEL_WIDTH_20);
break;
}
return bw;
}
static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_hal *hal = &rtwdev->hal;
if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
hw_ant_num >= hal->rf_path_num)
return;
switch (hw_ant_num) {
case 1:
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
if (!chip->fix_rf_phy_num)
hal->rf_phy_num = hal->rf_path_num;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
break;
default:
WARN(1, "invalid hw configuration from efuse\n");
break;
}
}
static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
{
u64 ra_mask = 0;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
u8 vht_mcs_cap;
int i, nss;
/* 4SS, every two bits for MCS7/8/9 */
for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
vht_mcs_cap = mcs_map & 0x3;
switch (vht_mcs_cap) {
case 2: /* MCS9 */
ra_mask |= 0x3ffULL << nss;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
case 1: /* MCS8 */
ra_mask |= 0x1ffULL << nss;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
case 0: /* MCS7 */
ra_mask |= 0x0ffULL << nss;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
default:
break;
}
}
return ra_mask;
}
static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
{
u8 rate_id = 0;
switch (wireless_set) {
case WIRELESS_CCK:
rate_id = RTW_RATEID_B_20M;
break;
case WIRELESS_OFDM:
rate_id = RTW_RATEID_G;
break;
case WIRELESS_CCK | WIRELESS_OFDM:
rate_id = RTW_RATEID_BG;
break;
case WIRELESS_OFDM | WIRELESS_HT:
if (tx_num == 1)
rate_id = RTW_RATEID_GN_N1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_GN_N2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
if (bw_mode == RTW_CHANNEL_WIDTH_40) {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_40M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_40M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_BGN_20M_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_BGN_20M_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR5_N_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR7_N_4SS;
}
break;
case WIRELESS_OFDM | WIRELESS_VHT:
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
break;
case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR1_AC_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR0_AC_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
} else {
if (tx_num == 1)
rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
else if (tx_num == 2)
rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
else if (tx_num == 3)
rate_id = RTW_RATEID_ARFR4_AC_3SS;
else if (tx_num == 4)
rate_id = RTW_RATEID_ARFR6_AC_4SS;
}
break;
default:
break;
}
return rate_id;
}
#define RA_MASK_CCK_RATES 0x0000f
#define RA_MASK_OFDM_RATES 0x00ff0
#define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
#define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
#define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
RA_MASK_HT_RATES_2SS | \
RA_MASK_HT_RATES_3SS)
#define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
#define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
#define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
RA_MASK_VHT_RATES_2SS | \
RA_MASK_VHT_RATES_3SS)
#define RA_MASK_CCK_IN_BG 0x00005
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
#define RA_MASK_CCK_IN_HT 0x00005
#define RA_MASK_CCK_IN_VHT 0x00005
#define RA_MASK_OFDM_IN_VHT 0x00010
#define RA_MASK_OFDM_IN_HT_2G 0x00010
#define RA_MASK_OFDM_IN_HT_5G 0x00030
static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
{
u8 rssi_level = si->rssi_level;
if (wireless_set == WIRELESS_CCK)
return 0xffffffffffffffffULL;
if (rssi_level == 0)
return 0xffffffffffffffffULL;
else if (rssi_level == 1)
return 0xfffffffffffffff0ULL;
else if (rssi_level == 2)
return 0xffffffffffffefe0ULL;
else if (rssi_level == 3)
return 0xffffffffffffcfc0ULL;
else if (rssi_level == 4)
return 0xffffffffffff8f80ULL;
else
return 0xffffffffffff0f00ULL;
}
static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
{
if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
if (ra_mask == 0)
ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
return ra_mask;
}
static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
u64 ra_mask, bool is_vht_enable)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct cfg80211_bitrate_mask *mask = si->mask;
u64 cfg_mask = GENMASK_ULL(63, 0);
u8 band;
if (!si->use_cfg_mask)
return ra_mask;
band = hal->current_band_type;
if (band == RTW_BAND_2G) {
band = NL80211_BAND_2GHZ;
cfg_mask = mask->control[band].legacy;
} else if (band == RTW_BAND_5G) {
band = NL80211_BAND_5GHZ;
cfg_mask = u64_encode_bits(mask->control[band].legacy,
RA_MASK_OFDM_RATES);
}
if (!is_vht_enable) {
if (ra_mask & RA_MASK_HT_RATES_1SS)
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
RA_MASK_HT_RATES_1SS);
if (ra_mask & RA_MASK_HT_RATES_2SS)
cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
RA_MASK_HT_RATES_2SS);
} else {
if (ra_mask & RA_MASK_VHT_RATES_1SS)
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
RA_MASK_VHT_RATES_1SS);
if (ra_mask & RA_MASK_VHT_RATES_2SS)
cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
RA_MASK_VHT_RATES_2SS);
}
ra_mask &= cfg_mask;
return ra_mask;
}
void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
bool reset_ra_mask)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct ieee80211_sta *sta = si->sta;
struct rtw_efuse *efuse = &rtwdev->efuse;
struct rtw_hal *hal = &rtwdev->hal;
u8 wireless_set;
u8 bw_mode;
u8 rate_id;
u8 stbc_en = 0;
u8 ldpc_en = 0;
u8 tx_num = 1;
u64 ra_mask = 0;
u64 ra_mask_bak = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
bool is_vht_enable = false;
bool is_support_sgi = false;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.vht_cap.vht_supported) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
is_vht_enable = true;
ra_mask |= get_vht_ra_mask(sta);
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
stbc_en = VHT_STBC_EN;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ldpc_en = VHT_LDPC_EN;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
} else if (sta->deflink.ht_cap.ht_supported) {
ra_mask |= ((u64)sta->deflink.ht_cap.mcs.rx_mask[3] << 36) |
((u64)sta->deflink.ht_cap.mcs.rx_mask[2] << 28) |
(sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
(sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
stbc_en = HT_STBC_EN;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ldpc_en = HT_LDPC_EN;
}
if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
else if (efuse->hw_cap.nss == 2)
ra_mask &= RA_MASK_VHT_RATES_2SS | RA_MASK_HT_RATES_2SS |
RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (hal->current_band_type == RTW_BAND_5G) {
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
ra_mask_bak = ra_mask;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.vht_cap.vht_supported) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
} else if (sta->deflink.ht_cap.ht_supported) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
wireless_set = WIRELESS_OFDM | WIRELESS_HT;
} else {
wireless_set = WIRELESS_OFDM;
}
dm_info->rrsr_val_init = RRSR_INIT_5G;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
} else if (hal->current_band_type == RTW_BAND_2G) {
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
ra_mask_bak = ra_mask;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
if (sta->deflink.vht_cap.vht_supported) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
RA_MASK_OFDM_IN_VHT;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT | WIRELESS_VHT;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
} else if (sta->deflink.ht_cap.ht_supported) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
RA_MASK_OFDM_IN_HT_2G;
wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
WIRELESS_HT;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
} else if (sta->deflink.supp_rates[0] <= 0xf) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
wireless_set = WIRELESS_CCK;
} else {
ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
}
dm_info->rrsr_val_init = RRSR_INIT_2G;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
} else {
rtw_err(rtwdev, "Unknown band type\n");
ra_mask_bak = ra_mask;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
wireless_set = 0;
}
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
switch (sta->deflink.bandwidth) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
case IEEE80211_STA_RX_BW_80:
bw_mode = RTW_CHANNEL_WIDTH_80;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
is_support_sgi = sta->deflink.vht_cap.vht_supported &&
(sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
case IEEE80211_STA_RX_BW_40:
bw_mode = RTW_CHANNEL_WIDTH_40;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
is_support_sgi = sta->deflink.ht_cap.ht_supported &&
(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
default:
bw_mode = RTW_CHANNEL_WIDTH_20;
mac80211: prepare sta handling for MLO support Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-04 21:11:23 +05:30
is_support_sgi = sta->deflink.ht_cap.ht_supported &&
(sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
}
if (sta->deflink.vht_cap.vht_supported ||
sta->deflink.ht_cap.ht_supported)
tx_num = efuse->hw_cap.nss;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
si->bw_mode = bw_mode;
si->stbc_en = stbc_en;
si->ldpc_en = ldpc_en;
si->sgi_enable = is_support_sgi;
si->vht_enable = is_vht_enable;
si->ra_mask = ra_mask;
si->rate_id = rate_id;
rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_fw_state *fw;
int ret = 0;
fw = &rtwdev->fw;
wait_for_completion(&fw->completion);
if (!fw->firmware)
ret = -EINVAL;
if (chip->wow_fw_name) {
fw = &rtwdev->wow_fw;
wait_for_completion(&fw->completion);
if (!fw->firmware)
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL(rtw_wait_firmware_completion);
static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
const struct rtw_chip_info *chip = rtwdev->chip;
if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
!fw->feature)
return LPS_DEEP_MODE_NONE;
if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
rtw_fw_feature_check(fw, FW_FEATURE_PG))
return LPS_DEEP_MODE_PG;
if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
return LPS_DEEP_MODE_LCLK;
return LPS_DEEP_MODE_NONE;
}
int rtw_power_on(struct rtw_dev *rtwdev)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_fw_state *fw = &rtwdev->fw;
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
bool wifi_only;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
/* power on MAC before firmware downloaded */
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
ret = rtw_wait_firmware_completion(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to wait firmware completion\n");
goto err_off;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
/* config mac after firmware downloaded */
ret = rtw_mac_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to configure mac\n");
goto err_off;
}
chip->ops->phy_set_param(rtwdev);
ret = rtw_mac_postinit(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to configure mac in postinit\n");
goto err_off;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ret = rtw_hci_start(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to start hci\n");
goto err_off;
}
/* send H2C after HCI has started */
rtw_fw_send_general_info(rtwdev);
rtw_fw_send_phydm_info(rtwdev);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
wifi_only = !rtwdev->efuse.btcoex;
rtw_coex_power_on_setting(rtwdev);
rtw_coex_init_hw_config(rtwdev, wifi_only);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
EXPORT_SYMBOL(rtw_power_on);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
{
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
return;
if (start) {
rtw_fw_scan_notify(rtwdev, true);
} else {
reinit_completion(&rtwdev->fw_scan_density);
rtw_fw_scan_notify(rtwdev, false);
if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
SCAN_NOTIFY_TIMEOUT))
rtw_warn(rtwdev, "firmware failed to report density after scan\n");
}
}
void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
const u8 *mac_addr, bool hw_scan)
{
u32 config = 0;
int ret = 0;
rtw_leave_lps(rtwdev);
if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
ret = rtw_leave_ips(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to leave idle state\n");
return;
}
}
ether_addr_copy(rtwvif->mac_addr, mac_addr);
config |= PORT_SET_MAC_ADDR;
rtw_vif_port_config(rtwdev, rtwvif, config);
rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
rtw_core_fw_scan_notify(rtwdev, true);
set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
}
void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
bool hw_scan)
{
struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
u32 config = 0;
if (!rtwvif)
return;
clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
rtw_core_fw_scan_notify(rtwdev, false);
ether_addr_copy(rtwvif->mac_addr, vif->addr);
config |= PORT_SET_MAC_ADDR;
rtw_vif_port_config(rtwdev, rtwvif, config);
rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int rtw_core_start(struct rtw_dev *rtwdev)
{
int ret;
ret = rtwdev->chip->ops->power_on(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (ret)
return ret;
rtw_sec_enable_sec_engine(rtwdev);
rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
/* rcr reset after powered on */
rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
RTW_WATCH_DOG_DELAY_TIME);
set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
return 0;
}
void rtw_power_off(struct rtw_dev *rtwdev)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
rtw_hci_stop(rtwdev);
rtw_coex_power_off_setting(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_mac_power_off(rtwdev);
}
EXPORT_SYMBOL(rtw_power_off);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
void rtw_core_stop(struct rtw_dev *rtwdev)
{
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
struct rtw_coex *coex = &rtwdev->coex;
clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
mutex_unlock(&rtwdev->mutex);
cancel_work_sync(&rtwdev->c2h_work);
wifi: rtw88: add a work to correct atomic scheduling warning of ::set_tim The set_tim is supposed to be atomic, but we should download beacon context to firmware with a mutex lock. To avoid warning, do the thing in another work. BUG: scheduling while atomic: swapper/1/0/0x00000700 Modules linked in: CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 5.18.0-rc7-00703-g33b5ee09a0c1 #4 Hardware name: Pine64 RK3566 Quartz64-A Board (DT) Call trace: dump_backtrace.part.0+0xc4/0xd0 show_stack+0x14/0x60 dump_stack_lvl+0x60/0x78 dump_stack+0x14/0x2c __schedule_bug+0x5c/0x70 __schedule+0x5c4/0x630 schedule+0x44/0xb0 schedule_preempt_disabled+0xc/0x14 __mutex_lock.constprop.0+0x538/0x56c __mutex_lock_slowpath+0x10/0x20 mutex_lock+0x54/0x60 rtw_ops_set_tim+0x20/0x40 __sta_info_recalc_tim+0x150/0x250 sta_info_recalc_tim+0x10/0x20 invoke_tx_handlers_early+0x4e4/0x5c0 ieee80211_tx+0x78/0x110 ieee80211_xmit+0x94/0xc0 __ieee80211_subif_start_xmit+0x818/0xd20 ieee80211_subif_start_xmit+0x44/0x2d0 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 br_dev_queue_push_xmit+0x94/0x174 br_forward_finish+0x90/0xa0 __br_forward+0xc0/0x13c br_forward+0x108/0x134 br_dev_xmit+0x1cc/0x3a4 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 arp_xmit+0x6c/0x7c arp_send_dst+0x8c/0xc0 arp_solicit+0xd4/0x1e0 neigh_probe+0x58/0xa0 neigh_timer_handler+0x27c/0x380 call_timer_fn.constprop.0+0x20/0x80 __run_timers.part.0+0x230/0x280 run_timer_softirq+0x38/0x70 _stext+0x104/0x278 __irq_exit_rcu+0xa4/0xdc irq_exit_rcu+0xc/0x14 el1_interrupt+0x34/0x50 el1h_64_irq_handler+0x14/0x20 el1h_64_irq+0x64/0x68 arch_cpu_idle+0x14/0x20 do_idle+0x208/0x290 cpu_startup_entry+0x20/0x30 secondary_start_kernel+0x130/0x144 __secondary_switched+0x54/0x58 Fixes: f2217968ffda ("rtw88: Add update beacon flow for AP mode") Reported-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20220526051251.281905-1-pkshih@realtek.com
2022-05-26 13:12:51 +08:00
cancel_work_sync(&rtwdev->update_beacon_work);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
cancel_delayed_work_sync(&rtwdev->watch_dog_work);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
cancel_delayed_work_sync(&coex->bt_relink_work);
cancel_delayed_work_sync(&coex->bt_reenable_work);
cancel_delayed_work_sync(&coex->defreeze_work);
rtw88: coex: Fix ACL Tx pause during BT inquiry/page. Add a set of logic with corresponding coexistence parameters to handle the situation under BT inquiry/page. We will set PSTDMA while WL-Busy + BT inquiry/page to separate WL/BT slots. PSTDMA can protect WL data rate and BT performance. If WL-Busy + BT inquiry/page and there was BT device paired, We will set the mechanism to 4Slot PSTDMA. In 4Slot PSTDMA, the paired devices can perform more smoothly and prevent some issues trigger from insufficient data. And to avoid A2DP glitch or disconnection, we will adjust ACL data priority higher than inquiry/page. In addition, we found sometimes BT inquiry/page still working last for seconds after BT had notified inquiry/page finished. It will lead to A2DP glitch cause of ACL data, inquiry/page priority toggled. To fix the corner, we add a timer to remain the inquiry/page status. And we found WL busy/idle threshold is too sensitive, it will keep switching in some weak network environment and coexistence mechanism will switch between TDMA and PSTDMA. The very frequently switching may destroyed not only the handshake with AP, but BT performance. And it will trigger some unexpected error. To prevent the frequently switching, we add a timer to delay the status change while WL busy switch to idle. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200715023324.8600-1-yhchuang@realtek.com
2020-07-15 10:33:24 +08:00
cancel_delayed_work_sync(&coex->wl_remain_work);
cancel_delayed_work_sync(&coex->bt_remain_work);
cancel_delayed_work_sync(&coex->wl_connecting_work);
cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
cancel_delayed_work_sync(&coex->wl_ccklock_work);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
mutex_lock(&rtwdev->mutex);
rtwdev->chip->ops->power_off(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_ht_cap *ht_cap)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_efuse *efuse = &rtwdev->efuse;
int i;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ht_cap->ht_supported = true;
ht_cap->cap = 0;
ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
IEEE80211_HT_CAP_MAX_AMSDU |
(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
if (rtw_chip_has_rx_ldpc(rtwdev))
ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
if (rtw_chip_has_tx_stbc(rtwdev))
ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
IEEE80211_HT_CAP_DSSSCCK40 |
IEEE80211_HT_CAP_SGI_40;
ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
ht_cap->ampdu_density = chip->ampdu_density;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
for (i = 0; i < efuse->hw_cap.nss; i++)
ht_cap->mcs.rx_mask[i] = 0xFF;
ht_cap->mcs.rx_mask[4] = 0x01;
ht_cap->mcs.rx_highest = cpu_to_le16(150 * efuse->hw_cap.nss);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
struct ieee80211_sta_vht_cap *vht_cap)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u16 mcs_map = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
__le16 highest;
int i;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
return;
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_HTC_VHT |
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
0;
if (rtwdev->hal.rf_path_num > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
if (rtw_chip_has_rx_ldpc(rtwdev))
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
for (i = 0; i < 8; i++) {
if (i < efuse->hw_cap.nss)
mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
else
mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
highest = cpu_to_le16(390 * efuse->hw_cap.nss);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
vht_cap->vht_mcs.rx_highest = highest;
vht_cap->vht_mcs.tx_highest = highest;
}
static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
{
u16 len;
len = rtwdev->chip->max_scan_ie_len;
if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
len = IEEE80211_MAX_DATA_LEN;
else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
return len;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
static void rtw_set_supported_band(struct ieee80211_hw *hw,
const struct rtw_chip_info *chip)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
struct rtw_dev *rtwdev = hw->priv;
struct ieee80211_supported_band *sband;
if (chip->band & RTW_BAND_2G) {
sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
}
if (chip->band & RTW_BAND_5G) {
sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
if (!sband)
goto err_out;
if (chip->ht_supported)
rtw_init_ht_cap(rtwdev, &sband->ht_cap);
if (chip->vht_supported)
rtw_init_vht_cap(rtwdev, &sband->vht_cap);
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
}
return;
err_out:
rtw_err(rtwdev, "failed to set supported band\n");
}
static void rtw_unset_supported_band(struct ieee80211_hw *hw,
const struct rtw_chip_info *chip)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
}
static void rtw_vif_smps_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rtw_dev *rtwdev = (struct rtw_dev *)data;
if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
return;
if (rtwdev->hal.txrx_1ss)
ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
else
ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
}
void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
{
const struct rtw_chip_info *chip = rtwdev->chip;
struct rtw_hal *hal = &rtwdev->hal;
if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
return;
rtwdev->hal.txrx_1ss = txrx_1ss;
if (txrx_1ss)
chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
else
chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
hal->antenna_rx, false);
rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
}
static void __update_firmware_feature(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
u32 feature;
const struct rtw_fw_hdr *fw_hdr =
(const struct rtw_fw_hdr *)fw->firmware->data;
feature = le32_to_cpu(fw_hdr->feature);
fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
}
static void __update_firmware_info(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
const struct rtw_fw_hdr *fw_hdr =
(const struct rtw_fw_hdr *)fw->firmware->data;
fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
fw->version = le16_to_cpu(fw_hdr->version);
fw->sub_version = fw_hdr->subversion;
fw->sub_index = fw_hdr->subindex;
__update_firmware_feature(rtwdev, fw);
}
static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
struct rtw_fw_hdr_legacy *legacy =
(struct rtw_fw_hdr_legacy *)fw->firmware->data;
fw->h2c_version = 0;
fw->version = le16_to_cpu(legacy->version);
fw->sub_version = legacy->subversion1;
fw->sub_index = legacy->subversion2;
}
static void update_firmware_info(struct rtw_dev *rtwdev,
struct rtw_fw_state *fw)
{
if (rtw_chip_wcpu_8051(rtwdev))
__update_firmware_info_legacy(rtwdev, fw);
else
__update_firmware_info(rtwdev, fw);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
{
struct rtw_fw_state *fw = context;
struct rtw_dev *rtwdev = fw->rtwdev;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (!firmware || !firmware->data) {
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_err(rtwdev, "failed to request firmware\n");
complete_all(&fw->completion);
return;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
fw->firmware = firmware;
update_firmware_info(rtwdev, fw);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
complete_all(&fw->completion);
rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
fw->type == RTW_WOWLAN_FW ? "WOW " : "",
fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
{
const char *fw_name;
struct rtw_fw_state *fw;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int ret;
switch (type) {
case RTW_WOWLAN_FW:
fw = &rtwdev->wow_fw;
fw_name = rtwdev->chip->wow_fw_name;
break;
case RTW_NORMAL_FW:
fw = &rtwdev->fw;
fw_name = rtwdev->chip->fw_name;
break;
default:
rtw_warn(rtwdev, "unsupported firmware type\n");
return -ENOENT;
}
fw->type = type;
fw->rtwdev = rtwdev;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
init_completion(&fw->completion);
ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
GFP_KERNEL, fw, rtw_load_firmware_cb);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (ret) {
rtw_err(rtwdev, "failed to async firmware request\n");
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
return ret;
}
return 0;
}
static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_hal *hal = &rtwdev->hal;
struct rtw_efuse *efuse = &rtwdev->efuse;
switch (rtw_hci_type(rtwdev)) {
case RTW_HCI_TYPE_PCIE:
rtwdev->hci.rpwm_addr = 0x03d9;
rtwdev->hci.cpwm_addr = 0x03da;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
break;
case RTW_HCI_TYPE_SDIO:
rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
break;
case RTW_HCI_TYPE_USB:
rtwdev->hci.rpwm_addr = 0xfe58;
rtwdev->hci.cpwm_addr = 0xfe57;
break;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
default:
rtw_err(rtwdev, "unsupported hci type\n");
return -EINVAL;
}
hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
if (hal->chip_version & BIT_RF_TYPE_ID) {
hal->rf_type = RF_2T2R;
hal->rf_path_num = 2;
hal->antenna_tx = BB_PATH_AB;
hal->antenna_rx = BB_PATH_AB;
} else {
hal->rf_type = RF_1T1R;
hal->rf_path_num = 1;
hal->antenna_tx = BB_PATH_A;
hal->antenna_rx = BB_PATH_A;
}
hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
hal->rf_path_num;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
efuse->physical_size = chip->phy_efuse_size;
efuse->logical_size = chip->log_efuse_size;
efuse->protect_size = chip->ptct_efuse_size;
/* default use ack */
rtwdev->hal.rcr |= BIT_VHT_DACK;
hal->bfee_sts_cap = 3;
return 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
int ret;
ret = rtw_hci_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup hci\n");
goto err;
}
ret = rtw_mac_power_on(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to power on mac\n");
goto err;
}
rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
wait_for_completion(&fw->completion);
if (!fw->firmware) {
ret = -EINVAL;
rtw_err(rtwdev, "failed to load firmware\n");
goto err;
}
ret = rtw_download_firmware(rtwdev, fw);
if (ret) {
rtw_err(rtwdev, "failed to download firmware\n");
goto err_off;
}
return 0;
err_off:
rtw_mac_power_off(rtwdev);
err:
return ret;
}
static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
u8 hw_feature[HW_FEATURE_LEN];
u8 id;
u8 bw;
int i;
if (!rtwdev->chip->hw_feature_report)
return 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
id = rtw_read8(rtwdev, REG_C2HEVT);
if (id != C2H_HW_FEATURE_REPORT) {
rtw_err(rtwdev, "failed to read hw feature report\n");
return -EBUSY;
}
for (i = 0; i < HW_FEATURE_LEN; i++)
hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
rtw_write8(rtwdev, REG_C2HEVT, 0);
bw = GET_EFUSE_HW_CAP_BW(hw_feature);
efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
rtw_dbg(rtwdev, RTW_DBG_EFUSE,
"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
efuse->hw_cap.ant_num, efuse->hw_cap.nss);
return 0;
}
static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
{
rtw_hci_stop(rtwdev);
rtw_mac_power_off(rtwdev);
}
static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_efuse *efuse = &rtwdev->efuse;
int ret;
mutex_lock(&rtwdev->mutex);
/* power on mac to read efuse */
ret = rtw_chip_efuse_enable(rtwdev);
if (ret)
goto out_unlock;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ret = rtw_parse_efuse_map(rtwdev);
if (ret)
goto out_disable;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ret = rtw_dump_hw_feature(rtwdev);
if (ret)
goto out_disable;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ret = rtw_check_supported_rfe(rtwdev);
if (ret)
goto out_disable;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (efuse->crystal_cap == 0xff)
efuse->crystal_cap = 0;
if (efuse->pa_type_2g == 0xff)
efuse->pa_type_2g = 0;
if (efuse->pa_type_5g == 0xff)
efuse->pa_type_5g = 0;
if (efuse->lna_type_2g == 0xff)
efuse->lna_type_2g = 0;
if (efuse->lna_type_5g == 0xff)
efuse->lna_type_5g = 0;
if (efuse->channel_plan == 0xff)
efuse->channel_plan = 0x7f;
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
if (efuse->rf_board_option == 0xff)
efuse->rf_board_option = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (efuse->bt_setting & BIT(0))
efuse->share_ant = true;
if (efuse->regd == 0xff)
efuse->regd = 0;
if (efuse->tx_bb_swing_setting_2g == 0xff)
efuse->tx_bb_swing_setting_2g = 0;
if (efuse->tx_bb_swing_setting_5g == 0xff)
efuse->tx_bb_swing_setting_5g = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (!is_valid_ether_addr(efuse->addr)) {
eth_random_addr(efuse->addr);
dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
}
out_disable:
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_chip_efuse_disable(rtwdev);
out_unlock:
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
mutex_unlock(&rtwdev->mutex);
return ret;
}
static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
{
struct rtw_hal *hal = &rtwdev->hal;
const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
if (!rfe_def)
return -ENODEV;
rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_phy_init_tx_power(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
rtw_phy_tx_power_by_rate_config(hal);
rtw_phy_tx_power_limit_config(hal);
return 0;
}
int rtw_chip_info_setup(struct rtw_dev *rtwdev)
{
int ret;
ret = rtw_chip_parameter_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip parameters\n");
goto err_out;
}
ret = rtw_chip_efuse_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip efuse info\n");
goto err_out;
}
ret = rtw_chip_board_info_setup(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to setup chip board info\n");
goto err_out;
}
return 0;
err_out:
return ret;
}
EXPORT_SYMBOL(rtw_chip_info_setup);
static void rtw_stats_init(struct rtw_dev *rtwdev)
{
struct rtw_traffic_stats *stats = &rtwdev->stats;
struct rtw_dm_info *dm_info = &rtwdev->dm_info;
int i;
ewma_tp_init(&stats->tx_ewma_tp);
ewma_tp_init(&stats->rx_ewma_tp);
for (i = 0; i < RTW_EVM_NUM; i++)
ewma_evm_init(&dm_info->ewma_evm[i]);
for (i = 0; i < RTW_SNR_NUM; i++)
ewma_snr_init(&dm_info->ewma_snr[i]);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int rtw_core_init(struct rtw_dev *rtwdev)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
struct rtw_coex *coex = &rtwdev->coex;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int ret;
INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
INIT_LIST_HEAD(&rtwdev->txqs);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
timer_setup(&rtwdev->tx_report.purge_timer,
rtw_tx_report_purge_timer, 0);
rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
if (!rtwdev->tx_wq) {
rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
return -ENOMEM;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
rtw88: coex: Fix ACL Tx pause during BT inquiry/page. Add a set of logic with corresponding coexistence parameters to handle the situation under BT inquiry/page. We will set PSTDMA while WL-Busy + BT inquiry/page to separate WL/BT slots. PSTDMA can protect WL data rate and BT performance. If WL-Busy + BT inquiry/page and there was BT device paired, We will set the mechanism to 4Slot PSTDMA. In 4Slot PSTDMA, the paired devices can perform more smoothly and prevent some issues trigger from insufficient data. And to avoid A2DP glitch or disconnection, we will adjust ACL data priority higher than inquiry/page. In addition, we found sometimes BT inquiry/page still working last for seconds after BT had notified inquiry/page finished. It will lead to A2DP glitch cause of ACL data, inquiry/page priority toggled. To fix the corner, we add a timer to remain the inquiry/page status. And we found WL busy/idle threshold is too sensitive, it will keep switching in some weak network environment and coexistence mechanism will switch between TDMA and PSTDMA. The very frequently switching may destroyed not only the handshake with AP, but BT performance. And it will trigger some unexpected error. To prevent the frequently switching, we add a timer to delay the status change while WL busy switch to idle. Signed-off-by: Zong-Zhe Yang <kevin_yang@realtek.com> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200715023324.8600-1-yhchuang@realtek.com
2020-07-15 10:33:24 +08:00
INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
rtw_coex_bt_multi_link_remain_work);
INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
wifi: rtw88: add a work to correct atomic scheduling warning of ::set_tim The set_tim is supposed to be atomic, but we should download beacon context to firmware with a mutex lock. To avoid warning, do the thing in another work. BUG: scheduling while atomic: swapper/1/0/0x00000700 Modules linked in: CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 5.18.0-rc7-00703-g33b5ee09a0c1 #4 Hardware name: Pine64 RK3566 Quartz64-A Board (DT) Call trace: dump_backtrace.part.0+0xc4/0xd0 show_stack+0x14/0x60 dump_stack_lvl+0x60/0x78 dump_stack+0x14/0x2c __schedule_bug+0x5c/0x70 __schedule+0x5c4/0x630 schedule+0x44/0xb0 schedule_preempt_disabled+0xc/0x14 __mutex_lock.constprop.0+0x538/0x56c __mutex_lock_slowpath+0x10/0x20 mutex_lock+0x54/0x60 rtw_ops_set_tim+0x20/0x40 __sta_info_recalc_tim+0x150/0x250 sta_info_recalc_tim+0x10/0x20 invoke_tx_handlers_early+0x4e4/0x5c0 ieee80211_tx+0x78/0x110 ieee80211_xmit+0x94/0xc0 __ieee80211_subif_start_xmit+0x818/0xd20 ieee80211_subif_start_xmit+0x44/0x2d0 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 br_dev_queue_push_xmit+0x94/0x174 br_forward_finish+0x90/0xa0 __br_forward+0xc0/0x13c br_forward+0x108/0x134 br_dev_xmit+0x1cc/0x3a4 dev_hard_start_xmit+0xd0/0x150 __dev_queue_xmit+0x250/0xb30 dev_queue_xmit+0x10/0x20 arp_xmit+0x6c/0x7c arp_send_dst+0x8c/0xc0 arp_solicit+0xd4/0x1e0 neigh_probe+0x58/0xa0 neigh_timer_handler+0x27c/0x380 call_timer_fn.constprop.0+0x20/0x80 __run_timers.part.0+0x230/0x280 run_timer_softirq+0x38/0x70 _stext+0x104/0x278 __irq_exit_rcu+0xa4/0xdc irq_exit_rcu+0xc/0x14 el1_interrupt+0x34/0x50 el1h_64_irq_handler+0x14/0x20 el1h_64_irq+0x64/0x68 arch_cpu_idle+0x14/0x20 do_idle+0x208/0x290 cpu_startup_entry+0x20/0x30 secondary_start_kernel+0x130/0x144 __secondary_switched+0x54/0x58 Fixes: f2217968ffda ("rtw88: Add update beacon flow for AP mode") Reported-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Tested-by: Ondřej Jirman <megi@xff.cz> Signed-off-by: Kalle Valo <kvalo@kernel.org> Link: https://lore.kernel.org/r/20220526051251.281905-1-pkshih@realtek.com
2022-05-26 13:12:51 +08:00
INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
skb_queue_head_init(&rtwdev->c2h_queue);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
skb_queue_head_init(&rtwdev->coex.queue);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
skb_queue_head_init(&rtwdev->tx_report.queue);
spin_lock_init(&rtwdev->txq_lock);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
spin_lock_init(&rtwdev->tx_report.q_lock);
mutex_init(&rtwdev->mutex);
mutex_init(&rtwdev->hal.tx_power_mutex);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
init_waitqueue_head(&rtwdev->coex.wait);
init_completion(&rtwdev->lps_leave_check);
init_completion(&rtwdev->fw_scan_density);
rtw88: add BT co-existence support Both RTL8822BE/RTL8822CE are WiFi + BT combo chips. Since WiFi and BT use 2.4GHz to transmit, it is important to make sure they run concurrently without interfering each other. To achieve this, WiFi driver requires a mechanism to collaborate with BT, whether they share the antenna(s) or not. The final decision made by the co-existence mechanism is to choose a proper strategy, or called "tdma/table", and inform either firmware or hardware of the strategy. To choose a strategy, co-existence mechanism needs to have enough information from WiFi and BT. BT information is provided through firmware C2H. The contents describe the current status of BT, such as if BT is connected or is idle, or the profile that is being used. WiFi information can be provided by WiFi itself. The WiFi driver will call various of "notify" functions each time the state of WiFi changed, such as WiFi is going to switch channel or is connected. Also WiFi driver can know if it shares antenna with BT by reading efuse content. Antenna configuration of the module will finally get a different strategy. Upon receiving any information from WiFi or BT, the WiFi driver will run the co-existence mechanism immediately. It will set the RF antenna configuration according to the strategy through the TDMA H2C to firmware and a hardware table. Based on the tdma/table, WiFi + BT should work with each other, and having a better user experience. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-07-31 20:22:47 +08:00
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtwdev->sec.total_cam_num = 32;
rtwdev->hal.current_channel = 1;
rtwdev->dm_info.fix_rate = U8_MAX;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_stats_init(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
/* default rx filter setting */
rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
BIT_AB | BIT_AM | BIT_APM;
ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (ret) {
rtw_warn(rtwdev, "no firmware loaded\n");
goto out;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
if (chip->wow_fw_name) {
ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
if (ret) {
rtw_warn(rtwdev, "no wow firmware loaded\n");
wait_for_completion(&rtwdev->fw.completion);
if (rtwdev->fw.firmware)
release_firmware(rtwdev->fw.firmware);
goto out;
}
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
return 0;
out:
destroy_workqueue(rtwdev->tx_wq);
return ret;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
EXPORT_SYMBOL(rtw_core_init);
void rtw_core_deinit(struct rtw_dev *rtwdev)
{
struct rtw_fw_state *fw = &rtwdev->fw;
struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
struct rtw_rsvd_page *rsvd_pkt, *tmp;
unsigned long flags;
rtw88: Fix probe error handling race with firmware loading In case of rtw8822be, a probe failure after successful rtw_core_init() has been observed to occasionally lead to an oops from rtw_load_firmware_cb(): [ 3.924268] pci 0001:01:00.0: [10ec:b822] type 00 class 0xff0000 [ 3.930531] pci 0001:01:00.0: reg 0x10: [io 0x0000-0x00ff] [ 3.936360] pci 0001:01:00.0: reg 0x18: [mem 0x00000000-0x0000ffff 64bit] [ 3.944042] pci 0001:01:00.0: supports D1 D2 [ 3.948438] pci 0001:01:00.0: PME# supported from D0 D1 D2 D3hot D3cold [ 3.957312] pci 0001:01:00.0: BAR 2: no space for [mem size 0x00010000 64bit] [ 3.964645] pci 0001:01:00.0: BAR 2: failed to assign [mem size 0x00010000 64bit] [ 3.972332] pci 0001:01:00.0: BAR 0: assigned [io 0x10000-0x100ff] [ 3.986240] rtw_8822be 0001:01:00.0: enabling device (0000 -> 0001) [ 3.992735] rtw_8822be 0001:01:00.0: failed to map pci memory [ 3.998638] rtw_8822be 0001:01:00.0: failed to request pci io region [ 4.005166] rtw_8822be 0001:01:00.0: failed to setup pci resources [ 4.011580] rtw_8822be: probe of 0001:01:00.0 failed with error -12 [ 4.018827] cfg80211: Loading compiled-in X.509 certificates for regulatory database [ 4.029121] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7' [ 4.050828] Unable to handle kernel paging request at virtual address edafeaac9607952c [ 4.058975] Mem abort info: [ 4.058980] ESR = 0x96000004 [ 4.058990] EC = 0x25: DABT (current EL), IL = 32 bits [ 4.070353] SET = 0, FnV = 0 [ 4.073487] EA = 0, S1PTW = 0 [ 4.073501] dw-apb-uart 98007800.serial: forbid DMA for kernel console [ 4.076723] Data abort info: [ 4.086415] ISV = 0, ISS = 0x00000004 [ 4.087731] Freeing unused kernel memory: 1792K [ 4.090391] CM = 0, WnR = 0 [ 4.098091] [edafeaac9607952c] address between user and kernel address ranges [ 4.105418] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 4.111129] Modules linked in: [ 4.114275] CPU: 1 PID: 31 Comm: kworker/1:1 Not tainted 5.9.0-rc5-next-20200915+ #700 [ 4.122386] Hardware name: Realtek Saola EVB (DT) [ 4.127223] Workqueue: events request_firmware_work_func [ 4.132676] pstate: 60000005 (nZCv daif -PAN -UAO BTYPE=--) [ 4.138393] pc : rtw_load_firmware_cb+0x54/0xbc [ 4.143040] lr : request_firmware_work_func+0x44/0xb4 [ 4.148217] sp : ffff800010133d70 [ 4.151616] x29: ffff800010133d70 x28: 0000000000000000 [ 4.157069] x27: 0000000000000000 x26: 0000000000000000 [ 4.162520] x25: 0000000000000000 x24: 0000000000000000 [ 4.167971] x23: ffff00007ac21908 x22: ffff00007ebb2100 [ 4.173424] x21: ffff00007ad35880 x20: edafeaac96079504 [ 4.178877] x19: ffff00007ad35870 x18: 0000000000000000 [ 4.184328] x17: 00000000000044d8 x16: 0000000000004310 [ 4.189780] x15: 0000000000000800 x14: 00000000ef006305 [ 4.195231] x13: ffffffff00000000 x12: ffffffffffffffff [ 4.200682] x11: 0000000000000020 x10: 0000000000000003 [ 4.206135] x9 : 0000000000000000 x8 : ffff00007e73f680 [ 4.211585] x7 : 0000000000000000 x6 : ffff80001119b588 [ 4.217036] x5 : ffff00007e649c80 x4 : ffff00007e649c80 [ 4.222487] x3 : ffff80001119b588 x2 : ffff8000108d1718 [ 4.227940] x1 : ffff800011bd5000 x0 : ffff00007ac21600 [ 4.233391] Call trace: [ 4.235906] rtw_load_firmware_cb+0x54/0xbc [ 4.240198] request_firmware_work_func+0x44/0xb4 [ 4.245027] process_one_work+0x178/0x1e4 [ 4.249142] worker_thread+0x1d0/0x268 [ 4.252989] kthread+0xe8/0xf8 [ 4.256127] ret_from_fork+0x10/0x18 [ 4.259800] Code: f94013f5 a8c37bfd d65f03c0 f9000260 (f9401681) [ 4.266049] ---[ end trace f822ebae1a8545c2 ]--- To avoid this, wait on the completion callbacks in rtw_core_deinit() before releasing firmware and continuing teardown. Note that rtw_wait_firmware_completion() was introduced with c8e5695eae9959fc5774c0f490f2450be8bad3de ("rtw88: load wowlan firmware if wowlan is supported"), so backports to earlier branches may need to inline wait_for_completion(&rtwdev->fw.completion) instead. Fixes: e3037485c68e ("rtw88: new Realtek 802.11ac driver") Fixes: c8e5695eae99 ("rtw88: load wowlan firmware if wowlan is supported") Cc: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200920132621.26468-2-afaerber@suse.de
2020-09-20 15:26:20 +02:00
rtw_wait_firmware_completion(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
if (fw->firmware)
release_firmware(fw->firmware);
if (wow_fw->firmware)
release_firmware(wow_fw->firmware);
destroy_workqueue(rtwdev->tx_wq);
timer_delete_sync(&rtwdev->tx_report.purge_timer);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
skb_queue_purge(&rtwdev->tx_report.queue);
spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
skb_queue_purge(&rtwdev->coex.queue);
skb_queue_purge(&rtwdev->c2h_queue);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw88: associate reserved pages with each vif Each device has only one reserved page shared with all of the vifs, so it seems not reasonable to pass vif as one of the arguments to rtw_fw_download_rsvd_page(). If driver is going to run more than one vif, the content of reserved page could not be built for all of the vifs. To fix it, let each vif maintain its own reserved page list, and build the final reserved page to download to the firmware from all of the vifs. Hence driver should add reserved pages to each vif according to the vif->type when adding the vif. For station mode, add reserved page with rtw_add_rsvd_page_sta(). If the station mode is going to suspend in PNO (net-detect) mode, remove the reserved pages used for normal mode, and add new one for wowlan mode with rtw_add_rsvd_page_pno(). For beacon mode, only beacon is required to be added using rtw_add_rsvd_page_bcn(). This would make the code flow simpler as we don't need to add reserved pages when vif is running, just add/remove them when ieee80211_ops::[add|remove]_interface. When driver is going to download the reserved page, it will collect pages from all of the vifs, this list is maintained by rtwdev, with build_list as the pages' member. That way, we can still build a list of reserved pages to be downloaded. Also we can get the location of the pages from the list that is maintained by rtwdev. The biggest problem is that the first page should always be beacon, if other type of reserved page is put in the first page, the tx descriptor and offset could be wrong. But station mode vif does not add beacon into its list, so we need to add a dummy page in front of the list, to make sure other pages will not be put in the first page. As the dummy page is allocated when building the list, we must free it before building a new list of reserved pages to firmware. Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org> Link: https://lore.kernel.org/r/20200312080852.16684-4-yhchuang@realtek.com
2020-03-12 16:08:50 +08:00
list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
build_list) {
list_del(&rsvd_pkt->build_list);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
kfree(rsvd_pkt);
}
mutex_destroy(&rtwdev->mutex);
mutex_destroy(&rtwdev->hal.tx_power_mutex);
}
EXPORT_SYMBOL(rtw_core_deinit);
int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
struct rtw_hal *hal = &rtwdev->hal;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
int max_tx_headroom = 0;
int ret;
max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
hw->extra_tx_headroom = max_tx_headroom;
hw->queues = IEEE80211_NUM_ACS;
hw->txq_data_size = sizeof(struct rtw_txq);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
hw->sta_data_size = sizeof(struct rtw_sta_info);
hw->vif_data_size = sizeof(struct rtw_vif);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, AMPDU_AGGREGATION);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, SUPPORTS_PS);
ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
wifi: rtw88: Don't set SUPPORTS_AMSDU_IN_AMPDU for RTL8814AU RTL8814AU doesn't work well with SUPPORTS_AMSDU_IN_AMPDU. The RX speed is noticeably lower and the VHT RX statistics are strange. Typical values with SUPPORTS_AMSDU_IN_AMPDU: Reverse mode, remote host 192.168.0.1 is sending [ 5] local 192.168.0.50 port 60710 connected to 192.168.0.1 port 5201 [ ID] Interval Transfer Bitrate [ 5] 0.00-1.00 sec 74.6 MBytes 626 Mbits/sec [ 5] 1.00-2.00 sec 79.2 MBytes 665 Mbits/sec [ 5] 2.00-3.00 sec 84.9 MBytes 712 Mbits/sec [ 5] 3.00-4.00 sec 83.8 MBytes 703 Mbits/sec [ 5] 4.00-5.00 sec 85.9 MBytes 720 Mbits/sec [ 5] 5.00-6.00 sec 78.9 MBytes 662 Mbits/sec [ 5] 6.00-7.00 sec 81.2 MBytes 682 Mbits/sec [ 5] 7.00-8.00 sec 80.5 MBytes 675 Mbits/sec [ 5] 8.00-9.00 sec 79.4 MBytes 666 Mbits/sec [ 5] 9.00-10.00 sec 82.2 MBytes 689 Mbits/sec [ 5] 10.00-11.00 sec 82.0 MBytes 688 Mbits/sec [ 5] 11.00-12.00 sec 84.2 MBytes 707 Mbits/sec [ 5] 12.00-13.00 sec 71.0 MBytes 596 Mbits/sec [ 5] 13.00-14.00 sec 69.4 MBytes 582 Mbits/sec [ 5] 14.00-15.00 sec 80.2 MBytes 673 Mbits/sec [ 5] 15.00-16.00 sec 74.5 MBytes 625 Mbits/sec [Rx Counter]: * CCA (CCK, OFDM, Total) = (0, 2455, 2455) * False Alarm (CCK, OFDM, Total) = (0, 69, 69) * CCK cnt (ok, err) = (0, 0) * OFDM cnt (ok, err) = (1239, 2) * HT cnt (ok, err) = (0, 0) * VHT cnt (ok, err) = (21, 12109) The "VHT ok" number is not believable. And without SUPPORTS_AMSDU_IN_AMPDU: Reverse mode, remote host 192.168.0.1 is sending [ 5] local 192.168.0.50 port 50030 connected to 192.168.0.1 port 5201 [ ID] Interval Transfer Bitrate [ 5] 0.00-1.00 sec 70.5 MBytes 591 Mbits/sec [ 5] 1.00-2.00 sec 86.9 MBytes 729 Mbits/sec [ 5] 2.00-3.00 sec 98.6 MBytes 827 Mbits/sec [ 5] 3.00-4.00 sec 97.4 MBytes 817 Mbits/sec [ 5] 4.00-5.00 sec 98.6 MBytes 827 Mbits/sec [ 5] 5.00-6.00 sec 96.9 MBytes 813 Mbits/sec [ 5] 6.00-7.00 sec 98.2 MBytes 824 Mbits/sec [ 5] 7.00-8.00 sec 98.0 MBytes 822 Mbits/sec [ 5] 8.00-9.00 sec 99.9 MBytes 838 Mbits/sec [ 5] 9.00-10.00 sec 99.2 MBytes 833 Mbits/sec [ 5] 10.00-11.00 sec 98.0 MBytes 822 Mbits/sec [ 5] 11.00-12.00 sec 98.1 MBytes 823 Mbits/sec [ 5] 12.00-13.00 sec 97.0 MBytes 814 Mbits/sec [ 5] 13.00-14.00 sec 98.2 MBytes 824 Mbits/sec [ 5] 14.00-15.00 sec 98.5 MBytes 826 Mbits/sec [ 5] 15.00-16.00 sec 97.4 MBytes 817 Mbits/sec [Rx Counter]: * CCA (CCK, OFDM, Total) = (0, 3860, 3860) * False Alarm (CCK, OFDM, Total) = (0, 2, 2) * CCK cnt (ok, err) = (0, 0) * OFDM cnt (ok, err) = (1486, 0) * HT cnt (ok, err) = (0, 0) * VHT cnt (ok, err) = (7399, 9118) Add a new member "amsdu_in_ampdu" in struct rtw_chip_info and use it to set SUPPORTS_AMSDU_IN_AMPDU only for the other chips. Signed-off-by: Bitterblue Smith <rtl8821cerfe2@gmail.com> Acked-by: Ping-Ke Shih <pkshih@realtek.com> Signed-off-by: Ping-Ke Shih <pkshih@realtek.com> Link: https://patch.msgid.link/6202ccfb-feb0-4107-a08d-db2699e179f0@gmail.com
2025-04-02 18:31:36 +03:00
if (rtwdev->chip->amsdu_in_ampdu)
ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
ieee80211_hw_set(hw, HAS_RATE_CONTROL);
ieee80211_hw_set(hw, TX_AMSDU);
ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_ADHOC);
hw->wiphy->available_antennas_tx = hal->antenna_tx;
hw->wiphy->available_antennas_rx = hal->antenna_rx;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
hw->wiphy->iface_combinations = rtw_iface_combs;
hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
}
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
#ifdef CONFIG_PM
hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
#endif
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_set_supported_band(hw, rtwdev->chip);
SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
hw->wiphy->sar_capa = &rtw_sar_capa;
ret = rtw_regd_init(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to init regd\n");
return ret;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_led_init(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ret = ieee80211_register_hw(hw);
if (ret) {
rtw_err(rtwdev, "failed to register hw\n");
goto led_deinit;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
ret = rtw_regd_hint(rtwdev);
if (ret) {
rtw_err(rtwdev, "failed to hint regd\n");
goto led_deinit;
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
rtw_debugfs_init(rtwdev);
rtwdev->bf_info.bfer_mu_cnt = 0;
rtwdev->bf_info.bfer_su_cnt = 0;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
return 0;
led_deinit:
rtw_led_deinit(rtwdev);
return ret;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
EXPORT_SYMBOL(rtw_register_hw);
void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
{
const struct rtw_chip_info *chip = rtwdev->chip;
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
ieee80211_unregister_hw(hw);
rtw_unset_supported_band(hw, chip);
rtw_debugfs_deinit(rtwdev);
rtw_led_deinit(rtwdev);
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
}
EXPORT_SYMBOL(rtw_unregister_hw);
static
void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
const struct rtw_hw_reg *reg2, u8 nbytes)
{
u8 i;
for (i = 0; i < nbytes; i++) {
u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
rtw_write8(rtwdev, reg1->addr + i, v2);
rtw_write8(rtwdev, reg2->addr + i, v1);
}
}
static
void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
const struct rtw_hw_reg *reg2)
{
u32 v1, v2;
v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
}
struct rtw_iter_port_switch_data {
struct rtw_dev *rtwdev;
struct rtw_vif *rtwvif_ap;
};
static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
{
struct rtw_iter_port_switch_data *iter_data = data;
struct rtw_dev *rtwdev = iter_data->rtwdev;
struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
const struct rtw_hw_reg *reg1, *reg2;
if (rtwvif_target->port != RTW_PORT_0)
return;
rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
rtwvif_ap->port, rtwvif_target->port);
/* Leave LPS so the value swapped are not in PS mode */
rtw_leave_lps(rtwdev);
reg1 = &rtwvif_ap->conf->net_type;
reg2 = &rtwvif_target->conf->net_type;
rtw_swap_reg_mask(rtwdev, reg1, reg2);
reg1 = &rtwvif_ap->conf->mac_addr;
reg2 = &rtwvif_target->conf->mac_addr;
rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
reg1 = &rtwvif_ap->conf->bssid;
reg2 = &rtwvif_target->conf->bssid;
rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
reg1 = &rtwvif_ap->conf->bcn_ctrl;
reg2 = &rtwvif_target->conf->bcn_ctrl;
rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
swap(rtwvif_target->port, rtwvif_ap->port);
swap(rtwvif_target->conf, rtwvif_ap->conf);
rtw_fw_default_port(rtwdev, rtwvif_target);
}
void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
{
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
struct rtw_iter_port_switch_data iter_data;
if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
return;
iter_data.rtwdev = rtwdev;
iter_data.rtwvif_ap = rtwvif;
rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
}
static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
{
struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
bool *active = data;
if (*active)
return;
if (vif->type != NL80211_IFTYPE_STATION)
return;
if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
*active = true;
}
bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
{
bool sta_active = false;
rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
return rtwdev->ap_active || sta_active;
}
void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
{
if (!rtwdev->ap_active)
return;
if (enable) {
rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
} else {
rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
}
}
void rtw_set_ampdu_factor(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf)
{
const struct rtw_chip_ops *ops = rtwdev->chip->ops;
struct ieee80211_sta *sta;
u8 factor = 0xff;
if (!ops->set_ampdu_factor)
return;
rcu_read_lock();
sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (!sta) {
rcu_read_unlock();
rtw_warn(rtwdev, "%s: failed to find station %pM\n",
__func__, bss_conf->bssid);
return;
}
if (sta->deflink.vht_cap.vht_supported)
factor = u32_get_bits(sta->deflink.vht_cap.cap,
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
else if (sta->deflink.ht_cap.ht_supported)
factor = sta->deflink.ht_cap.ampdu_factor;
rcu_read_unlock();
if (factor != 0xff)
ops->set_ampdu_factor(rtwdev, factor);
}
rtw88: new Realtek 802.11ac driver This is a new mac80211 driver for Realtek 802.11ac wireless network chips. rtw88 now supports RTL8822BE/RTL8822CE now, with basic station mode functionalities. The firmware for both can be found at linux-firmware. https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git For RTL8822BE: rtw88/rtw8822b_fw.bin For RTL8822CE: rtw88/rtw8822c_fw.bin And for now, only PCI buses (RTL8xxxE) are supported. We will add support for USB and SDIO in the future. The bus interface abstraction can be seen in this driver such as hci.h. Most of the hardware setting are the same except for some TRX path or probing setup should be separated. Supported: * Basic STA/AP/ADHOC mode, and TDLS (STA is well tested) Missing feature: * WOW/PNO * USB & SDIO bus (such as RTL8xxxU/RTL8xxxS) * BT coexistence (8822B/8822C are combo ICs) * Multiple interfaces (for now single STA is better supported) * Dynamic hardware calibrations (to improve/stabilize performance) Potential problems: * static calibration spends too much time, and it is painful for driver to leave IDLE state. And slows down associate process. But reload function are under development, will be added soon! * TRX statictics misleading, as we are not reporting status correctly, or say, not reporting for "every" packet. The next patch set should have BT coexistence code since RTL8822B/C are combo ICs, and the driver for BT can be found after Linux Kernel v4.20. So it is better to add it first to make WiFi + BT work concurrently. Although now rtw88 is simple but we are developing more features for it. Even we want to add support for more chips such as RTL8821C/RTL8814B. Finally, rtw88 has many authors, listed alphabetically: Ping-Ke Shih <pkshih@realtek.com> Tzu-En Huang <tehuang@realtek.com> Yan-Hsuan Chuang <yhchuang@realtek.com> Reviewed-by: Stanislaw Gruszka <sgruszka@redhat.com> Reviewed-by: Brian Norris <briannorris@chromium.org> Tested-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Yan-Hsuan Chuang <yhchuang@realtek.com> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-04-26 15:17:37 +03:00
MODULE_AUTHOR("Realtek Corporation");
MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
MODULE_LICENSE("Dual BSD/GPL");