linux/drivers/net/pse-pd/tps23881.c

1525 lines
37 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the TI TPS23881 PoE PSE Controller driver (I2C bus)
*
* Copyright (c) 2023 Bootlin, Kory Maincent <kory.maincent@bootlin.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pse-pd/pse.h>
#define TPS23881_MAX_CHANS 8
#define TPS23881_MAX_IRQ_RETRIES 10
#define TPS23881_REG_IT 0x0
#define TPS23881_REG_IT_MASK 0x1
#define TPS23881_REG_IT_DISF BIT(2)
#define TPS23881_REG_IT_DETC BIT(3)
#define TPS23881_REG_IT_CLASC BIT(4)
#define TPS23881_REG_IT_IFAULT BIT(5)
#define TPS23881_REG_IT_SUPF BIT(7)
#define TPS23881_REG_DET_EVENT 0x5
#define TPS23881_REG_FAULT 0x7
#define TPS23881_REG_SUPF_EVENT 0xb
#define TPS23881_REG_TSD BIT(7)
#define TPS23881_REG_DISC 0xc
#define TPS23881_REG_PW_STATUS 0x10
#define TPS23881_REG_OP_MODE 0x12
#define TPS23881_REG_DISC_EN 0x13
#define TPS23881_OP_MODE_SEMIAUTO 0xaaaa
#define TPS23881_REG_DIS_EN 0x13
#define TPS23881_REG_DET_CLA_EN 0x14
#define TPS23881_REG_GEN_MASK 0x17
#define TPS23881_REG_CLCHE BIT(2)
#define TPS23881_REG_DECHE BIT(3)
#define TPS23881_REG_NBITACC BIT(5)
#define TPS23881_REG_INTEN BIT(7)
#define TPS23881_REG_PW_EN 0x19
#define TPS23881_REG_RESET 0x1a
#define TPS23881_REG_CLRAIN BIT(7)
#define TPS23881_REG_2PAIR_POL1 0x1e
#define TPS23881_REG_PORT_MAP 0x26
#define TPS23881_REG_PORT_POWER 0x29
#define TPS23881_REG_4PAIR_POL1 0x2a
#define TPS23881_REG_INPUT_V 0x2e
#define TPS23881_REG_CHAN1_A 0x30
#define TPS23881_REG_CHAN1_V 0x32
#define TPS23881_REG_FOLDBACK 0x40
#define TPS23881_REG_TPON BIT(0)
#define TPS23881_REG_FWREV 0x41
#define TPS23881_REG_DEVID 0x43
#define TPS23881_REG_DEVID_MASK 0xF0
#define TPS23881_DEVICE_ID 0x02
#define TPS23881_REG_CHAN1_CLASS 0x4c
#define TPS23881_REG_SRAM_CTRL 0x60
#define TPS23881_REG_SRAM_DATA 0x61
#define TPS23881_UV_STEP 3662
#define TPS23881_NA_STEP 70190
#define TPS23881_MW_STEP 500
#define TPS23881_MIN_PI_PW_LIMIT_MW 2000
struct tps23881_port_desc {
u8 chan[2];
bool is_4p;
int pw_pol;
bool exist;
};
struct tps23881_priv {
struct i2c_client *client;
struct pse_controller_dev pcdev;
struct device_node *np;
struct tps23881_port_desc port[TPS23881_MAX_CHANS];
};
static struct tps23881_priv *to_tps23881_priv(struct pse_controller_dev *pcdev)
{
return container_of(pcdev, struct tps23881_priv, pcdev);
}
/*
* Helper to extract a value from a u16 register value, which is made of two
* u8 registers. The function calculates the bit offset based on the channel
* and extracts the relevant bits using a provided field mask.
*
* @param reg_val: The u16 register value (composed of two u8 registers).
* @param chan: The channel number (0-7).
* @param field_offset: The base bit offset to apply (e.g., 0 or 4).
* @param field_mask: The mask to apply to extract the required bits.
* @return: The extracted value for the specific channel.
*/
static u16 tps23881_calc_val(u16 reg_val, u8 chan, u8 field_offset,
u16 field_mask)
{
if (chan >= 4)
reg_val >>= 8;
return (reg_val >> field_offset) & field_mask;
}
/*
* Helper to combine individual channel values into a u16 register value.
* The function sets the value for a specific channel in the appropriate
* position.
*
* @param reg_val: The current u16 register value.
* @param chan: The channel number (0-7).
* @param field_offset: The base bit offset to apply (e.g., 0 or 4).
* @param field_mask: The mask to apply for the field (e.g., 0x0F).
* @param field_val: The value to set for the specific channel (masked by
* field_mask).
* @return: The updated u16 register value with the channel value set.
*/
static u16 tps23881_set_val(u16 reg_val, u8 chan, u8 field_offset,
u16 field_mask, u16 field_val)
{
field_val &= field_mask;
if (chan < 4) {
reg_val &= ~(field_mask << field_offset);
reg_val |= (field_val << field_offset);
} else {
reg_val &= ~(field_mask << (field_offset + 8));
reg_val |= (field_val << (field_offset + 8));
}
return reg_val;
}
static int
tps23881_pi_set_pw_pol_limit(struct tps23881_priv *priv, int id, u8 pw_pol,
bool is_4p)
{
struct i2c_client *client = priv->client;
int ret, reg;
u16 val;
u8 chan;
chan = priv->port[id].chan[0];
if (!is_4p) {
reg = TPS23881_REG_2PAIR_POL1 + (chan % 4);
} else {
/* One chan is enough to configure the 4p PI power limit */
if ((chan % 4) < 2)
reg = TPS23881_REG_4PAIR_POL1;
else
reg = TPS23881_REG_4PAIR_POL1 + 1;
}
ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
return ret;
val = tps23881_set_val(ret, chan, 0, 0xff, pw_pol);
return i2c_smbus_write_word_data(client, reg, val);
}
static int tps23881_pi_enable_manual_pol(struct tps23881_priv *priv, int id)
{
struct i2c_client *client = priv->client;
int ret;
u8 chan;
u16 val;
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_FOLDBACK);
if (ret < 0)
return ret;
/* No need to test if the chan is PoE4 as setting either bit for a
* 4P configured port disables the automatic configuration on both
* channels.
*/
chan = priv->port[id].chan[0];
val = tps23881_set_val(ret, chan, 0, BIT(chan % 4), BIT(chan % 4));
return i2c_smbus_write_byte_data(client, TPS23881_REG_FOLDBACK, val);
}
static int tps23881_pi_enable(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
u8 chan;
u16 val;
int ret;
if (id >= TPS23881_MAX_CHANS)
return -ERANGE;
chan = priv->port[id].chan[0];
val = tps23881_set_val(0, chan, 0, BIT(chan % 4), BIT(chan % 4));
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
val = tps23881_set_val(val, chan, 0, BIT(chan % 4),
BIT(chan % 4));
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PW_EN, val);
if (ret)
return ret;
/* Enable DC disconnect*/
chan = priv->port[id].chan[0];
ret = i2c_smbus_read_word_data(client, TPS23881_REG_DISC_EN);
if (ret < 0)
return ret;
val = tps23881_set_val(ret, chan, 0, BIT(chan % 4), BIT(chan % 4));
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DISC_EN, val);
if (ret)
return ret;
return 0;
}
static int tps23881_pi_disable(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
u8 chan;
u16 val;
int ret;
if (id >= TPS23881_MAX_CHANS)
return -ERANGE;
chan = priv->port[id].chan[0];
val = tps23881_set_val(0, chan, 4, BIT(chan % 4), BIT(chan % 4));
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
val = tps23881_set_val(val, chan, 4, BIT(chan % 4),
BIT(chan % 4));
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PW_EN, val);
if (ret)
return ret;
/* PWOFF command resets lots of register which need to be
* configured again. According to the datasheet "It may take upwards
* of 5ms after PWOFFn command for all register values to be updated"
*/
mdelay(5);
/* Disable DC disconnect*/
chan = priv->port[id].chan[0];
ret = i2c_smbus_read_word_data(client, TPS23881_REG_DISC_EN);
if (ret < 0)
return ret;
val = tps23881_set_val(ret, chan, 0, 0, BIT(chan % 4));
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DISC_EN, val);
if (ret)
return ret;
/* Enable detection and classification */
ret = i2c_smbus_read_word_data(client, TPS23881_REG_DET_CLA_EN);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
val = tps23881_set_val(ret, chan, 0, BIT(chan % 4), BIT(chan % 4));
val = tps23881_set_val(val, chan, 4, BIT(chan % 4), BIT(chan % 4));
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
val = tps23881_set_val(ret, chan, 0, BIT(chan % 4),
BIT(chan % 4));
val = tps23881_set_val(val, chan, 4, BIT(chan % 4),
BIT(chan % 4));
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DET_CLA_EN, val);
if (ret)
return ret;
/* No power policy */
if (priv->port[id].pw_pol < 0)
return 0;
ret = tps23881_pi_enable_manual_pol(priv, id);
if (ret < 0)
return ret;
/* Set power policy */
return tps23881_pi_set_pw_pol_limit(priv, id, priv->port[id].pw_pol,
priv->port[id].is_4p);
}
static int
tps23881_pi_get_admin_state(struct pse_controller_dev *pcdev, int id,
struct pse_admin_state *admin_state)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
bool enabled;
u8 chan;
u16 val;
int ret;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
val = tps23881_calc_val(ret, chan, 0, BIT(chan % 4));
enabled = !!(val);
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
val = tps23881_calc_val(ret, chan, 0, BIT(chan % 4));
enabled &= !!(val);
}
/* Return enabled status only if both channel are on this state */
if (enabled)
admin_state->c33_admin_state =
ETHTOOL_C33_PSE_ADMIN_STATE_ENABLED;
else
admin_state->c33_admin_state =
ETHTOOL_C33_PSE_ADMIN_STATE_DISABLED;
return 0;
}
static int
tps23881_pi_get_pw_status(struct pse_controller_dev *pcdev, int id,
struct pse_pw_status *pw_status)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
bool delivering;
u8 chan;
u16 val;
int ret;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_PW_STATUS);
if (ret < 0)
return ret;
chan = priv->port[id].chan[0];
val = tps23881_calc_val(ret, chan, 4, BIT(chan % 4));
delivering = !!(val);
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
val = tps23881_calc_val(ret, chan, 4, BIT(chan % 4));
delivering &= !!(val);
}
/* Return delivering status only if both channel are on this state */
if (delivering)
pw_status->c33_pw_status =
ETHTOOL_C33_PSE_PW_D_STATUS_DELIVERING;
else
pw_status->c33_pw_status =
ETHTOOL_C33_PSE_PW_D_STATUS_DISABLED;
return 0;
}
static int tps23881_pi_get_voltage(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
int ret;
u64 uV;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_INPUT_V);
if (ret < 0)
return ret;
uV = ret & 0x3fff;
uV *= TPS23881_UV_STEP;
return (int)uV;
}
static int
tps23881_pi_get_chan_current(struct tps23881_priv *priv, u8 chan)
{
struct i2c_client *client = priv->client;
int reg, ret;
u64 tmp_64;
/* Registers 0x30 to 0x3d */
reg = TPS23881_REG_CHAN1_A + (chan % 4) * 4 + (chan >= 4);
ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
return ret;
tmp_64 = ret & 0x3fff;
tmp_64 *= TPS23881_NA_STEP;
/* uA = nA / 1000 */
tmp_64 = DIV_ROUND_CLOSEST_ULL(tmp_64, 1000);
return (int)tmp_64;
}
static int tps23881_pi_get_pw_class(struct pse_controller_dev *pcdev,
int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
int ret, reg;
u8 chan;
chan = priv->port[id].chan[0];
reg = TPS23881_REG_CHAN1_CLASS + (chan % 4);
ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
return ret;
return tps23881_calc_val(ret, chan, 4, 0x0f);
}
static int
tps23881_pi_get_actual_pw(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
int ret, uV, uA;
u64 tmp_64;
u8 chan;
ret = tps23881_pi_get_voltage(&priv->pcdev, id);
if (ret < 0)
return ret;
uV = ret;
chan = priv->port[id].chan[0];
ret = tps23881_pi_get_chan_current(priv, chan);
if (ret < 0)
return ret;
uA = ret;
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
ret = tps23881_pi_get_chan_current(priv, chan);
if (ret < 0)
return ret;
uA += ret;
}
tmp_64 = uV;
tmp_64 *= uA;
/* mW = uV * uA / 1000000000 */
return DIV_ROUND_CLOSEST_ULL(tmp_64, 1000000000);
}
static int
tps23881_pi_get_pw_limit_chan(struct tps23881_priv *priv, u8 chan)
{
struct i2c_client *client = priv->client;
int ret, reg;
u16 val;
reg = TPS23881_REG_2PAIR_POL1 + (chan % 4);
ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
return ret;
val = tps23881_calc_val(ret, chan, 0, 0xff);
return val * TPS23881_MW_STEP;
}
static int tps23881_pi_get_pw_limit(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
int ret, mW;
u8 chan;
chan = priv->port[id].chan[0];
ret = tps23881_pi_get_pw_limit_chan(priv, chan);
if (ret < 0)
return ret;
mW = ret;
if (priv->port[id].is_4p) {
chan = priv->port[id].chan[1];
ret = tps23881_pi_get_pw_limit_chan(priv, chan);
if (ret < 0)
return ret;
mW += ret;
}
return mW;
}
static int tps23881_pi_set_pw_limit(struct pse_controller_dev *pcdev,
int id, int max_mW)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
u8 pw_pol;
int ret;
if (max_mW < TPS23881_MIN_PI_PW_LIMIT_MW || MAX_PI_PW < max_mW) {
dev_err(&priv->client->dev,
"power limit %d out of ranges [%d,%d]",
max_mW, TPS23881_MIN_PI_PW_LIMIT_MW, MAX_PI_PW);
return -ERANGE;
}
ret = tps23881_pi_enable_manual_pol(priv, id);
if (ret < 0)
return ret;
pw_pol = DIV_ROUND_CLOSEST_ULL(max_mW, TPS23881_MW_STEP);
/* Save power policy to reconfigure it after a disabled call */
priv->port[id].pw_pol = pw_pol;
return tps23881_pi_set_pw_pol_limit(priv, id, pw_pol,
priv->port[id].is_4p);
}
static int
tps23881_pi_get_pw_limit_ranges(struct pse_controller_dev *pcdev, int id,
struct pse_pw_limit_ranges *pw_limit_ranges)
{
struct ethtool_c33_pse_pw_limit_range *c33_pw_limit_ranges;
c33_pw_limit_ranges = kzalloc(sizeof(*c33_pw_limit_ranges),
GFP_KERNEL);
if (!c33_pw_limit_ranges)
return -ENOMEM;
c33_pw_limit_ranges->min = TPS23881_MIN_PI_PW_LIMIT_MW;
c33_pw_limit_ranges->max = MAX_PI_PW;
pw_limit_ranges->c33_pw_limit_ranges = c33_pw_limit_ranges;
/* Return the number of ranges */
return 1;
}
/* Parse managers subnode into a array of device node */
static int
tps23881_get_of_channels(struct tps23881_priv *priv,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
struct device_node *channels_node, *node;
int i, ret;
if (!priv->np)
return -EINVAL;
channels_node = of_find_node_by_name(priv->np, "channels");
if (!channels_node)
return -EINVAL;
for_each_child_of_node(channels_node, node) {
u32 chan_id;
if (!of_node_name_eq(node, "channel"))
continue;
ret = of_property_read_u32(node, "reg", &chan_id);
if (ret) {
ret = -EINVAL;
goto out;
}
if (chan_id >= TPS23881_MAX_CHANS || chan_node[chan_id]) {
dev_err(&priv->client->dev,
"wrong number of port (%d)\n", chan_id);
ret = -EINVAL;
goto out;
}
of_node_get(node);
chan_node[chan_id] = node;
}
of_node_put(channels_node);
return 0;
out:
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
of_node_put(chan_node[i]);
chan_node[i] = NULL;
}
of_node_put(node);
of_node_put(channels_node);
return ret;
}
struct tps23881_port_matrix {
u8 pi_id;
u8 lgcl_chan[2];
u8 hw_chan[2];
bool is_4p;
bool exist;
};
static int
tps23881_match_channel(const struct pse_pi_pairset *pairset,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
int i;
/* Look on every channels */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (pairset->np == chan_node[i])
return i;
}
return -ENODEV;
}
static bool
tps23881_is_chan_free(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int chan)
{
int i;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (port_matrix[i].exist &&
(port_matrix[i].hw_chan[0] == chan ||
port_matrix[i].hw_chan[1] == chan))
return false;
}
return true;
}
/* Fill port matrix with the matching channels */
static int
tps23881_match_port_matrix(struct pse_pi *pi, int pi_id,
struct device_node *chan_node[TPS23881_MAX_CHANS],
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
int ret;
if (!pi->pairset[0].np)
return 0;
ret = tps23881_match_channel(&pi->pairset[0], chan_node);
if (ret < 0)
return ret;
if (!tps23881_is_chan_free(port_matrix, ret)) {
pr_err("tps23881: channel %d already used\n", ret);
return -ENODEV;
}
port_matrix[pi_id].hw_chan[0] = ret;
port_matrix[pi_id].exist = true;
if (!pi->pairset[1].np)
return 0;
ret = tps23881_match_channel(&pi->pairset[1], chan_node);
if (ret < 0)
return ret;
if (!tps23881_is_chan_free(port_matrix, ret)) {
pr_err("tps23881: channel %d already used\n", ret);
return -ENODEV;
}
if (port_matrix[pi_id].hw_chan[0] / 4 != ret / 4) {
pr_err("tps23881: 4-pair PSE can only be set within the same 4 ports group");
return -ENODEV;
}
port_matrix[pi_id].hw_chan[1] = ret;
port_matrix[pi_id].is_4p = true;
return 0;
}
static int
tps23881_get_unused_chan(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int port_cnt)
{
bool used;
int i, j;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
used = false;
for (j = 0; j < port_cnt; j++) {
if (port_matrix[j].hw_chan[0] == i) {
used = true;
break;
}
if (port_matrix[j].is_4p &&
port_matrix[j].hw_chan[1] == i) {
used = true;
break;
}
}
if (!used)
return i;
}
return -ENODEV;
}
/* Sort the port matrix to following particular hardware ports matrix
* specification of the tps23881. The device has two 4-ports groups and
* each 4-pair powered device has to be configured to use two consecutive
* logical channel in each 4 ports group (1 and 2 or 3 and 4). Also the
* hardware matrix has to be fully configured even with unused chan to be
* valid.
*/
static int
tps23881_sort_port_matrix(struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
struct tps23881_port_matrix tmp_port_matrix[TPS23881_MAX_CHANS] = {0};
int i, ret, port_cnt = 0, cnt_4ch_grp1 = 0, cnt_4ch_grp2 = 4;
/* Configure 4p port matrix */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
int *cnt;
if (!port_matrix[i].exist || !port_matrix[i].is_4p)
continue;
if (port_matrix[i].hw_chan[0] < 4)
cnt = &cnt_4ch_grp1;
else
cnt = &cnt_4ch_grp2;
tmp_port_matrix[port_cnt].exist = true;
tmp_port_matrix[port_cnt].is_4p = true;
tmp_port_matrix[port_cnt].pi_id = i;
tmp_port_matrix[port_cnt].hw_chan[0] = port_matrix[i].hw_chan[0];
tmp_port_matrix[port_cnt].hw_chan[1] = port_matrix[i].hw_chan[1];
/* 4-pair ports have to be configured with consecutive
* logical channels 0 and 1, 2 and 3.
*/
tmp_port_matrix[port_cnt].lgcl_chan[0] = (*cnt)++;
tmp_port_matrix[port_cnt].lgcl_chan[1] = (*cnt)++;
port_cnt++;
}
/* Configure 2p port matrix */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
int *cnt;
if (!port_matrix[i].exist || port_matrix[i].is_4p)
continue;
if (port_matrix[i].hw_chan[0] < 4)
cnt = &cnt_4ch_grp1;
else
cnt = &cnt_4ch_grp2;
tmp_port_matrix[port_cnt].exist = true;
tmp_port_matrix[port_cnt].pi_id = i;
tmp_port_matrix[port_cnt].lgcl_chan[0] = (*cnt)++;
tmp_port_matrix[port_cnt].hw_chan[0] = port_matrix[i].hw_chan[0];
port_cnt++;
}
/* Complete the rest of the first 4 port group matrix even if
* channels are unused
*/
while (cnt_4ch_grp1 < 4) {
ret = tps23881_get_unused_chan(tmp_port_matrix, port_cnt);
if (ret < 0) {
pr_err("tps23881: port matrix issue, no chan available\n");
return ret;
}
if (port_cnt >= TPS23881_MAX_CHANS) {
pr_err("tps23881: wrong number of channels\n");
return -ENODEV;
}
tmp_port_matrix[port_cnt].lgcl_chan[0] = cnt_4ch_grp1;
tmp_port_matrix[port_cnt].hw_chan[0] = ret;
cnt_4ch_grp1++;
port_cnt++;
}
/* Complete the rest of the second 4 port group matrix even if
* channels are unused
*/
while (cnt_4ch_grp2 < 8) {
ret = tps23881_get_unused_chan(tmp_port_matrix, port_cnt);
if (ret < 0) {
pr_err("tps23881: port matrix issue, no chan available\n");
return -ENODEV;
}
if (port_cnt >= TPS23881_MAX_CHANS) {
pr_err("tps23881: wrong number of channels\n");
return -ENODEV;
}
tmp_port_matrix[port_cnt].lgcl_chan[0] = cnt_4ch_grp2;
tmp_port_matrix[port_cnt].hw_chan[0] = ret;
cnt_4ch_grp2++;
port_cnt++;
}
memcpy(port_matrix, tmp_port_matrix, sizeof(tmp_port_matrix));
return port_cnt;
}
/* Write port matrix to the hardware port matrix and the software port
* matrix.
*/
static int
tps23881_write_port_matrix(struct tps23881_priv *priv,
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS],
int port_cnt)
{
struct i2c_client *client = priv->client;
u8 pi_id, lgcl_chan, hw_chan;
u16 val = 0;
int i;
for (i = 0; i < port_cnt; i++) {
pi_id = port_matrix[i].pi_id;
lgcl_chan = port_matrix[i].lgcl_chan[0];
hw_chan = port_matrix[i].hw_chan[0] % 4;
/* Set software port matrix for existing ports */
if (port_matrix[i].exist) {
priv->port[pi_id].chan[0] = lgcl_chan;
priv->port[pi_id].exist = true;
}
/* Initialize power policy internal value */
priv->port[pi_id].pw_pol = -1;
/* Set hardware port matrix for all ports */
val |= hw_chan << (lgcl_chan * 2);
if (!port_matrix[i].is_4p)
continue;
lgcl_chan = port_matrix[i].lgcl_chan[1];
hw_chan = port_matrix[i].hw_chan[1] % 4;
/* Set software port matrix for existing ports */
if (port_matrix[i].exist) {
priv->port[pi_id].is_4p = true;
priv->port[pi_id].chan[1] = lgcl_chan;
}
/* Set hardware port matrix for all ports */
val |= hw_chan << (lgcl_chan * 2);
}
/* Write hardware ports matrix */
return i2c_smbus_write_word_data(client, TPS23881_REG_PORT_MAP, val);
}
static int
tps23881_set_ports_conf(struct tps23881_priv *priv,
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS])
{
struct i2c_client *client = priv->client;
int i, ret;
u16 val;
/* Set operating mode */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_OP_MODE,
TPS23881_OP_MODE_SEMIAUTO);
if (ret)
return ret;
/* Disable DC disconnect */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_DIS_EN, 0x0);
if (ret)
return ret;
/* Set port power allocation */
val = 0;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!port_matrix[i].exist)
continue;
if (port_matrix[i].is_4p)
val |= 0xf << ((port_matrix[i].lgcl_chan[0] / 2) * 4);
else
val |= 0x3 << ((port_matrix[i].lgcl_chan[0] / 2) * 4);
}
ret = i2c_smbus_write_word_data(client, TPS23881_REG_PORT_POWER, val);
if (ret)
return ret;
/* Enable detection and classification */
val = 0;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!port_matrix[i].exist)
continue;
val |= BIT(port_matrix[i].lgcl_chan[0]) |
BIT(port_matrix[i].lgcl_chan[0] + 4);
if (port_matrix[i].is_4p)
val |= BIT(port_matrix[i].lgcl_chan[1]) |
BIT(port_matrix[i].lgcl_chan[1] + 4);
}
return i2c_smbus_write_word_data(client, TPS23881_REG_DET_CLA_EN, val);
}
static int
tps23881_set_ports_matrix(struct tps23881_priv *priv,
struct device_node *chan_node[TPS23881_MAX_CHANS])
{
struct tps23881_port_matrix port_matrix[TPS23881_MAX_CHANS] = {0};
int i, ret;
/* Update with values for every PSE PIs */
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
ret = tps23881_match_port_matrix(&priv->pcdev.pi[i], i,
chan_node, port_matrix);
if (ret)
return ret;
}
ret = tps23881_sort_port_matrix(port_matrix);
if (ret < 0)
return ret;
ret = tps23881_write_port_matrix(priv, port_matrix, ret);
if (ret)
return ret;
return tps23881_set_ports_conf(priv, port_matrix);
}
static int tps23881_setup_pi_matrix(struct pse_controller_dev *pcdev)
{
struct device_node *chan_node[TPS23881_MAX_CHANS] = {NULL};
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
int ret, i;
ret = tps23881_get_of_channels(priv, chan_node);
if (ret < 0) {
dev_warn(&priv->client->dev,
"Unable to parse port-matrix, default matrix will be used\n");
return 0;
}
ret = tps23881_set_ports_matrix(priv, chan_node);
for (i = 0; i < TPS23881_MAX_CHANS; i++)
of_node_put(chan_node[i]);
return ret;
}
static int tps23881_power_class_table[] = {
-ERANGE,
4000,
7000,
15500,
30000,
15500,
15500,
-ERANGE,
45000,
60000,
75000,
90000,
15500,
45000,
-ERANGE,
-ERANGE,
};
static int tps23881_pi_get_pw_req(struct pse_controller_dev *pcdev, int id)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
u8 reg, chan;
int ret;
u16 val;
/* For a 4-pair the classification need 5ms to be completed */
if (priv->port[id].is_4p)
mdelay(5);
chan = priv->port[id].chan[0];
reg = TPS23881_REG_DISC + (chan % 4);
ret = i2c_smbus_read_word_data(client, reg);
if (ret < 0)
return ret;
val = tps23881_calc_val(ret, chan, 4, 0xf);
return tps23881_power_class_table[val];
}
static const struct pse_controller_ops tps23881_ops = {
.setup_pi_matrix = tps23881_setup_pi_matrix,
.pi_enable = tps23881_pi_enable,
.pi_disable = tps23881_pi_disable,
.pi_get_admin_state = tps23881_pi_get_admin_state,
.pi_get_pw_status = tps23881_pi_get_pw_status,
.pi_get_pw_class = tps23881_pi_get_pw_class,
.pi_get_actual_pw = tps23881_pi_get_actual_pw,
.pi_get_voltage = tps23881_pi_get_voltage,
.pi_get_pw_limit = tps23881_pi_get_pw_limit,
.pi_set_pw_limit = tps23881_pi_set_pw_limit,
.pi_get_pw_limit_ranges = tps23881_pi_get_pw_limit_ranges,
.pi_get_pw_req = tps23881_pi_get_pw_req,
};
static const char fw_parity_name[] = "ti/tps23881/tps23881-parity-14.bin";
static const char fw_sram_name[] = "ti/tps23881/tps23881-sram-14.bin";
struct tps23881_fw_conf {
u8 reg;
u8 val;
};
static const struct tps23881_fw_conf tps23881_fw_parity_conf[] = {
{.reg = 0x60, .val = 0x01},
{.reg = 0x62, .val = 0x00},
{.reg = 0x63, .val = 0x80},
{.reg = 0x60, .val = 0xC4},
{.reg = 0x1D, .val = 0xBC},
{.reg = 0xD7, .val = 0x02},
{.reg = 0x91, .val = 0x00},
{.reg = 0x90, .val = 0x00},
{.reg = 0xD7, .val = 0x00},
{.reg = 0x1D, .val = 0x00},
{ /* sentinel */ }
};
static const struct tps23881_fw_conf tps23881_fw_sram_conf[] = {
{.reg = 0x60, .val = 0xC5},
{.reg = 0x62, .val = 0x00},
{.reg = 0x63, .val = 0x80},
{.reg = 0x60, .val = 0xC0},
{.reg = 0x1D, .val = 0xBC},
{.reg = 0xD7, .val = 0x02},
{.reg = 0x91, .val = 0x00},
{.reg = 0x90, .val = 0x00},
{.reg = 0xD7, .val = 0x00},
{.reg = 0x1D, .val = 0x00},
{ /* sentinel */ }
};
static int tps23881_flash_sram_fw_part(struct i2c_client *client,
const char *fw_name,
const struct tps23881_fw_conf *fw_conf)
{
const struct firmware *fw = NULL;
int i, ret;
ret = request_firmware(&fw, fw_name, &client->dev);
if (ret)
return ret;
dev_dbg(&client->dev, "Flashing %s\n", fw_name);
/* Prepare device for RAM download */
while (fw_conf->reg) {
ret = i2c_smbus_write_byte_data(client, fw_conf->reg,
fw_conf->val);
if (ret)
goto out;
fw_conf++;
}
/* Flash the firmware file */
for (i = 0; i < fw->size; i++) {
ret = i2c_smbus_write_byte_data(client,
TPS23881_REG_SRAM_DATA,
fw->data[i]);
if (ret)
goto out;
}
out:
release_firmware(fw);
return ret;
}
static int tps23881_flash_sram_fw(struct i2c_client *client)
{
int ret;
ret = tps23881_flash_sram_fw_part(client, fw_parity_name,
tps23881_fw_parity_conf);
if (ret)
return ret;
ret = tps23881_flash_sram_fw_part(client, fw_sram_name,
tps23881_fw_sram_conf);
if (ret)
return ret;
ret = i2c_smbus_write_byte_data(client, TPS23881_REG_SRAM_CTRL, 0x18);
if (ret)
return ret;
mdelay(12);
return 0;
}
/* Convert interrupt events to 0xff to be aligned with the chan
* number.
*/
static u8 tps23881_irq_export_chans_helper(u16 reg_val, u8 field_offset)
{
u8 val;
val = (reg_val >> (4 + field_offset) & 0xf0) |
(reg_val >> field_offset & 0x0f);
return val;
}
/* Convert chan number to port number */
static void tps23881_set_notifs_helper(struct tps23881_priv *priv,
u8 chans,
unsigned long *notifs,
unsigned long *notifs_mask,
enum ethtool_pse_event event)
{
u8 chan;
int i;
if (!chans)
return;
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!priv->port[i].exist)
continue;
/* No need to look at the 2nd channel in case of PoE4 as
* both registers are set.
*/
chan = priv->port[i].chan[0];
if (BIT(chan) & chans) {
*notifs_mask |= BIT(i);
notifs[i] |= event;
}
}
}
static void tps23881_irq_event_over_temp(struct tps23881_priv *priv,
u16 reg_val,
unsigned long *notifs,
unsigned long *notifs_mask)
{
int i;
if (reg_val & TPS23881_REG_TSD) {
for (i = 0; i < TPS23881_MAX_CHANS; i++) {
if (!priv->port[i].exist)
continue;
*notifs_mask |= BIT(i);
notifs[i] |= ETHTOOL_PSE_EVENT_OVER_TEMP;
}
}
}
static int tps23881_irq_event_over_current(struct tps23881_priv *priv,
u16 reg_val,
unsigned long *notifs,
unsigned long *notifs_mask)
{
int i, ret;
u8 chans;
chans = tps23881_irq_export_chans_helper(reg_val, 0);
if (!chans)
return 0;
tps23881_set_notifs_helper(priv, chans, notifs, notifs_mask,
ETHTOOL_PSE_EVENT_OVER_CURRENT |
ETHTOOL_C33_PSE_EVENT_DISCONNECTION);
/* Over Current event resets the power limit registers so we need
* to configured it again.
*/
for_each_set_bit(i, notifs_mask, priv->pcdev.nr_lines) {
if (priv->port[i].pw_pol < 0)
continue;
ret = tps23881_pi_enable_manual_pol(priv, i);
if (ret < 0)
return ret;
/* Set power policy */
ret = tps23881_pi_set_pw_pol_limit(priv, i,
priv->port[i].pw_pol,
priv->port[i].is_4p);
if (ret < 0)
return ret;
}
return 0;
}
static void tps23881_irq_event_disconnection(struct tps23881_priv *priv,
u16 reg_val,
unsigned long *notifs,
unsigned long *notifs_mask)
{
u8 chans;
chans = tps23881_irq_export_chans_helper(reg_val, 4);
if (chans)
tps23881_set_notifs_helper(priv, chans, notifs, notifs_mask,
ETHTOOL_C33_PSE_EVENT_DISCONNECTION);
}
static int tps23881_irq_event_detection(struct tps23881_priv *priv,
u16 reg_val,
unsigned long *notifs,
unsigned long *notifs_mask)
{
enum ethtool_pse_event event;
int reg, ret, i, val;
unsigned long chans;
chans = tps23881_irq_export_chans_helper(reg_val, 0);
for_each_set_bit(i, &chans, TPS23881_MAX_CHANS) {
reg = TPS23881_REG_DISC + (i % 4);
ret = i2c_smbus_read_word_data(priv->client, reg);
if (ret < 0)
return ret;
val = tps23881_calc_val(ret, i, 0, 0xf);
/* If detection valid */
if (val == 0x4)
event = ETHTOOL_C33_PSE_EVENT_DETECTION;
else
event = ETHTOOL_C33_PSE_EVENT_DISCONNECTION;
tps23881_set_notifs_helper(priv, BIT(i), notifs,
notifs_mask, event);
}
return 0;
}
static int tps23881_irq_event_classification(struct tps23881_priv *priv,
u16 reg_val,
unsigned long *notifs,
unsigned long *notifs_mask)
{
int reg, ret, val, i;
unsigned long chans;
chans = tps23881_irq_export_chans_helper(reg_val, 4);
for_each_set_bit(i, &chans, TPS23881_MAX_CHANS) {
reg = TPS23881_REG_DISC + (i % 4);
ret = i2c_smbus_read_word_data(priv->client, reg);
if (ret < 0)
return ret;
val = tps23881_calc_val(ret, i, 4, 0xf);
/* Do not report classification event for unknown class */
if (!val || val == 0x8 || val == 0xf)
continue;
tps23881_set_notifs_helper(priv, BIT(i), notifs,
notifs_mask,
ETHTOOL_C33_PSE_EVENT_CLASSIFICATION);
}
return 0;
}
static int tps23881_irq_event_handler(struct tps23881_priv *priv, u16 reg,
unsigned long *notifs,
unsigned long *notifs_mask)
{
struct i2c_client *client = priv->client;
int ret, val;
/* The Supply event bit is repeated twice so we only need to read
* the one from the first byte.
*/
if (reg & TPS23881_REG_IT_SUPF) {
ret = i2c_smbus_read_word_data(client, TPS23881_REG_SUPF_EVENT);
if (ret < 0)
return ret;
tps23881_irq_event_over_temp(priv, ret, notifs, notifs_mask);
}
if (reg & (TPS23881_REG_IT_IFAULT | TPS23881_REG_IT_IFAULT << 8 |
TPS23881_REG_IT_DISF | TPS23881_REG_IT_DISF << 8)) {
ret = i2c_smbus_read_word_data(client, TPS23881_REG_FAULT);
if (ret < 0)
return ret;
ret = tps23881_irq_event_over_current(priv, ret, notifs,
notifs_mask);
if (ret)
return ret;
tps23881_irq_event_disconnection(priv, ret, notifs, notifs_mask);
}
if (reg & (TPS23881_REG_IT_DETC | TPS23881_REG_IT_DETC << 8 |
TPS23881_REG_IT_CLASC | TPS23881_REG_IT_CLASC << 8)) {
ret = i2c_smbus_read_word_data(client, TPS23881_REG_DET_EVENT);
if (ret < 0)
return ret;
val = ret;
ret = tps23881_irq_event_detection(priv, val, notifs,
notifs_mask);
if (ret)
return ret;
ret = tps23881_irq_event_classification(priv, val, notifs,
notifs_mask);
if (ret)
return ret;
}
return 0;
}
static int tps23881_irq_handler(int irq, struct pse_controller_dev *pcdev,
unsigned long *notifs,
unsigned long *notifs_mask)
{
struct tps23881_priv *priv = to_tps23881_priv(pcdev);
struct i2c_client *client = priv->client;
int ret, it_mask, retry;
/* Get interruption mask */
ret = i2c_smbus_read_word_data(client, TPS23881_REG_IT_MASK);
if (ret < 0)
return ret;
it_mask = ret;
/* Read interrupt register until it frees the interruption pin. */
retry = 0;
while (true) {
if (retry > TPS23881_MAX_IRQ_RETRIES) {
dev_err(&client->dev, "interrupt never freed");
return -ETIMEDOUT;
}
ret = i2c_smbus_read_word_data(client, TPS23881_REG_IT);
if (ret < 0)
return ret;
/* No more relevant interruption */
if (!(ret & it_mask))
return 0;
ret = tps23881_irq_event_handler(priv, (u16)ret, notifs,
notifs_mask);
if (ret)
return ret;
retry++;
}
return 0;
}
static int tps23881_setup_irq(struct tps23881_priv *priv, int irq)
{
struct i2c_client *client = priv->client;
struct pse_irq_desc irq_desc = {
.name = "tps23881-irq",
.map_event = tps23881_irq_handler,
};
int ret;
u16 val;
if (!irq) {
dev_err(&client->dev, "interrupt is missing");
return -EINVAL;
}
val = TPS23881_REG_IT_IFAULT | TPS23881_REG_IT_SUPF |
TPS23881_REG_IT_DETC | TPS23881_REG_IT_CLASC |
TPS23881_REG_IT_DISF;
val |= val << 8;
ret = i2c_smbus_write_word_data(client, TPS23881_REG_IT_MASK, val);
if (ret)
return ret;
ret = i2c_smbus_read_word_data(client, TPS23881_REG_GEN_MASK);
if (ret < 0)
return ret;
val = TPS23881_REG_INTEN | TPS23881_REG_CLCHE | TPS23881_REG_DECHE;
val |= val << 8;
val |= (u16)ret;
ret = i2c_smbus_write_word_data(client, TPS23881_REG_GEN_MASK, val);
if (ret < 0)
return ret;
/* Reset interrupts registers */
ret = i2c_smbus_write_word_data(client, TPS23881_REG_RESET,
TPS23881_REG_CLRAIN);
if (ret < 0)
return ret;
return devm_pse_irq_helper(&priv->pcdev, irq, 0, &irq_desc);
}
static int tps23881_i2c_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct tps23881_priv *priv;
struct gpio_desc *reset;
int ret;
u8 val;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "i2c check functionality failed\n");
return -ENXIO;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(reset))
return dev_err_probe(&client->dev, PTR_ERR(reset), "Failed to get reset GPIO\n");
if (reset) {
/* TPS23880 datasheet (Rev G) indicates minimum reset pulse is 5us */
usleep_range(5, 10);
gpiod_set_value_cansleep(reset, 0); /* De-assert reset */
/* TPS23880 datasheet indicates the minimum time after power on reset
* should be 20ms, but the document describing how to load SRAM ("How
* to Load TPS2388x SRAM and Parity Code over I2C" (Rev E))
* indicates we should delay that programming by at least 50ms. So
* we'll wait the entire 50ms here to ensure we're safe to go to the
* SRAM loading proceedure.
*/
msleep(50);
}
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_DEVID);
if (ret < 0)
return ret;
if (FIELD_GET(TPS23881_REG_DEVID_MASK, ret) != TPS23881_DEVICE_ID) {
dev_err(dev, "Wrong device ID\n");
return -ENXIO;
}
ret = tps23881_flash_sram_fw(client);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_FWREV);
if (ret < 0)
return ret;
dev_info(&client->dev, "Firmware revision 0x%x\n", ret);
/* Set configuration B, 16 bit access on a single device address */
ret = i2c_smbus_read_byte_data(client, TPS23881_REG_GEN_MASK);
if (ret < 0)
return ret;
val = ret | TPS23881_REG_NBITACC;
ret = i2c_smbus_write_byte_data(client, TPS23881_REG_GEN_MASK, val);
if (ret)
return ret;
priv->client = client;
i2c_set_clientdata(client, priv);
priv->np = dev->of_node;
priv->pcdev.owner = THIS_MODULE;
priv->pcdev.ops = &tps23881_ops;
priv->pcdev.dev = dev;
priv->pcdev.types = ETHTOOL_PSE_C33;
priv->pcdev.nr_lines = TPS23881_MAX_CHANS;
priv->pcdev.supp_budget_eval_strategies = PSE_BUDGET_EVAL_STRAT_STATIC;
ret = devm_pse_controller_register(dev, &priv->pcdev);
if (ret) {
return dev_err_probe(dev, ret,
"failed to register PSE controller\n");
}
ret = tps23881_setup_irq(priv, client->irq);
if (ret)
return ret;
return ret;
}
static const struct i2c_device_id tps23881_id[] = {
{ "tps23881" },
{ }
};
MODULE_DEVICE_TABLE(i2c, tps23881_id);
static const struct of_device_id tps23881_of_match[] = {
{ .compatible = "ti,tps23881", },
{ },
};
MODULE_DEVICE_TABLE(of, tps23881_of_match);
static struct i2c_driver tps23881_driver = {
.probe = tps23881_i2c_probe,
.id_table = tps23881_id,
.driver = {
.name = "tps23881",
.of_match_table = tps23881_of_match,
},
};
module_i2c_driver(tps23881_driver);
MODULE_AUTHOR("Kory Maincent <kory.maincent@bootlin.com>");
MODULE_DESCRIPTION("TI TPS23881 PoE PSE Controller driver");
MODULE_LICENSE("GPL");