linux/drivers/net/ethernet/marvell/octeontx2/nic/cn10k_ipsec.c

1042 lines
26 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Marvell IPSEC offload driver
*
* Copyright (C) 2024 Marvell.
*/
#include <net/xfrm.h>
#include <linux/netdevice.h>
#include <linux/bitfield.h>
#include <crypto/aead.h>
#include <crypto/gcm.h>
#include "otx2_common.h"
#include "otx2_struct.h"
#include "cn10k_ipsec.h"
static bool is_dev_support_ipsec_offload(struct pci_dev *pdev)
{
return is_dev_cn10ka_b0(pdev) || is_dev_cn10kb(pdev);
}
static bool cn10k_cpt_device_set_inuse(struct otx2_nic *pf)
{
enum cn10k_cpt_hw_state_e state;
while (true) {
state = atomic_cmpxchg(&pf->ipsec.cpt_state,
CN10K_CPT_HW_AVAILABLE,
CN10K_CPT_HW_IN_USE);
if (state == CN10K_CPT_HW_AVAILABLE)
return true;
if (state == CN10K_CPT_HW_UNAVAILABLE)
return false;
mdelay(1);
}
}
static void cn10k_cpt_device_set_available(struct otx2_nic *pf)
{
atomic_set(&pf->ipsec.cpt_state, CN10K_CPT_HW_AVAILABLE);
}
static void cn10k_cpt_device_set_unavailable(struct otx2_nic *pf)
{
atomic_set(&pf->ipsec.cpt_state, CN10K_CPT_HW_UNAVAILABLE);
}
static int cn10k_outb_cptlf_attach(struct otx2_nic *pf)
{
struct rsrc_attach *attach;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
/* Get memory to put this msg */
attach = otx2_mbox_alloc_msg_attach_resources(&pf->mbox);
if (!attach)
goto unlock;
attach->cptlfs = true;
attach->modify = true;
/* Send attach request to AF */
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static int cn10k_outb_cptlf_detach(struct otx2_nic *pf)
{
struct rsrc_detach *detach;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
detach = otx2_mbox_alloc_msg_detach_resources(&pf->mbox);
if (!detach)
goto unlock;
detach->partial = true;
detach->cptlfs = true;
/* Send detach request to AF */
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static int cn10k_outb_cptlf_alloc(struct otx2_nic *pf)
{
struct cpt_lf_alloc_req_msg *req;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_cpt_lf_alloc(&pf->mbox);
if (!req)
goto unlock;
/* PF function */
req->nix_pf_func = pf->pcifunc;
/* Enable SE-IE Engine Group */
req->eng_grpmsk = 1 << CN10K_DEF_CPT_IPSEC_EGRP;
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static void cn10k_outb_cptlf_free(struct otx2_nic *pf)
{
mutex_lock(&pf->mbox.lock);
otx2_mbox_alloc_msg_cpt_lf_free(&pf->mbox);
otx2_sync_mbox_msg(&pf->mbox);
mutex_unlock(&pf->mbox.lock);
}
static int cn10k_outb_cptlf_config(struct otx2_nic *pf)
{
struct cpt_inline_ipsec_cfg_msg *req;
int ret = -ENOMEM;
mutex_lock(&pf->mbox.lock);
req = otx2_mbox_alloc_msg_cpt_inline_ipsec_cfg(&pf->mbox);
if (!req)
goto unlock;
req->dir = CPT_INLINE_OUTBOUND;
req->enable = 1;
req->nix_pf_func = pf->pcifunc;
ret = otx2_sync_mbox_msg(&pf->mbox);
unlock:
mutex_unlock(&pf->mbox.lock);
return ret;
}
static void cn10k_outb_cptlf_iq_enable(struct otx2_nic *pf)
{
u64 reg_val;
/* Set Execution Enable of instruction queue */
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
reg_val |= BIT_ULL(16);
otx2_write64(pf, CN10K_CPT_LF_INPROG, reg_val);
/* Set iqueue's enqueuing */
reg_val = otx2_read64(pf, CN10K_CPT_LF_CTL);
reg_val |= BIT_ULL(0);
otx2_write64(pf, CN10K_CPT_LF_CTL, reg_val);
}
static void cn10k_outb_cptlf_iq_disable(struct otx2_nic *pf)
{
u32 inflight, grb_cnt, gwb_cnt;
u32 nq_ptr, dq_ptr;
int timeout = 20;
u64 reg_val;
int cnt;
/* Disable instructions enqueuing */
otx2_write64(pf, CN10K_CPT_LF_CTL, 0ull);
/* Wait for instruction queue to become empty.
* CPT_LF_INPROG.INFLIGHT count is zero
*/
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
inflight = FIELD_GET(CPT_LF_INPROG_INFLIGHT, reg_val);
if (!inflight)
break;
usleep_range(10000, 20000);
if (timeout-- < 0) {
netdev_err(pf->netdev, "Timeout to cleanup CPT IQ\n");
break;
}
} while (1);
/* Disable executions in the LF's queue,
* the queue should be empty at this point
*/
reg_val &= ~BIT_ULL(16);
otx2_write64(pf, CN10K_CPT_LF_INPROG, reg_val);
/* Wait for instruction queue to become empty */
cnt = 0;
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
if (reg_val & BIT_ULL(31))
cnt = 0;
else
cnt++;
reg_val = otx2_read64(pf, CN10K_CPT_LF_Q_GRP_PTR);
nq_ptr = FIELD_GET(CPT_LF_Q_GRP_PTR_DQ_PTR, reg_val);
dq_ptr = FIELD_GET(CPT_LF_Q_GRP_PTR_DQ_PTR, reg_val);
} while ((cnt < 10) && (nq_ptr != dq_ptr));
cnt = 0;
do {
reg_val = otx2_read64(pf, CN10K_CPT_LF_INPROG);
inflight = FIELD_GET(CPT_LF_INPROG_INFLIGHT, reg_val);
grb_cnt = FIELD_GET(CPT_LF_INPROG_GRB_CNT, reg_val);
gwb_cnt = FIELD_GET(CPT_LF_INPROG_GWB_CNT, reg_val);
if (inflight == 0 && gwb_cnt < 40 &&
(grb_cnt == 0 || grb_cnt == 40))
cnt++;
else
cnt = 0;
} while (cnt < 10);
}
/* Allocate memory for CPT outbound Instruction queue.
* Instruction queue memory format is:
* -----------------------------
* | Instruction Group memory |
* | (CPT_LF_Q_SIZE[SIZE_DIV40] |
* | x 16 Bytes) |
* | |
* ----------------------------- <-- CPT_LF_Q_BASE[ADDR]
* | Flow Control (128 Bytes) |
* | |
* -----------------------------
* | Instruction Memory |
* | (CPT_LF_Q_SIZE[SIZE_DIV40] |
* | × 40 × 64 bytes) |
* | |
* -----------------------------
*/
static int cn10k_outb_cptlf_iq_alloc(struct otx2_nic *pf)
{
struct cn10k_cpt_inst_queue *iq = &pf->ipsec.iq;
iq->size = CN10K_CPT_INST_QLEN_BYTES + CN10K_CPT_Q_FC_LEN +
CN10K_CPT_INST_GRP_QLEN_BYTES + OTX2_ALIGN;
iq->real_vaddr = dma_alloc_coherent(pf->dev, iq->size,
&iq->real_dma_addr, GFP_KERNEL);
if (!iq->real_vaddr)
return -ENOMEM;
/* iq->vaddr/dma_addr points to Flow Control location */
iq->vaddr = iq->real_vaddr + CN10K_CPT_INST_GRP_QLEN_BYTES;
iq->dma_addr = iq->real_dma_addr + CN10K_CPT_INST_GRP_QLEN_BYTES;
/* Align pointers */
iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_ALIGN);
iq->dma_addr = PTR_ALIGN(iq->dma_addr, OTX2_ALIGN);
return 0;
}
static void cn10k_outb_cptlf_iq_free(struct otx2_nic *pf)
{
struct cn10k_cpt_inst_queue *iq = &pf->ipsec.iq;
if (iq->real_vaddr)
dma_free_coherent(pf->dev, iq->size, iq->real_vaddr,
iq->real_dma_addr);
iq->real_vaddr = NULL;
iq->vaddr = NULL;
}
static int cn10k_outb_cptlf_iq_init(struct otx2_nic *pf)
{
u64 reg_val;
int ret;
/* Allocate Memory for CPT IQ */
ret = cn10k_outb_cptlf_iq_alloc(pf);
if (ret)
return ret;
/* Disable IQ */
cn10k_outb_cptlf_iq_disable(pf);
/* Set IQ base address */
otx2_write64(pf, CN10K_CPT_LF_Q_BASE, pf->ipsec.iq.dma_addr);
/* Set IQ size */
reg_val = FIELD_PREP(CPT_LF_Q_SIZE_DIV40, CN10K_CPT_SIZE_DIV40 +
CN10K_CPT_EXTRA_SIZE_DIV40);
otx2_write64(pf, CN10K_CPT_LF_Q_SIZE, reg_val);
return 0;
}
static int cn10k_outb_cptlf_init(struct otx2_nic *pf)
{
int ret;
/* Initialize CPTLF Instruction Queue (IQ) */
ret = cn10k_outb_cptlf_iq_init(pf);
if (ret)
return ret;
/* Configure CPTLF for outbound ipsec offload */
ret = cn10k_outb_cptlf_config(pf);
if (ret)
goto iq_clean;
/* Enable CPTLF IQ */
cn10k_outb_cptlf_iq_enable(pf);
return 0;
iq_clean:
cn10k_outb_cptlf_iq_free(pf);
return ret;
}
static int cn10k_outb_cpt_init(struct net_device *netdev)
{
struct otx2_nic *pf = netdev_priv(netdev);
int ret;
/* Attach a CPT LF for outbound ipsec offload */
ret = cn10k_outb_cptlf_attach(pf);
if (ret)
return ret;
/* Allocate a CPT LF for outbound ipsec offload */
ret = cn10k_outb_cptlf_alloc(pf);
if (ret)
goto detach;
/* Initialize the CPTLF for outbound ipsec offload */
ret = cn10k_outb_cptlf_init(pf);
if (ret)
goto lf_free;
pf->ipsec.io_addr = (__force u64)otx2_get_regaddr(pf,
CN10K_CPT_LF_NQX(0));
/* Set ipsec offload enabled for this device */
pf->flags |= OTX2_FLAG_IPSEC_OFFLOAD_ENABLED;
cn10k_cpt_device_set_available(pf);
return 0;
lf_free:
cn10k_outb_cptlf_free(pf);
detach:
cn10k_outb_cptlf_detach(pf);
return ret;
}
static int cn10k_outb_cpt_clean(struct otx2_nic *pf)
{
int ret;
if (!cn10k_cpt_device_set_inuse(pf)) {
netdev_err(pf->netdev, "CPT LF device unavailable\n");
return -ENODEV;
}
/* Set ipsec offload disabled for this device */
pf->flags &= ~OTX2_FLAG_IPSEC_OFFLOAD_ENABLED;
/* Disable CPTLF Instruction Queue (IQ) */
cn10k_outb_cptlf_iq_disable(pf);
/* Set IQ base address and size to 0 */
otx2_write64(pf, CN10K_CPT_LF_Q_BASE, 0);
otx2_write64(pf, CN10K_CPT_LF_Q_SIZE, 0);
/* Free CPTLF IQ */
cn10k_outb_cptlf_iq_free(pf);
/* Free and detach CPT LF */
cn10k_outb_cptlf_free(pf);
ret = cn10k_outb_cptlf_detach(pf);
if (ret)
netdev_err(pf->netdev, "Failed to detach CPT LF\n");
cn10k_cpt_device_set_unavailable(pf);
return ret;
}
static void cn10k_cpt_inst_flush(struct otx2_nic *pf, struct cpt_inst_s *inst,
u64 size)
{
struct otx2_lmt_info *lmt_info;
u64 val = 0, tar_addr = 0;
lmt_info = per_cpu_ptr(pf->hw.lmt_info, smp_processor_id());
/* FIXME: val[0:10] LMT_ID.
* [12:15] no of LMTST - 1 in the burst.
* [19:63] data size of each LMTST in the burst except first.
*/
val = (lmt_info->lmt_id & 0x7FF);
/* Target address for LMTST flush tells HW how many 128bit
* words are present.
* tar_addr[6:4] size of first LMTST - 1 in units of 128b.
*/
tar_addr |= pf->ipsec.io_addr | (((size / 16) - 1) & 0x7) << 4;
dma_wmb();
memcpy((u64 *)lmt_info->lmt_addr, inst, size);
cn10k_lmt_flush(val, tar_addr);
}
static int cn10k_wait_for_cpt_respose(struct otx2_nic *pf,
struct cpt_res_s *res)
{
unsigned long timeout = jiffies + msecs_to_jiffies(100);
u64 *completion_ptr = (u64 *)res;
do {
if (time_after(jiffies, timeout)) {
netdev_err(pf->netdev, "CPT response timeout\n");
return -EBUSY;
}
} while ((READ_ONCE(*completion_ptr) & CN10K_CPT_COMP_E_MASK) ==
CN10K_CPT_COMP_E_NOTDONE);
if (!(res->compcode == CN10K_CPT_COMP_E_GOOD ||
res->compcode == CN10K_CPT_COMP_E_WARN) || res->uc_compcode) {
netdev_err(pf->netdev, "compcode=%x doneint=%x\n",
res->compcode, res->doneint);
netdev_err(pf->netdev, "uc_compcode=%x uc_info=%llx esn=%llx\n",
res->uc_compcode, (u64)res->uc_info, res->esn);
}
return 0;
}
static int cn10k_outb_write_sa(struct otx2_nic *pf, struct qmem *sa_info)
{
dma_addr_t res_iova, dptr_iova, sa_iova;
struct cn10k_tx_sa_s *sa_dptr;
struct cpt_inst_s inst = {};
struct cpt_res_s *res;
u32 sa_size, off;
u64 *sptr, *dptr;
u64 reg_val;
int ret;
sa_iova = sa_info->iova;
if (!sa_iova)
return -EINVAL;
res = dma_alloc_coherent(pf->dev, sizeof(struct cpt_res_s),
&res_iova, GFP_ATOMIC);
if (!res)
return -ENOMEM;
sa_size = sizeof(struct cn10k_tx_sa_s);
sa_dptr = dma_alloc_coherent(pf->dev, sa_size, &dptr_iova, GFP_ATOMIC);
if (!sa_dptr) {
dma_free_coherent(pf->dev, sizeof(struct cpt_res_s), res,
res_iova);
return -ENOMEM;
}
sptr = (__force u64 *)sa_info->base;
dptr = (__force u64 *)sa_dptr;
for (off = 0; off < (sa_size / 8); off++)
*(dptr + off) = (__force u64)cpu_to_be64(*(sptr + off));
res->compcode = CN10K_CPT_COMP_E_NOTDONE;
inst.res_addr = res_iova;
inst.dptr = (u64)dptr_iova;
inst.param2 = sa_size >> 3;
inst.dlen = sa_size;
inst.opcode_major = CN10K_IPSEC_MAJOR_OP_WRITE_SA;
inst.opcode_minor = CN10K_IPSEC_MINOR_OP_WRITE_SA;
inst.cptr = sa_iova;
inst.ctx_val = 1;
inst.egrp = CN10K_DEF_CPT_IPSEC_EGRP;
/* Check if CPT-LF available */
if (!cn10k_cpt_device_set_inuse(pf)) {
ret = -ENODEV;
goto free_mem;
}
cn10k_cpt_inst_flush(pf, &inst, sizeof(struct cpt_inst_s));
dma_wmb();
ret = cn10k_wait_for_cpt_respose(pf, res);
if (ret)
goto set_available;
/* Trigger CTX flush to write dirty data back to DRAM */
reg_val = FIELD_PREP(CPT_LF_CTX_FLUSH_CPTR, sa_iova >> 7);
otx2_write64(pf, CN10K_CPT_LF_CTX_FLUSH, reg_val);
set_available:
cn10k_cpt_device_set_available(pf);
free_mem:
dma_free_coherent(pf->dev, sa_size, sa_dptr, dptr_iova);
dma_free_coherent(pf->dev, sizeof(struct cpt_res_s), res, res_iova);
return ret;
}
static int cn10k_ipsec_get_hw_ctx_offset(void)
{
/* Offset on Hardware-context offset in word */
return (offsetof(struct cn10k_tx_sa_s, hw_ctx) / sizeof(u64)) & 0x7F;
}
static int cn10k_ipsec_get_ctx_push_size(void)
{
/* Context push size is round up and in multiple of 8 Byte */
return (roundup(offsetof(struct cn10k_tx_sa_s, hw_ctx), 8) / 8) & 0x7F;
}
static int cn10k_ipsec_get_aes_key_len(int key_len)
{
/* key_len is aes key length in bytes */
switch (key_len) {
case 16:
return CN10K_IPSEC_SA_AES_KEY_LEN_128;
case 24:
return CN10K_IPSEC_SA_AES_KEY_LEN_192;
default:
return CN10K_IPSEC_SA_AES_KEY_LEN_256;
}
}
static void cn10k_outb_prepare_sa(struct xfrm_state *x,
struct cn10k_tx_sa_s *sa_entry)
{
int key_len = (x->aead->alg_key_len + 7) / 8;
struct net_device *netdev = x->xso.dev;
u8 *key = x->aead->alg_key;
struct otx2_nic *pf;
u32 *tmp_salt;
u64 *tmp_key;
int idx;
memset(sa_entry, 0, sizeof(struct cn10k_tx_sa_s));
/* context size, 128 Byte aligned up */
pf = netdev_priv(netdev);
sa_entry->ctx_size = (pf->ipsec.sa_size / OTX2_ALIGN) & 0xF;
sa_entry->hw_ctx_off = cn10k_ipsec_get_hw_ctx_offset();
sa_entry->ctx_push_size = cn10k_ipsec_get_ctx_push_size();
/* Ucode to skip two words of CPT_CTX_HW_S */
sa_entry->ctx_hdr_size = 1;
/* Allow Atomic operation (AOP) */
sa_entry->aop_valid = 1;
/* Outbound, ESP TRANSPORT/TUNNEL Mode, AES-GCM with */
sa_entry->sa_dir = CN10K_IPSEC_SA_DIR_OUTB;
sa_entry->ipsec_protocol = CN10K_IPSEC_SA_IPSEC_PROTO_ESP;
sa_entry->enc_type = CN10K_IPSEC_SA_ENCAP_TYPE_AES_GCM;
sa_entry->iv_src = CN10K_IPSEC_SA_IV_SRC_PACKET;
if (x->props.mode == XFRM_MODE_TUNNEL)
sa_entry->ipsec_mode = CN10K_IPSEC_SA_IPSEC_MODE_TUNNEL;
else
sa_entry->ipsec_mode = CN10K_IPSEC_SA_IPSEC_MODE_TRANSPORT;
/* Last 4 bytes are salt */
key_len -= 4;
sa_entry->aes_key_len = cn10k_ipsec_get_aes_key_len(key_len);
memcpy(sa_entry->cipher_key, key, key_len);
tmp_key = (u64 *)sa_entry->cipher_key;
for (idx = 0; idx < key_len / 8; idx++)
tmp_key[idx] = (__force u64)cpu_to_be64(tmp_key[idx]);
memcpy(&sa_entry->iv_gcm_salt, key + key_len, 4);
tmp_salt = (u32 *)&sa_entry->iv_gcm_salt;
*tmp_salt = (__force u32)cpu_to_be32(*tmp_salt);
/* Write SA context data to memory before enabling */
wmb();
/* Enable SA */
sa_entry->sa_valid = 1;
}
static int cn10k_ipsec_validate_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
if (x->props.aalgo != SADB_AALG_NONE) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload authenticated xfrm states");
return -EINVAL;
}
if (x->props.ealgo != SADB_X_EALG_AES_GCM_ICV16) {
NL_SET_ERR_MSG_MOD(extack,
"Only AES-GCM-ICV16 xfrm state may be offloaded");
return -EINVAL;
}
if (x->props.calgo != SADB_X_CALG_NONE) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload compressed xfrm states");
return -EINVAL;
}
if (x->props.flags & XFRM_STATE_ESN) {
NL_SET_ERR_MSG_MOD(extack, "Cannot offload ESN xfrm states");
return -EINVAL;
}
if (x->props.family != AF_INET && x->props.family != AF_INET6) {
NL_SET_ERR_MSG_MOD(extack,
"Only IPv4/v6 xfrm states may be offloaded");
return -EINVAL;
}
if (x->xso.type != XFRM_DEV_OFFLOAD_CRYPTO) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload other than crypto-mode");
return -EINVAL;
}
if (x->props.mode != XFRM_MODE_TRANSPORT &&
x->props.mode != XFRM_MODE_TUNNEL) {
NL_SET_ERR_MSG_MOD(extack,
"Only tunnel/transport xfrm states may be offloaded");
return -EINVAL;
}
if (x->id.proto != IPPROTO_ESP) {
NL_SET_ERR_MSG_MOD(extack,
"Only ESP xfrm state may be offloaded");
return -EINVAL;
}
if (x->encap) {
NL_SET_ERR_MSG_MOD(extack,
"Encapsulated xfrm state may not be offloaded");
return -EINVAL;
}
if (!x->aead) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states without aead");
return -EINVAL;
}
if (x->aead->alg_icv_len != 128) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with AEAD ICV length other than 128bit");
return -EINVAL;
}
if (x->aead->alg_key_len != 128 + 32 &&
x->aead->alg_key_len != 192 + 32 &&
x->aead->alg_key_len != 256 + 32) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with AEAD key length other than 128/192/256bit");
return -EINVAL;
}
if (x->tfcpad) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with tfc padding");
return -EINVAL;
}
if (!x->geniv) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states without geniv");
return -EINVAL;
}
if (strcmp(x->geniv, "seqiv")) {
NL_SET_ERR_MSG_MOD(extack,
"Cannot offload xfrm states with geniv other than seqiv");
return -EINVAL;
}
return 0;
}
static int cn10k_ipsec_inb_add_state(struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
NL_SET_ERR_MSG_MOD(extack, "xfrm inbound offload not supported");
return -EOPNOTSUPP;
}
static int cn10k_ipsec_outb_add_state(struct net_device *dev,
struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
struct cn10k_tx_sa_s *sa_entry;
struct qmem *sa_info;
struct otx2_nic *pf;
int err;
err = cn10k_ipsec_validate_state(x, extack);
if (err)
return err;
pf = netdev_priv(dev);
err = qmem_alloc(pf->dev, &sa_info, pf->ipsec.sa_size, OTX2_ALIGN);
if (err)
return err;
sa_entry = (struct cn10k_tx_sa_s *)sa_info->base;
cn10k_outb_prepare_sa(x, sa_entry);
err = cn10k_outb_write_sa(pf, sa_info);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Error writing outbound SA");
qmem_free(pf->dev, sa_info);
return err;
}
x->xso.offload_handle = (unsigned long)sa_info;
/* Enable static branch when first SA setup */
if (!pf->ipsec.outb_sa_count)
static_branch_enable(&cn10k_ipsec_sa_enabled);
pf->ipsec.outb_sa_count++;
return 0;
}
static int cn10k_ipsec_add_state(struct net_device *dev,
struct xfrm_state *x,
struct netlink_ext_ack *extack)
{
if (x->xso.dir == XFRM_DEV_OFFLOAD_IN)
return cn10k_ipsec_inb_add_state(x, extack);
else
return cn10k_ipsec_outb_add_state(dev, x, extack);
}
static void cn10k_ipsec_del_state(struct net_device *dev, struct xfrm_state *x)
{
struct cn10k_tx_sa_s *sa_entry;
struct qmem *sa_info;
struct otx2_nic *pf;
int err;
if (x->xso.dir == XFRM_DEV_OFFLOAD_IN)
return;
pf = netdev_priv(dev);
sa_info = (struct qmem *)x->xso.offload_handle;
sa_entry = (struct cn10k_tx_sa_s *)sa_info->base;
memset(sa_entry, 0, sizeof(struct cn10k_tx_sa_s));
/* Disable SA in CPT h/w */
sa_entry->ctx_push_size = cn10k_ipsec_get_ctx_push_size();
sa_entry->ctx_size = (pf->ipsec.sa_size / OTX2_ALIGN) & 0xF;
sa_entry->aop_valid = 1;
err = cn10k_outb_write_sa(pf, sa_info);
if (err)
netdev_err(dev, "Error (%d) deleting SA\n", err);
x->xso.offload_handle = 0;
qmem_free(pf->dev, sa_info);
/* If no more SA's then update netdev feature for potential change
* in NETIF_F_HW_ESP.
*/
if (!--pf->ipsec.outb_sa_count)
queue_work(pf->ipsec.sa_workq, &pf->ipsec.sa_work);
}
static const struct xfrmdev_ops cn10k_ipsec_xfrmdev_ops = {
.xdo_dev_state_add = cn10k_ipsec_add_state,
.xdo_dev_state_delete = cn10k_ipsec_del_state,
};
static void cn10k_ipsec_sa_wq_handler(struct work_struct *work)
{
struct cn10k_ipsec *ipsec = container_of(work, struct cn10k_ipsec,
sa_work);
struct otx2_nic *pf = container_of(ipsec, struct otx2_nic, ipsec);
/* Disable static branch when no more SA enabled */
static_branch_disable(&cn10k_ipsec_sa_enabled);
rtnl_lock();
netdev_update_features(pf->netdev);
rtnl_unlock();
}
int cn10k_ipsec_ethtool_init(struct net_device *netdev, bool enable)
{
struct otx2_nic *pf = netdev_priv(netdev);
/* IPsec offload supported on cn10k */
if (!is_dev_support_ipsec_offload(pf->pdev))
return -EOPNOTSUPP;
/* Initialize CPT for outbound ipsec offload */
if (enable)
return cn10k_outb_cpt_init(netdev);
/* Don't do CPT cleanup if SA installed */
if (pf->ipsec.outb_sa_count) {
netdev_err(pf->netdev, "SA installed on this device\n");
return -EBUSY;
}
return cn10k_outb_cpt_clean(pf);
}
int cn10k_ipsec_init(struct net_device *netdev)
{
struct otx2_nic *pf = netdev_priv(netdev);
u32 sa_size;
if (!is_dev_support_ipsec_offload(pf->pdev))
return 0;
/* Each SA entry size is 128 Byte round up in size */
sa_size = sizeof(struct cn10k_tx_sa_s) % OTX2_ALIGN ?
(sizeof(struct cn10k_tx_sa_s) / OTX2_ALIGN + 1) *
OTX2_ALIGN : sizeof(struct cn10k_tx_sa_s);
pf->ipsec.sa_size = sa_size;
INIT_WORK(&pf->ipsec.sa_work, cn10k_ipsec_sa_wq_handler);
pf->ipsec.sa_workq = alloc_workqueue("cn10k_ipsec_sa_workq", 0, 0);
if (!pf->ipsec.sa_workq) {
netdev_err(pf->netdev, "SA alloc workqueue failed\n");
return -ENOMEM;
}
/* Set xfrm device ops */
netdev->xfrmdev_ops = &cn10k_ipsec_xfrmdev_ops;
netdev->hw_features |= NETIF_F_HW_ESP;
netdev->hw_enc_features |= NETIF_F_HW_ESP;
cn10k_cpt_device_set_unavailable(pf);
return 0;
}
EXPORT_SYMBOL(cn10k_ipsec_init);
void cn10k_ipsec_clean(struct otx2_nic *pf)
{
if (!is_dev_support_ipsec_offload(pf->pdev))
return;
if (!(pf->flags & OTX2_FLAG_IPSEC_OFFLOAD_ENABLED))
return;
if (pf->ipsec.sa_workq) {
destroy_workqueue(pf->ipsec.sa_workq);
pf->ipsec.sa_workq = NULL;
}
cn10k_outb_cpt_clean(pf);
}
EXPORT_SYMBOL(cn10k_ipsec_clean);
static u16 cn10k_ipsec_get_ip_data_len(struct xfrm_state *x,
struct sk_buff *skb)
{
struct ipv6hdr *ipv6h;
struct iphdr *iph;
u8 *src;
src = (u8 *)skb->data + ETH_HLEN;
if (x->props.family == AF_INET) {
iph = (struct iphdr *)src;
return ntohs(iph->tot_len);
}
ipv6h = (struct ipv6hdr *)src;
return ntohs(ipv6h->payload_len) + sizeof(struct ipv6hdr);
}
/* Prepare CPT and NIX SQE scatter/gather subdescriptor structure.
* SG of NIX and CPT are same in size.
* Layout of a NIX SQE and CPT SG entry:
* -----------------------------
* | CPT Scatter Gather |
* | (SQE SIZE) |
* | |
* -----------------------------
* | NIX SQE |
* | (SQE SIZE) |
* | |
* -----------------------------
*/
bool otx2_sqe_add_sg_ipsec(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
struct sk_buff *skb, int num_segs, int *offset)
{
struct cpt_sg_s *cpt_sg = NULL;
struct nix_sqe_sg_s *sg = NULL;
u64 dma_addr, *iova = NULL;
u64 *cpt_iova = NULL;
u16 *sg_lens = NULL;
int seg, len;
sq->sg[sq->head].num_segs = 0;
cpt_sg = (struct cpt_sg_s *)(sq->sqe_base - sq->sqe_size);
for (seg = 0; seg < num_segs; seg++) {
if ((seg % MAX_SEGS_PER_SG) == 0) {
sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
sg->ld_type = NIX_SEND_LDTYPE_LDD;
sg->subdc = NIX_SUBDC_SG;
sg->segs = 0;
sg_lens = (void *)sg;
iova = (void *)sg + sizeof(*sg);
/* Next subdc always starts at a 16byte boundary.
* So if sg->segs is whether 2 or 3, offset += 16bytes.
*/
if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
*offset += sizeof(*sg) + (3 * sizeof(u64));
else
*offset += sizeof(*sg) + sizeof(u64);
cpt_sg += (seg / MAX_SEGS_PER_SG) * 4;
cpt_iova = (void *)cpt_sg + sizeof(*cpt_sg);
}
dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
if (dma_mapping_error(pfvf->dev, dma_addr))
return false;
sg_lens[seg % MAX_SEGS_PER_SG] = len;
sg->segs++;
*iova++ = dma_addr;
*cpt_iova++ = dma_addr;
/* Save DMA mapping info for later unmapping */
sq->sg[sq->head].dma_addr[seg] = dma_addr;
sq->sg[sq->head].size[seg] = len;
sq->sg[sq->head].num_segs++;
*cpt_sg = *(struct cpt_sg_s *)sg;
cpt_sg->rsvd_63_50 = 0;
}
sq->sg[sq->head].skb = (u64)skb;
return true;
}
static u16 cn10k_ipsec_get_param1(u8 iv_offset)
{
u16 param1_val;
/* Set Crypto mode, disable L3/L4 checksum */
param1_val = CN10K_IPSEC_INST_PARAM1_DIS_L4_CSUM |
CN10K_IPSEC_INST_PARAM1_DIS_L3_CSUM;
param1_val |= (u16)iv_offset << CN10K_IPSEC_INST_PARAM1_IV_OFFSET_SHIFT;
return param1_val;
}
bool cn10k_ipsec_transmit(struct otx2_nic *pf, struct netdev_queue *txq,
struct otx2_snd_queue *sq, struct sk_buff *skb,
int num_segs, int size)
{
struct cpt_inst_s inst;
struct cpt_res_s *res;
struct xfrm_state *x;
struct qmem *sa_info;
dma_addr_t dptr_iova;
struct sec_path *sp;
u8 encap_offset;
u8 auth_offset;
u8 gthr_size;
u8 iv_offset;
u16 dlen;
/* Check for IPSEC offload enabled */
if (!(pf->flags & OTX2_FLAG_IPSEC_OFFLOAD_ENABLED))
goto drop;
sp = skb_sec_path(skb);
if (unlikely(!sp->len))
goto drop;
x = xfrm_input_state(skb);
if (unlikely(!x))
goto drop;
if (x->props.mode != XFRM_MODE_TRANSPORT &&
x->props.mode != XFRM_MODE_TUNNEL)
goto drop;
dlen = cn10k_ipsec_get_ip_data_len(x, skb);
if (dlen == 0 && netif_msg_tx_err(pf)) {
netdev_err(pf->netdev, "Invalid IP header, ip-length zero\n");
goto drop;
}
/* Check for valid SA context */
sa_info = (struct qmem *)x->xso.offload_handle;
if (!sa_info)
goto drop;
memset(&inst, 0, sizeof(struct cpt_inst_s));
/* Get authentication offset */
if (x->props.family == AF_INET)
auth_offset = sizeof(struct iphdr);
else
auth_offset = sizeof(struct ipv6hdr);
/* IV offset is after ESP header */
iv_offset = auth_offset + sizeof(struct ip_esp_hdr);
/* Encap will start after IV */
encap_offset = iv_offset + GCM_RFC4106_IV_SIZE;
/* CPT Instruction word-1 */
res = (struct cpt_res_s *)(sq->cpt_resp->base + (64 * sq->head));
res->compcode = 0;
inst.res_addr = sq->cpt_resp->iova + (64 * sq->head);
/* CPT Instruction word-2 */
inst.rvu_pf_func = pf->pcifunc;
/* CPT Instruction word-3:
* Set QORD to force CPT_RES_S write completion
*/
inst.qord = 1;
/* CPT Instruction word-4 */
/* inst.dlen should not include ICV length */
inst.dlen = dlen + ETH_HLEN - (x->aead->alg_icv_len / 8);
inst.opcode_major = CN10K_IPSEC_MAJOR_OP_OUTB_IPSEC;
inst.param1 = cn10k_ipsec_get_param1(iv_offset);
inst.param2 = encap_offset <<
CN10K_IPSEC_INST_PARAM2_ENC_DATA_OFFSET_SHIFT;
inst.param2 |= (u16)auth_offset <<
CN10K_IPSEC_INST_PARAM2_AUTH_DATA_OFFSET_SHIFT;
/* CPT Instruction word-5 */
gthr_size = num_segs / MAX_SEGS_PER_SG;
gthr_size = (num_segs % MAX_SEGS_PER_SG) ? gthr_size + 1 : gthr_size;
gthr_size &= 0xF;
dptr_iova = (sq->sqe_ring->iova + (sq->head * (sq->sqe_size * 2)));
inst.dptr = dptr_iova | ((u64)gthr_size << 60);
/* CPT Instruction word-6 */
inst.rptr = inst.dptr;
/* CPT Instruction word-7 */
inst.cptr = sa_info->iova;
inst.ctx_val = 1;
inst.egrp = CN10K_DEF_CPT_IPSEC_EGRP;
/* CPT Instruction word-0 */
inst.nixtxl = (size / 16) - 1;
inst.dat_offset = ETH_HLEN;
inst.nixtx_offset = sq->sqe_size;
netdev_tx_sent_queue(txq, skb->len);
/* Finally Flush the CPT instruction */
sq->head++;
sq->head &= (sq->sqe_cnt - 1);
cn10k_cpt_inst_flush(pf, &inst, sizeof(struct cpt_inst_s));
return true;
drop:
dev_kfree_skb_any(skb);
return false;
}