linux/drivers/net/dsa/vitesse-vsc73xx-core.c

2417 lines
68 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/* DSA driver for:
* Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch
* Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch
*
* These switches have a built-in 8051 CPU and can download and execute a
* firmware in this CPU. They can also be configured to use an external CPU
* handling the switch in a memory-mapped manner by connecting to that external
* CPU's memory bus.
*
* Copyright (C) 2018 Linus Wallej <linus.walleij@linaro.org>
* Includes portions of code from the firmware uploader by:
* Copyright (C) 2009 Gabor Juhos <juhosg@openwrt.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/dsa/8021q.h>
#include <linux/random.h>
#include <net/dsa.h>
#include "vitesse-vsc73xx.h"
#define VSC73XX_BLOCK_MAC 0x1 /* Subblocks 0-4, 6 (CPU port) */
#define VSC73XX_BLOCK_ANALYZER 0x2 /* Only subblock 0 */
#define VSC73XX_BLOCK_MII 0x3 /* Subblocks 0 and 1 */
#define VSC73XX_BLOCK_MEMINIT 0x3 /* Only subblock 2 */
#define VSC73XX_BLOCK_CAPTURE 0x4 /* Subblocks 0-4, 6, 7 */
#define VSC73XX_BLOCK_ARBITER 0x5 /* Only subblock 0 */
#define VSC73XX_BLOCK_SYSTEM 0x7 /* Only subblock 0 */
/* MII Block subblock */
#define VSC73XX_BLOCK_MII_INTERNAL 0x0 /* Internal MDIO subblock */
#define VSC73XX_BLOCK_MII_EXTERNAL 0x1 /* External MDIO subblock */
#define CPU_PORT 6 /* CPU port */
#define VSC73XX_NUM_FDB_ROWS 2048
#define VSC73XX_NUM_BUCKETS 4
/* MAC Block registers */
#define VSC73XX_MAC_CFG 0x00
#define VSC73XX_MACHDXGAP 0x02
#define VSC73XX_FCCONF 0x04
#define VSC73XX_FCMACHI 0x08
#define VSC73XX_FCMACLO 0x0c
#define VSC73XX_MAXLEN 0x10
#define VSC73XX_ADVPORTM 0x19
#define VSC73XX_TXUPDCFG 0x24
#define VSC73XX_TXQ_SELECT_CFG 0x28
#define VSC73XX_RXOCT 0x50
#define VSC73XX_TXOCT 0x51
#define VSC73XX_C_RX0 0x52
#define VSC73XX_C_RX1 0x53
#define VSC73XX_C_RX2 0x54
#define VSC73XX_C_TX0 0x55
#define VSC73XX_C_TX1 0x56
#define VSC73XX_C_TX2 0x57
#define VSC73XX_C_CFG 0x58
#define VSC73XX_CAT_DROP 0x6e
#define VSC73XX_CAT_PR_MISC_L2 0x6f
#define VSC73XX_CAT_PR_USR_PRIO 0x75
#define VSC73XX_CAT_VLAN_MISC 0x79
#define VSC73XX_CAT_PORT_VLAN 0x7a
#define VSC73XX_Q_MISC_CONF 0xdf
/* MAC_CFG register bits */
#define VSC73XX_MAC_CFG_WEXC_DIS BIT(31)
#define VSC73XX_MAC_CFG_PORT_RST BIT(29)
#define VSC73XX_MAC_CFG_TX_EN BIT(28)
#define VSC73XX_MAC_CFG_SEED_LOAD BIT(27)
#define VSC73XX_MAC_CFG_SEED_MASK GENMASK(26, 19)
#define VSC73XX_MAC_CFG_SEED_OFFSET 19
#define VSC73XX_MAC_CFG_FDX BIT(18)
#define VSC73XX_MAC_CFG_GIGA_MODE BIT(17)
#define VSC73XX_MAC_CFG_RX_EN BIT(16)
#define VSC73XX_MAC_CFG_VLAN_DBLAWR BIT(15)
#define VSC73XX_MAC_CFG_VLAN_AWR BIT(14)
#define VSC73XX_MAC_CFG_100_BASE_T BIT(13) /* Not in manual */
#define VSC73XX_MAC_CFG_TX_IPG_MASK GENMASK(10, 6)
#define VSC73XX_MAC_CFG_TX_IPG_OFFSET 6
#define VSC73XX_MAC_CFG_TX_IPG_1000M (6 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_TX_IPG_100_10M (17 << VSC73XX_MAC_CFG_TX_IPG_OFFSET)
#define VSC73XX_MAC_CFG_MAC_RX_RST BIT(5)
#define VSC73XX_MAC_CFG_MAC_TX_RST BIT(4)
#define VSC73XX_MAC_CFG_CLK_SEL_MASK GENMASK(2, 0)
#define VSC73XX_MAC_CFG_CLK_SEL_OFFSET 0
#define VSC73XX_MAC_CFG_CLK_SEL_1000M 1
#define VSC73XX_MAC_CFG_CLK_SEL_100M 2
#define VSC73XX_MAC_CFG_CLK_SEL_10M 3
#define VSC73XX_MAC_CFG_CLK_SEL_EXT 4
#define VSC73XX_MAC_CFG_1000M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_F_PHY (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_100_10M_H_PHY (VSC73XX_MAC_CFG_TX_IPG_100_10M | \
VSC73XX_MAC_CFG_CLK_SEL_EXT)
#define VSC73XX_MAC_CFG_1000M_F_RGMII (VSC73XX_MAC_CFG_FDX | \
VSC73XX_MAC_CFG_GIGA_MODE | \
VSC73XX_MAC_CFG_TX_IPG_1000M | \
VSC73XX_MAC_CFG_CLK_SEL_1000M)
#define VSC73XX_MAC_CFG_RESET (VSC73XX_MAC_CFG_PORT_RST | \
VSC73XX_MAC_CFG_MAC_RX_RST | \
VSC73XX_MAC_CFG_MAC_TX_RST)
/* Flow control register bits */
#define VSC73XX_FCCONF_ZERO_PAUSE_EN BIT(17)
#define VSC73XX_FCCONF_FLOW_CTRL_OBEY BIT(16)
#define VSC73XX_FCCONF_PAUSE_VAL_MASK GENMASK(15, 0)
/* ADVPORTM advanced port setup register bits */
#define VSC73XX_ADVPORTM_IFG_PPM BIT(7)
#define VSC73XX_ADVPORTM_EXC_COL_CONT BIT(6)
#define VSC73XX_ADVPORTM_EXT_PORT BIT(5)
#define VSC73XX_ADVPORTM_INV_GTX BIT(4)
#define VSC73XX_ADVPORTM_ENA_GTX BIT(3)
#define VSC73XX_ADVPORTM_DDR_MODE BIT(2)
#define VSC73XX_ADVPORTM_IO_LOOPBACK BIT(1)
#define VSC73XX_ADVPORTM_HOST_LOOPBACK BIT(0)
/* TXUPDCFG transmit modify setup bits */
#define VSC73XX_TXUPDCFG_DSCP_REWR_MODE GENMASK(20, 19)
#define VSC73XX_TXUPDCFG_DSCP_REWR_ENA BIT(18)
#define VSC73XX_TXUPDCFG_TX_INT_TO_USRPRIO_ENA BIT(17)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID GENMASK(15, 4)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA BIT(3)
#define VSC73XX_TXUPDCFG_TX_UPDATE_CRC_CPU_ENA BIT(1)
#define VSC73XX_TXUPDCFG_TX_INSERT_TAG BIT(0)
#define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT 4
/* CAT_DROP categorizer frame dropping register bits */
#define VSC73XX_CAT_DROP_DROP_MC_SMAC_ENA BIT(6)
#define VSC73XX_CAT_DROP_FWD_CTRL_ENA BIT(4)
#define VSC73XX_CAT_DROP_FWD_PAUSE_ENA BIT(3)
#define VSC73XX_CAT_DROP_UNTAGGED_ENA BIT(2)
#define VSC73XX_CAT_DROP_TAGGED_ENA BIT(1)
#define VSC73XX_CAT_DROP_NULL_MAC_ENA BIT(0)
#define VSC73XX_Q_MISC_CONF_EXTENT_MEM BIT(31)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_MASK GENMASK(4, 1)
#define VSC73XX_Q_MISC_CONF_EARLY_TX_512 (1 << 1)
#define VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE BIT(0)
/* CAT_VLAN_MISC categorizer VLAN miscellaneous bits */
#define VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA BIT(8)
#define VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA BIT(7)
/* CAT_PORT_VLAN categorizer port VLAN */
#define VSC73XX_CAT_PORT_VLAN_VLAN_CFI BIT(15)
#define VSC73XX_CAT_PORT_VLAN_VLAN_USR_PRIO GENMASK(14, 12)
#define VSC73XX_CAT_PORT_VLAN_VLAN_VID GENMASK(11, 0)
/* Frame analyzer block 2 registers */
#define VSC73XX_STORMLIMIT 0x02
#define VSC73XX_ADVLEARN 0x03
#define VSC73XX_IFLODMSK 0x04
#define VSC73XX_VLANMASK 0x05
#define VSC73XX_MACHDATA 0x06
#define VSC73XX_MACLDATA 0x07
#define VSC73XX_ANMOVED 0x08
#define VSC73XX_ANAGEFIL 0x09
#define VSC73XX_ANEVENTS 0x0a
#define VSC73XX_ANCNTMASK 0x0b
#define VSC73XX_ANCNTVAL 0x0c
#define VSC73XX_LEARNMASK 0x0d
#define VSC73XX_UFLODMASK 0x0e
#define VSC73XX_MFLODMASK 0x0f
#define VSC73XX_RECVMASK 0x10
#define VSC73XX_AGGRCTRL 0x20
#define VSC73XX_AGGRMSKS 0x30 /* Until 0x3f */
#define VSC73XX_DSTMASKS 0x40 /* Until 0x7f */
#define VSC73XX_SRCMASKS 0x80 /* Until 0x87 */
#define VSC73XX_CAPENAB 0xa0
#define VSC73XX_MACACCESS 0xb0
#define VSC73XX_IPMCACCESS 0xb1
#define VSC73XX_MACTINDX 0xc0
#define VSC73XX_VLANACCESS 0xd0
#define VSC73XX_VLANTIDX 0xe0
#define VSC73XX_AGENCTRL 0xf0
#define VSC73XX_CAPRST 0xff
#define VSC73XX_SRCMASKS_CPU_COPY BIT(27)
#define VSC73XX_SRCMASKS_MIRROR BIT(26)
#define VSC73XX_SRCMASKS_PORTS_MASK GENMASK(7, 0)
#define VSC73XX_MACHDATA_VID GENMASK(27, 16)
#define VSC73XX_MACHDATA_MAC0 GENMASK(15, 8)
#define VSC73XX_MACHDATA_MAC1 GENMASK(7, 0)
#define VSC73XX_MACLDATA_MAC2 GENMASK(31, 24)
#define VSC73XX_MACLDATA_MAC3 GENMASK(23, 16)
#define VSC73XX_MACLDATA_MAC4 GENMASK(15, 8)
#define VSC73XX_MACLDATA_MAC5 GENMASK(7, 0)
#define VSC73XX_HASH0_VID_FROM_MASK GENMASK(5, 0)
#define VSC73XX_HASH0_MAC0_FROM_MASK GENMASK(7, 4)
#define VSC73XX_HASH1_MAC0_FROM_MASK GENMASK(3, 0)
#define VSC73XX_HASH1_MAC1_FROM_MASK GENMASK(7, 1)
#define VSC73XX_HASH2_MAC1_FROM_MASK BIT(0)
#define VSC73XX_HASH2_MAC2_FROM_MASK GENMASK(7, 0)
#define VSC73XX_HASH2_MAC3_FROM_MASK GENMASK(7, 6)
#define VSC73XX_HASH3_MAC3_FROM_MASK GENMASK(5, 0)
#define VSC73XX_HASH3_MAC4_FROM_MASK GENMASK(7, 3)
#define VSC73XX_HASH4_MAC4_FROM_MASK GENMASK(2, 0)
#define VSC73XX_HASH0_VID_TO_MASK GENMASK(9, 4)
#define VSC73XX_HASH0_MAC0_TO_MASK GENMASK(3, 0)
#define VSC73XX_HASH1_MAC0_TO_MASK GENMASK(10, 7)
#define VSC73XX_HASH1_MAC1_TO_MASK GENMASK(6, 0)
#define VSC73XX_HASH2_MAC1_TO_MASK BIT(10)
#define VSC73XX_HASH2_MAC2_TO_MASK GENMASK(9, 2)
#define VSC73XX_HASH2_MAC3_TO_MASK GENMASK(1, 0)
#define VSC73XX_HASH3_MAC3_TO_MASK GENMASK(10, 5)
#define VSC73XX_HASH3_MAC4_TO_MASK GENMASK(4, 0)
#define VSC73XX_HASH4_MAC4_TO_MASK GENMASK(10, 8)
#define VSC73XX_MACTINDX_SHADOW BIT(13)
#define VSC73XX_MACTINDX_BUCKET_MSK GENMASK(12, 11)
#define VSC73XX_MACTINDX_INDEX_MSK GENMASK(10, 0)
#define VSC73XX_MACACCESS_CPU_COPY BIT(14)
#define VSC73XX_MACACCESS_FWD_KILL BIT(13)
#define VSC73XX_MACACCESS_IGNORE_VLAN BIT(12)
#define VSC73XX_MACACCESS_AGED_FLAG BIT(11)
#define VSC73XX_MACACCESS_VALID BIT(10)
#define VSC73XX_MACACCESS_LOCKED BIT(9)
#define VSC73XX_MACACCESS_DEST_IDX_MASK GENMASK(8, 3)
#define VSC73XX_MACACCESS_CMD_MASK GENMASK(2, 0)
#define VSC73XX_MACACCESS_CMD_IDLE 0
#define VSC73XX_MACACCESS_CMD_LEARN 1
#define VSC73XX_MACACCESS_CMD_FORGET 2
#define VSC73XX_MACACCESS_CMD_AGE_TABLE 3
#define VSC73XX_MACACCESS_CMD_FLUSH_TABLE 4
#define VSC73XX_MACACCESS_CMD_CLEAR_TABLE 5
#define VSC73XX_MACACCESS_CMD_READ_ENTRY 6
#define VSC73XX_MACACCESS_CMD_WRITE_ENTRY 7
#define VSC73XX_VLANACCESS_LEARN_DISABLED BIT(30)
#define VSC73XX_VLANACCESS_VLAN_MIRROR BIT(29)
#define VSC73XX_VLANACCESS_VLAN_SRC_CHECK BIT(28)
#define VSC73XX_VLANACCESS_VLAN_PORT_MASK GENMASK(9, 2)
#define VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT 2
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK GENMASK(1, 0)
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE 0
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY 1
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY 2
#define VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE 3
/* MII block 3 registers */
#define VSC73XX_MII_STAT 0x0
#define VSC73XX_MII_CMD 0x1
#define VSC73XX_MII_DATA 0x2
#define VSC73XX_MII_MPRES 0x3
#define VSC73XX_MII_STAT_BUSY BIT(3)
#define VSC73XX_MII_STAT_READ BIT(2)
#define VSC73XX_MII_STAT_WRITE BIT(1)
#define VSC73XX_MII_CMD_SCAN BIT(27)
#define VSC73XX_MII_CMD_OPERATION BIT(26)
#define VSC73XX_MII_CMD_PHY_ADDR GENMASK(25, 21)
#define VSC73XX_MII_CMD_PHY_REG GENMASK(20, 16)
#define VSC73XX_MII_CMD_WRITE_DATA GENMASK(15, 0)
#define VSC73XX_MII_DATA_FAILURE BIT(16)
#define VSC73XX_MII_DATA_READ_DATA GENMASK(15, 0)
#define VSC73XX_MII_MPRES_NOPREAMBLE BIT(6)
#define VSC73XX_MII_MPRES_PRESCALEVAL GENMASK(5, 0)
#define VSC73XX_MII_PRESCALEVAL_MIN 3 /* min allowed mdio clock prescaler */
#define VSC73XX_MII_STAT_BUSY BIT(3)
/* Arbiter block 5 registers */
#define VSC73XX_ARBEMPTY 0x0c
#define VSC73XX_ARBDISC 0x0e
#define VSC73XX_SBACKWDROP 0x12
#define VSC73XX_DBACKWDROP 0x13
#define VSC73XX_ARBBURSTPROB 0x15
/* System block 7 registers */
#define VSC73XX_ICPU_SIPAD 0x01
#define VSC73XX_GMIIDELAY 0x05
#define VSC73XX_ICPU_CTRL 0x10
#define VSC73XX_ICPU_ADDR 0x11
#define VSC73XX_ICPU_SRAM 0x12
#define VSC73XX_HWSEM 0x13
#define VSC73XX_GLORESET 0x14
#define VSC73XX_ICPU_MBOX_VAL 0x15
#define VSC73XX_ICPU_MBOX_SET 0x16
#define VSC73XX_ICPU_MBOX_CLR 0x17
#define VSC73XX_CHIPID 0x18
#define VSC73XX_GPIO 0x34
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE 0
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS 1
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS 2
#define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS 3
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE (0 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS (1 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS (2 << 4)
#define VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS (3 << 4)
#define VSC73XX_ICPU_CTRL_WATCHDOG_RST BIT(31)
#define VSC73XX_ICPU_CTRL_CLK_DIV_MASK GENMASK(12, 8)
#define VSC73XX_ICPU_CTRL_SRST_HOLD BIT(7)
#define VSC73XX_ICPU_CTRL_ICPU_PI_EN BIT(6)
#define VSC73XX_ICPU_CTRL_BOOT_EN BIT(3)
#define VSC73XX_ICPU_CTRL_EXT_ACC_EN BIT(2)
#define VSC73XX_ICPU_CTRL_CLK_EN BIT(1)
#define VSC73XX_ICPU_CTRL_SRST BIT(0)
#define VSC73XX_CHIPID_ID_SHIFT 12
#define VSC73XX_CHIPID_ID_MASK 0xffff
#define VSC73XX_CHIPID_REV_SHIFT 28
#define VSC73XX_CHIPID_REV_MASK 0xf
#define VSC73XX_CHIPID_ID_7385 0x7385
#define VSC73XX_CHIPID_ID_7388 0x7388
#define VSC73XX_CHIPID_ID_7395 0x7395
#define VSC73XX_CHIPID_ID_7398 0x7398
#define VSC73XX_GLORESET_STROBE BIT(4)
#define VSC73XX_GLORESET_ICPU_LOCK BIT(3)
#define VSC73XX_GLORESET_MEM_LOCK BIT(2)
#define VSC73XX_GLORESET_PHY_RESET BIT(1)
#define VSC73XX_GLORESET_MASTER_RESET BIT(0)
#define VSC7385_CLOCK_DELAY ((3 << 4) | 3)
#define VSC7385_CLOCK_DELAY_MASK ((3 << 4) | 3)
#define VSC73XX_ICPU_CTRL_STOP (VSC73XX_ICPU_CTRL_SRST_HOLD | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_EXT_ACC_EN)
#define VSC73XX_ICPU_CTRL_START (VSC73XX_ICPU_CTRL_CLK_DIV | \
VSC73XX_ICPU_CTRL_BOOT_EN | \
VSC73XX_ICPU_CTRL_CLK_EN | \
VSC73XX_ICPU_CTRL_SRST)
#define IS_7385(a) ((a)->chipid == VSC73XX_CHIPID_ID_7385)
#define IS_7388(a) ((a)->chipid == VSC73XX_CHIPID_ID_7388)
#define IS_7395(a) ((a)->chipid == VSC73XX_CHIPID_ID_7395)
#define IS_7398(a) ((a)->chipid == VSC73XX_CHIPID_ID_7398)
#define IS_739X(a) (IS_7395(a) || IS_7398(a))
#define VSC73XX_POLL_SLEEP_US 1000
#define VSC73XX_MDIO_POLL_SLEEP_US 5
#define VSC73XX_POLL_TIMEOUT_US 10000
struct vsc73xx_counter {
u8 counter;
const char *name;
};
struct vsc73xx_fdb {
u16 vid;
u8 port;
u8 mac[ETH_ALEN];
bool valid;
};
/* Counters are named according to the MIB standards where applicable.
* Some counters are custom, non-standard. The standard counters are
* named in accordance with RFC2819, RFC2021 and IEEE Std 802.3-2002 Annex
* 30A Counters.
*/
static const struct vsc73xx_counter vsc73xx_rx_counters[] = {
{ 0, "RxEtherStatsPkts" },
{ 1, "RxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "RxTotalErrorPackets" }, /* non-standard counter */
{ 3, "RxEtherStatsBroadcastPkts" },
{ 4, "RxEtherStatsMulticastPkts" },
{ 5, "RxEtherStatsPkts64Octets" },
{ 6, "RxEtherStatsPkts65to127Octets" },
{ 7, "RxEtherStatsPkts128to255Octets" },
{ 8, "RxEtherStatsPkts256to511Octets" },
{ 9, "RxEtherStatsPkts512to1023Octets" },
{ 10, "RxEtherStatsPkts1024to1518Octets" },
{ 11, "RxJumboFrames" }, /* non-standard counter */
{ 12, "RxaPauseMACControlFramesTransmitted" },
{ 13, "RxFIFODrops" }, /* non-standard counter */
{ 14, "RxBackwardDrops" }, /* non-standard counter */
{ 15, "RxClassifierDrops" }, /* non-standard counter */
{ 16, "RxEtherStatsCRCAlignErrors" },
{ 17, "RxEtherStatsUndersizePkts" },
{ 18, "RxEtherStatsOversizePkts" },
{ 19, "RxEtherStatsFragments" },
{ 20, "RxEtherStatsJabbers" },
{ 21, "RxaMACControlFramesReceived" },
/* 22-24 are undefined */
{ 25, "RxaFramesReceivedOK" },
{ 26, "RxQoSClass0" }, /* non-standard counter */
{ 27, "RxQoSClass1" }, /* non-standard counter */
{ 28, "RxQoSClass2" }, /* non-standard counter */
{ 29, "RxQoSClass3" }, /* non-standard counter */
};
static const struct vsc73xx_counter vsc73xx_tx_counters[] = {
{ 0, "TxEtherStatsPkts" },
{ 1, "TxBroadcast+MulticastPkts" }, /* non-standard counter */
{ 2, "TxTotalErrorPackets" }, /* non-standard counter */
{ 3, "TxEtherStatsBroadcastPkts" },
{ 4, "TxEtherStatsMulticastPkts" },
{ 5, "TxEtherStatsPkts64Octets" },
{ 6, "TxEtherStatsPkts65to127Octets" },
{ 7, "TxEtherStatsPkts128to255Octets" },
{ 8, "TxEtherStatsPkts256to511Octets" },
{ 9, "TxEtherStatsPkts512to1023Octets" },
{ 10, "TxEtherStatsPkts1024to1518Octets" },
{ 11, "TxJumboFrames" }, /* non-standard counter */
{ 12, "TxaPauseMACControlFramesTransmitted" },
{ 13, "TxFIFODrops" }, /* non-standard counter */
{ 14, "TxDrops" }, /* non-standard counter */
{ 15, "TxEtherStatsCollisions" },
{ 16, "TxEtherStatsCRCAlignErrors" },
{ 17, "TxEtherStatsUndersizePkts" },
{ 18, "TxEtherStatsOversizePkts" },
{ 19, "TxEtherStatsFragments" },
{ 20, "TxEtherStatsJabbers" },
/* 21-24 are undefined */
{ 25, "TxaFramesReceivedOK" },
{ 26, "TxQoSClass0" }, /* non-standard counter */
{ 27, "TxQoSClass1" }, /* non-standard counter */
{ 28, "TxQoSClass2" }, /* non-standard counter */
{ 29, "TxQoSClass3" }, /* non-standard counter */
};
struct vsc73xx_vlan_summary {
size_t num_tagged;
size_t num_untagged;
};
enum vsc73xx_port_vlan_conf {
VSC73XX_VLAN_FILTER,
VSC73XX_VLAN_FILTER_UNTAG_ALL,
VSC73XX_VLAN_IGNORE,
};
int vsc73xx_is_addr_valid(u8 block, u8 subblock)
{
switch (block) {
case VSC73XX_BLOCK_MAC:
switch (subblock) {
case 0 ... 4:
case 6:
return 1;
}
break;
case VSC73XX_BLOCK_ANALYZER:
case VSC73XX_BLOCK_SYSTEM:
switch (subblock) {
case 0:
return 1;
}
break;
case VSC73XX_BLOCK_MII:
case VSC73XX_BLOCK_ARBITER:
switch (subblock) {
case 0 ... 1:
return 1;
}
break;
case VSC73XX_BLOCK_CAPTURE:
switch (subblock) {
case 0 ... 4:
case 6 ... 7:
return 1;
}
break;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_is_addr_valid);
static int vsc73xx_read(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 *val)
{
return vsc->ops->read(vsc, block, subblock, reg, val);
}
static int vsc73xx_write(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg,
u32 val)
{
return vsc->ops->write(vsc, block, subblock, reg, val);
}
static int vsc73xx_update_bits(struct vsc73xx *vsc, u8 block, u8 subblock,
u8 reg, u32 mask, u32 val)
{
u32 tmp, orig;
int ret;
/* Same read-modify-write algorithm as e.g. regmap */
ret = vsc73xx_read(vsc, block, subblock, reg, &orig);
if (ret)
return ret;
tmp = orig & ~mask;
tmp |= val & mask;
return vsc73xx_write(vsc, block, subblock, reg, tmp);
}
static int vsc73xx_detect(struct vsc73xx *vsc)
{
bool icpu_si_boot_en;
bool icpu_pi_en;
u32 val;
u32 rev;
int ret;
u32 id;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_MBOX_VAL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read mailbox (%d)\n", ret);
return ret;
}
if (val == 0xffffffff) {
dev_info(vsc->dev, "chip seems dead.\n");
return -EAGAIN;
}
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_CHIPID, &val);
if (ret) {
dev_err(vsc->dev, "unable to read chip id (%d)\n", ret);
return ret;
}
id = (val >> VSC73XX_CHIPID_ID_SHIFT) &
VSC73XX_CHIPID_ID_MASK;
switch (id) {
case VSC73XX_CHIPID_ID_7385:
case VSC73XX_CHIPID_ID_7388:
case VSC73XX_CHIPID_ID_7395:
case VSC73XX_CHIPID_ID_7398:
break;
default:
dev_err(vsc->dev, "unsupported chip, id=%04x\n", id);
return -ENODEV;
}
vsc->chipid = id;
rev = (val >> VSC73XX_CHIPID_REV_SHIFT) &
VSC73XX_CHIPID_REV_MASK;
dev_info(vsc->dev, "VSC%04X (rev: %d) switch found\n", id, rev);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_ICPU_CTRL, &val);
if (ret) {
dev_err(vsc->dev, "unable to read iCPU control\n");
return ret;
}
/* The iCPU can always be used but can boot in different ways.
* If it is initially disabled and has no external memory,
* we are in control and can do whatever we like, else we
* are probably in trouble (we need some way to communicate
* with the running firmware) so we bail out for now.
*/
icpu_pi_en = !!(val & VSC73XX_ICPU_CTRL_ICPU_PI_EN);
icpu_si_boot_en = !!(val & VSC73XX_ICPU_CTRL_BOOT_EN);
if (icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from SI, has external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
if (icpu_si_boot_en && !icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled boots from PI/SI, no external memory\n");
return -EAGAIN;
}
if (!icpu_si_boot_en && icpu_pi_en) {
dev_err(vsc->dev,
"iCPU enabled, boots from PI external memory\n");
dev_err(vsc->dev, "no idea how to deal with this\n");
return -ENODEV;
}
/* !icpu_si_boot_en && !cpu_pi_en */
dev_info(vsc->dev, "iCPU disabled, no external memory\n");
return 0;
}
static int vsc73xx_mdio_busy_check(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 || !(val & VSC73XX_MII_STAT_BUSY),
VSC73XX_MDIO_POLL_SLEEP_US,
VSC73XX_POLL_TIMEOUT_US, false, vsc,
VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_STAT, &val);
if (ret)
return ret;
return err;
}
static int vsc73xx_phy_read(struct dsa_switch *ds, int phy, int regnum)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
u32 val;
int ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
/* Setting bit 26 means "read" */
cmd = VSC73XX_MII_CMD_OPERATION |
FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) |
FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_CMD, cmd);
if (ret)
return ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_DATA, &val);
if (ret)
return ret;
if (val & VSC73XX_MII_DATA_FAILURE) {
dev_err(vsc->dev, "reading reg %02x from phy%d failed\n",
regnum, phy);
return -EIO;
}
val &= VSC73XX_MII_DATA_READ_DATA;
dev_dbg(vsc->dev, "read reg %02x from phy%d = %04x\n",
regnum, phy, val);
return val;
}
static int vsc73xx_phy_write(struct dsa_switch *ds, int phy, int regnum,
u16 val)
{
struct vsc73xx *vsc = ds->priv;
u32 cmd;
int ret;
ret = vsc73xx_mdio_busy_check(vsc);
if (ret)
return ret;
cmd = FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) |
FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum) |
FIELD_PREP(VSC73XX_MII_CMD_WRITE_DATA, val);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_CMD, cmd);
if (ret)
return ret;
dev_dbg(vsc->dev, "write %04x to reg %02x in phy%d\n",
val, regnum, phy);
return 0;
}
static enum dsa_tag_protocol vsc73xx_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
/* The switch internally uses a 8 byte header with length,
* source port, tag, LPA and priority. This is supposedly
* only accessible when operating the switch using the internal
* CPU or with an external CPU mapping the device in, but not
* when operating the switch over SPI and putting frames in/out
* on port 6 (the CPU port). So far we must assume that we
* cannot access the tag. (See "Internal frame header" section
* 3.9.1 in the manual.)
*/
return DSA_TAG_PROTO_VSC73XX_8021Q;
}
static int vsc73xx_wait_for_vlan_table_cmd(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 ||
((val & VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK) ==
VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE),
VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US,
false, vsc, VSC73XX_BLOCK_ANALYZER,
0, VSC73XX_VLANACCESS, &val);
if (ret)
return ret;
return err;
}
static int
vsc73xx_read_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 *portmap)
{
u32 val;
int ret;
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, &val);
*portmap = (val & VSC73XX_VLANACCESS_VLAN_PORT_MASK) >>
VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT;
return 0;
}
static int
vsc73xx_write_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 portmap)
{
int ret;
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid);
ret = vsc73xx_wait_for_vlan_table_cmd(vsc);
if (ret)
return ret;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK |
VSC73XX_VLANACCESS_VLAN_SRC_CHECK |
VSC73XX_VLANACCESS_VLAN_PORT_MASK,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY |
VSC73XX_VLANACCESS_VLAN_SRC_CHECK |
(portmap << VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT));
return vsc73xx_wait_for_vlan_table_cmd(vsc);
}
static int
vsc73xx_update_vlan_table(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u8 portmap;
int ret;
ret = vsc73xx_read_vlan_table_entry(vsc, vid, &portmap);
if (ret)
return ret;
if (set)
portmap |= BIT(port);
else
portmap &= ~BIT(port);
return vsc73xx_write_vlan_table_entry(vsc, vid, portmap);
}
static int vsc73xx_configure_rgmii_port_delay(struct dsa_switch *ds)
{
/* Keep 2.0 ns delay for backward complatibility */
u32 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS;
u32 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS;
struct dsa_port *dp = dsa_to_port(ds, CPU_PORT);
struct device_node *port_dn = dp->dn;
struct vsc73xx *vsc = ds->priv;
u32 delay;
if (!of_property_read_u32(port_dn, "tx-internal-delay-ps", &delay)) {
switch (delay) {
case 0:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE;
break;
case 1400:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS;
break;
case 1700:
tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS;
break;
case 2000:
break;
default:
dev_err(vsc->dev,
"Unsupported RGMII Transmit Clock Delay\n");
return -EINVAL;
}
} else {
dev_dbg(vsc->dev,
"RGMII Transmit Clock Delay isn't configured, set to 2.0 ns\n");
}
if (!of_property_read_u32(port_dn, "rx-internal-delay-ps", &delay)) {
switch (delay) {
case 0:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE;
break;
case 1400:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS;
break;
case 1700:
rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS;
break;
case 2000:
break;
default:
dev_err(vsc->dev,
"Unsupported RGMII Receive Clock Delay value\n");
return -EINVAL;
}
} else {
dev_dbg(vsc->dev,
"RGMII Receive Clock Delay isn't configured, set to 2.0 ns\n");
}
/* MII delay, set both GTX and RX delay */
return vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GMIIDELAY,
tx_delay | rx_delay);
}
static int vsc73xx_setup(struct dsa_switch *ds)
{
struct vsc73xx *vsc = ds->priv;
int i, ret, val;
dev_info(vsc->dev, "set up the switch\n");
ds->max_num_bridges = DSA_TAG_8021Q_MAX_NUM_BRIDGES;
ds->fdb_isolation = true;
/* Issue RESET */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_MASTER_RESET);
usleep_range(125, 200);
/* Initialize memory, initialize RAM bank 0..15 except 6 and 7
* This sequence appears in the
* VSC7385 SparX-G5 datasheet section 6.6.1
* VSC7395 SparX-G5e datasheet section 6.6.1
* "initialization sequence".
* No explanation is given to the 0x1010400 magic number.
*/
for (i = 0; i <= 15; i++) {
if (i != 6 && i != 7) {
vsc73xx_write(vsc, VSC73XX_BLOCK_MEMINIT,
2,
0, 0x1010400 + i);
mdelay(1);
}
}
mdelay(30);
/* Clear MAC table */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS,
VSC73XX_MACACCESS_CMD_CLEAR_TABLE);
/* Set VLAN table to default values */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_VLANACCESS,
VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE);
msleep(40);
/* Use 20KiB buffers on all ports on VSC7395
* The VSC7385 has 16KiB buffers and that is the
* default if we don't set this up explicitly.
* Port "31" is "all ports".
*/
if (IS_739X(vsc))
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 0x1f,
VSC73XX_Q_MISC_CONF,
VSC73XX_Q_MISC_CONF_EXTENT_MEM);
/* Put all ports into reset until enabled */
for (i = 0; i < 7; i++) {
if (i == 5)
continue;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 4,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
/* Configure RGMII delay */
ret = vsc73xx_configure_rgmii_port_delay(ds);
if (ret)
return ret;
/* Ingess VLAN reception mask (table 145) */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANMASK,
0xff);
/* IP multicast flood mask (table 144) */
vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_IFLODMSK,
0xff);
mdelay(50);
/* Disable preamble and use maximum allowed clock for the internal
* mdio bus, used for communication with internal PHYs only.
*/
val = VSC73XX_MII_MPRES_NOPREAMBLE |
FIELD_PREP(VSC73XX_MII_MPRES_PRESCALEVAL,
VSC73XX_MII_PRESCALEVAL_MIN);
vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL,
VSC73XX_MII_MPRES, val);
/* Release reset from the internal PHYs */
vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET,
VSC73XX_GLORESET_PHY_RESET);
udelay(4);
/* Clear VLAN table */
for (i = 0; i < VLAN_N_VID; i++)
vsc73xx_write_vlan_table_entry(vsc, i, 0);
INIT_LIST_HEAD(&vsc->vlans);
rtnl_lock();
ret = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q));
rtnl_unlock();
return ret;
}
static void vsc73xx_teardown(struct dsa_switch *ds)
{
rtnl_lock();
dsa_tag_8021q_unregister(ds);
rtnl_unlock();
}
static void vsc73xx_init_port(struct vsc73xx *vsc, int port)
{
u32 val;
/* MAC configure, first reset the port and then write defaults */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET);
/* Take up the port in 1Gbit mode by default, this will be
* augmented after auto-negotiation on the PHY-facing
* ports.
*/
if (port == CPU_PORT)
val = VSC73XX_MAC_CFG_1000M_F_RGMII;
else
val = VSC73XX_MAC_CFG_1000M_F_PHY;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_MAC_CFG,
val |
VSC73XX_MAC_CFG_TX_EN |
VSC73XX_MAC_CFG_RX_EN);
/* Flow control for the CPU port:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY);
/* Issue pause control frames on PHY facing ports.
* Allow early initiation of MAC transmission if the amount
* of egress data is below 512 bytes on CPU port.
* FIXME: enable 20KiB buffers?
*/
if (port == CPU_PORT)
val = VSC73XX_Q_MISC_CONF_EARLY_TX_512;
else
val = VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE;
val |= VSC73XX_Q_MISC_CONF_EXTENT_MEM;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_Q_MISC_CONF,
val);
/* Flow control MAC: a MAC address used in flow control frames */
val = (vsc->addr[5] << 16) | (vsc->addr[4] << 8) | (vsc->addr[3]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACHI,
val);
val = (vsc->addr[2] << 16) | (vsc->addr[1] << 8) | (vsc->addr[0]);
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_FCMACLO,
val);
/* Tell the categorizer to forward pause frames, not control
* frame. Do not drop anything.
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port,
VSC73XX_CAT_DROP,
VSC73XX_CAT_DROP_FWD_PAUSE_ENA);
/* Clear all counters */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
port, VSC73XX_C_RX0, 0);
}
static void vsc73xx_reset_port(struct vsc73xx *vsc, int port, u32 initval)
{
int ret, err;
u32 val;
/* Disable RX on this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RX_EN, 0);
/* Discard packets */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), BIT(port));
/* Wait until queue is empty */
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 || (val & BIT(port)),
VSC73XX_POLL_SLEEP_US,
VSC73XX_POLL_TIMEOUT_US, false,
vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBEMPTY, &val);
if (ret)
dev_err(vsc->dev,
"timeout waiting for block arbiter\n");
else if (err < 0)
dev_err(vsc->dev, "error reading arbiter\n");
/* Put this port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET | initval);
}
static void vsc73xx_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
/* Special handling of the CPU-facing port */
if (port == CPU_PORT) {
/* Other ports are already initialized but not this one */
vsc73xx_init_port(vsc, CPU_PORT);
/* Select the external port for this interface (EXT_PORT)
* Enable the GMII GTX external clock
* Use double data rate (DDR mode)
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC,
CPU_PORT,
VSC73XX_ADVPORTM,
VSC73XX_ADVPORTM_EXT_PORT |
VSC73XX_ADVPORTM_ENA_GTX |
VSC73XX_ADVPORTM_DDR_MODE);
}
}
static void vsc73xx_mac_link_down(struct phylink_config *config,
unsigned int mode, phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
/* This routine is described in the datasheet (below ARBDISC register
* description)
*/
vsc73xx_reset_port(vsc, port, 0);
/* Allow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), BIT(port));
}
static void vsc73xx_mac_link_up(struct phylink_config *config,
struct phy_device *phy, unsigned int mode,
phy_interface_t interface, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct vsc73xx *vsc = dp->ds->priv;
int port = dp->index;
u32 val;
u8 seed;
if (speed == SPEED_1000)
val = VSC73XX_MAC_CFG_GIGA_MODE | VSC73XX_MAC_CFG_TX_IPG_1000M;
else
val = VSC73XX_MAC_CFG_TX_IPG_100_10M;
if (phy_interface_mode_is_rgmii(interface))
val |= VSC73XX_MAC_CFG_CLK_SEL_1000M;
else
val |= VSC73XX_MAC_CFG_CLK_SEL_EXT;
if (duplex == DUPLEX_FULL)
val |= VSC73XX_MAC_CFG_FDX;
else
/* In datasheet description ("Port Mode Procedure" in 5.6.2)
* this bit is configured only for half duplex.
*/
val |= VSC73XX_MAC_CFG_WEXC_DIS;
/* This routine is described in the datasheet (below ARBDISC register
* description)
*/
vsc73xx_reset_port(vsc, port, val);
/* Seed the port randomness with randomness */
get_random_bytes(&seed, 1);
val |= seed << VSC73XX_MAC_CFG_SEED_OFFSET;
val |= VSC73XX_MAC_CFG_SEED_LOAD;
/* Those bits are responsible for MTU only. Kernel takes care about MTU,
* let's enable +8 bytes frame length unconditionally.
*/
val |= VSC73XX_MAC_CFG_VLAN_AWR | VSC73XX_MAC_CFG_VLAN_DBLAWR;
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val);
/* Flow control for the PHY facing ports:
* Use a zero delay pause frame when pause condition is left
* Obey pause control frames
* When generating pause frames, use 0xff as pause value
*/
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_FCCONF,
VSC73XX_FCCONF_ZERO_PAUSE_EN |
VSC73XX_FCCONF_FLOW_CTRL_OBEY |
0xff);
/* Accept packets again */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_ARBDISC, BIT(port), 0);
/* Disallow backward dropping of frames from this port */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0,
VSC73XX_SBACKWDROP, BIT(port), 0);
/* Enable TX, RX, deassert reset, stop loading seed */
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG,
VSC73XX_MAC_CFG_RESET | VSC73XX_MAC_CFG_SEED_LOAD |
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN,
VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN);
}
static bool vsc73xx_tag_8021q_active(struct dsa_port *dp)
{
return !dsa_port_is_vlan_filtering(dp);
}
static struct vsc73xx_bridge_vlan *
vsc73xx_bridge_vlan_find(struct vsc73xx *vsc, u16 vid)
{
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list)
if (vlan->vid == vid)
return vlan;
return NULL;
}
static void
vsc73xx_bridge_vlan_remove_port(struct vsc73xx_bridge_vlan *vsc73xx_vlan,
int port)
{
vsc73xx_vlan->portmask &= ~BIT(port);
if (vsc73xx_vlan->portmask)
return;
list_del(&vsc73xx_vlan->list);
kfree(vsc73xx_vlan);
}
static void vsc73xx_bridge_vlan_summary(struct vsc73xx *vsc, int port,
struct vsc73xx_vlan_summary *summary,
u16 ignored_vid)
{
size_t num_tagged = 0, num_untagged = 0;
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list) {
if (!(vlan->portmask & BIT(port)) || vlan->vid == ignored_vid)
continue;
if (vlan->untagged & BIT(port))
num_untagged++;
else
num_tagged++;
}
summary->num_untagged = num_untagged;
summary->num_tagged = num_tagged;
}
static u16 vsc73xx_find_first_vlan_untagged(struct vsc73xx *vsc, int port)
{
struct vsc73xx_bridge_vlan *vlan;
list_for_each_entry(vlan, &vsc->vlans, list)
if ((vlan->portmask & BIT(port)) &&
(vlan->untagged & BIT(port)))
return vlan->vid;
return VLAN_N_VID;
}
static int vsc73xx_set_vlan_conf(struct vsc73xx *vsc, int port,
enum vsc73xx_port_vlan_conf port_vlan_conf)
{
u32 val = 0;
int ret;
if (port_vlan_conf == VSC73XX_VLAN_IGNORE)
val = VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA |
VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_VLAN_MISC,
VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA |
VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA, val);
if (ret)
return ret;
val = (port_vlan_conf == VSC73XX_VLAN_FILTER) ?
VSC73XX_TXUPDCFG_TX_INSERT_TAG : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_TXUPDCFG,
VSC73XX_TXUPDCFG_TX_INSERT_TAG, val);
}
/**
* vsc73xx_vlan_commit_conf - Update VLAN configuration of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the VLAN behavior of a port to make sure that when it is under
* a VLAN filtering bridge, the port is either filtering with tag
* preservation, or filtering with all VLANs egress-untagged. Otherwise,
* the port ignores VLAN tags from packets and applies the port-based
* VID.
*
* Must be called when changes are made to:
* - the bridge VLAN filtering state of the port
* - the number or attributes of VLANs from the bridge VLAN table,
* while the port is currently VLAN-aware
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_conf(struct vsc73xx *vsc, int port)
{
enum vsc73xx_port_vlan_conf port_vlan_conf = VSC73XX_VLAN_IGNORE;
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
if (port == CPU_PORT) {
port_vlan_conf = VSC73XX_VLAN_FILTER;
} else if (dsa_port_is_vlan_filtering(dp)) {
struct vsc73xx_vlan_summary summary;
port_vlan_conf = VSC73XX_VLAN_FILTER;
vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID);
if (summary.num_tagged == 0)
port_vlan_conf = VSC73XX_VLAN_FILTER_UNTAG_ALL;
}
return vsc73xx_set_vlan_conf(vsc, port, port_vlan_conf);
}
static int
vsc73xx_vlan_change_untagged(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u32 val = 0;
if (set)
val = VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA |
((vid << VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT) &
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID);
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_TXUPDCFG,
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA |
VSC73XX_TXUPDCFG_TX_UNTAGGED_VID, val);
}
/**
* vsc73xx_vlan_commit_untagged - Update native VLAN of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the native VLAN of a port (the one VLAN which is transmitted
* as egress-tagged on a trunk port) when port is in VLAN filtering mode and
* only one untagged vid is configured.
* In other cases no need to configure it because switch can untag all vlans on
* the port.
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_untagged(struct vsc73xx *vsc, int port)
{
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
struct vsc73xx_vlan_summary summary;
u16 vid = 0;
bool valid;
if (!dsa_port_is_vlan_filtering(dp))
/* Port is configured to untag all vlans in that case.
* No need to commit untagged config change.
*/
return 0;
vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID);
if (summary.num_untagged > 1)
/* Port must untag all vlans in that case.
* No need to commit untagged config change.
*/
return 0;
valid = (summary.num_untagged == 1);
if (valid)
vid = vsc73xx_find_first_vlan_untagged(vsc, port);
return vsc73xx_vlan_change_untagged(vsc, port, vid, valid);
}
static int
vsc73xx_vlan_change_pvid(struct vsc73xx *vsc, int port, u16 vid, bool set)
{
u32 val = 0;
int ret;
val = set ? 0 : VSC73XX_CAT_DROP_UNTAGGED_ENA;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_DROP,
VSC73XX_CAT_DROP_UNTAGGED_ENA, val);
if (!set || ret)
return ret;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_CAT_PORT_VLAN,
VSC73XX_CAT_PORT_VLAN_VLAN_VID,
vid & VSC73XX_CAT_PORT_VLAN_VLAN_VID);
}
/**
* vsc73xx_vlan_commit_pvid - Update port-based default VLAN of a port
* @vsc: Switch private data structure
* @port: Port index on which to operate
*
* Update the PVID of a port so that it follows either the bridge PVID
* configuration, when the bridge is currently VLAN-aware, or the PVID
* from tag_8021q, when the port is standalone or under a VLAN-unaware
* bridge. A port with no PVID drops all untagged and VID 0 tagged
* traffic.
*
* Must be called when changes are made to:
* - the bridge VLAN filtering state of the port
* - the number or attributes of VLANs from the bridge VLAN table,
* while the port is currently VLAN-aware
*
* Return: 0 on success, or negative errno on error.
*/
static int vsc73xx_vlan_commit_pvid(struct vsc73xx *vsc, int port)
{
struct vsc73xx_portinfo *portinfo = &vsc->portinfo[port];
bool valid = portinfo->pvid_tag_8021q_configured;
struct dsa_port *dp = dsa_to_port(vsc->ds, port);
u16 vid = portinfo->pvid_tag_8021q;
if (dsa_port_is_vlan_filtering(dp)) {
vid = portinfo->pvid_vlan_filtering;
valid = portinfo->pvid_vlan_filtering_configured;
}
return vsc73xx_vlan_change_pvid(vsc, port, vid, valid);
}
static int vsc73xx_vlan_commit_settings(struct vsc73xx *vsc, int port)
{
int ret;
ret = vsc73xx_vlan_commit_untagged(vsc, port);
if (ret)
return ret;
ret = vsc73xx_vlan_commit_pvid(vsc, port);
if (ret)
return ret;
return vsc73xx_vlan_commit_conf(vsc, port);
}
static int vsc73xx_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct vsc73xx *vsc = ds->priv;
dev_info(vsc->dev, "enable port %d\n", port);
vsc73xx_init_port(vsc, port);
return vsc73xx_vlan_commit_settings(vsc, port);
}
static void vsc73xx_port_disable(struct dsa_switch *ds, int port)
{
struct vsc73xx *vsc = ds->priv;
/* Just put the port into reset */
vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET);
}
static const struct vsc73xx_counter *
vsc73xx_find_counter(struct vsc73xx *vsc,
u8 counter,
bool tx)
{
const struct vsc73xx_counter *cnts;
int num_cnts;
int i;
if (tx) {
cnts = vsc73xx_tx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_tx_counters);
} else {
cnts = vsc73xx_rx_counters;
num_cnts = ARRAY_SIZE(vsc73xx_rx_counters);
}
for (i = 0; i < num_cnts; i++) {
const struct vsc73xx_counter *cnt;
cnt = &cnts[i];
if (cnt->counter == counter)
return cnt;
}
return NULL;
}
static void vsc73xx_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
const struct vsc73xx_counter *cnt;
struct vsc73xx *vsc = ds->priv;
u8 indices[6];
u8 *buf = data;
int i;
u32 val;
int ret;
if (stringset != ETH_SS_STATS)
return;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_C_CFG, &val);
if (ret)
return;
indices[0] = (val & 0x1f); /* RX counter 0 */
indices[1] = ((val >> 5) & 0x1f); /* RX counter 1 */
indices[2] = ((val >> 10) & 0x1f); /* RX counter 2 */
indices[3] = ((val >> 16) & 0x1f); /* TX counter 0 */
indices[4] = ((val >> 21) & 0x1f); /* TX counter 1 */
indices[5] = ((val >> 26) & 0x1f); /* TX counter 2 */
/* The first counters is the RX octets */
ethtool_puts(&buf, "RxEtherStatsOctets");
/* Each port supports recording 3 RX counters and 3 TX counters,
* figure out what counters we use in this set-up and return the
* names of them. The hardware default counters will be number of
* packets on RX/TX, combined broadcast+multicast packets RX/TX and
* total error packets RX/TX.
*/
for (i = 0; i < 3; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], false);
ethtool_puts(&buf, cnt ? cnt->name : "");
}
/* TX stats begins with the number of TX octets */
ethtool_puts(&buf, "TxEtherStatsOctets");
for (i = 3; i < 6; i++) {
cnt = vsc73xx_find_counter(vsc, indices[i], true);
ethtool_puts(&buf, cnt ? cnt->name : "");
}
}
static int vsc73xx_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
/* We only support SS_STATS */
if (sset != ETH_SS_STATS)
return 0;
/* RX and TX packets, then 3 RX counters, 3 TX counters */
return 8;
}
static void vsc73xx_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct vsc73xx *vsc = ds->priv;
u8 regs[] = {
VSC73XX_RXOCT,
VSC73XX_C_RX0,
VSC73XX_C_RX1,
VSC73XX_C_RX2,
VSC73XX_TXOCT,
VSC73XX_C_TX0,
VSC73XX_C_TX1,
VSC73XX_C_TX2,
};
u32 val;
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(regs); i++) {
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port,
regs[i], &val);
if (ret) {
dev_err(vsc->dev, "error reading counter %d\n", i);
return;
}
data[i] = val;
}
}
static int vsc73xx_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct vsc73xx *vsc = ds->priv;
return vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port,
VSC73XX_MAXLEN, new_mtu + ETH_HLEN + ETH_FCS_LEN);
}
/* According to application not "VSC7398 Jumbo Frames" setting
* up the frame size to 9.6 KB does not affect the performance on standard
* frames. It is clear from the application note that
* "9.6 kilobytes" == 9600 bytes.
*/
static int vsc73xx_get_max_mtu(struct dsa_switch *ds, int port)
{
return 9600 - ETH_HLEN - ETH_FCS_LEN;
}
static void vsc73xx_phylink_get_caps(struct dsa_switch *dsa, int port,
struct phylink_config *config)
{
unsigned long *interfaces = config->supported_interfaces;
if (port == 5)
return;
if (port == CPU_PORT) {
__set_bit(PHY_INTERFACE_MODE_MII, interfaces);
__set_bit(PHY_INTERFACE_MODE_REVMII, interfaces);
__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
__set_bit(PHY_INTERFACE_MODE_RGMII, interfaces);
}
if (port <= 4) {
/* Internal PHYs */
__set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces);
/* phylib default */
__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
}
config->mac_capabilities = MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000;
}
static int
vsc73xx_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering, struct netlink_ext_ack *extack)
{
struct vsc73xx *vsc = ds->priv;
/* The commit to hardware processed below is required because vsc73xx
* is using tag_8021q. When vlan_filtering is disabled, tag_8021q uses
* pvid/untagged vlans for port recognition. The values configured for
* vlans and pvid/untagged states are stored in portinfo structure.
* When vlan_filtering is enabled, we need to restore pvid/untagged from
* portinfo structure. Analogous routine is processed when
* vlan_filtering is disabled, but values used for tag_8021q are
* restored.
*/
return vsc73xx_vlan_commit_settings(vsc, port);
}
static int vsc73xx_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct dsa_port *dp = dsa_to_port(ds, port);
struct vsc73xx_bridge_vlan *vsc73xx_vlan;
struct vsc73xx_vlan_summary summary;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret = 0;
/* Be sure to deny alterations to the configuration done by tag_8021q.
*/
if (vid_is_dsa_8021q(vlan->vid)) {
NL_SET_ERR_MSG_MOD(extack,
"Range 3072-4095 reserved for dsa_8021q operation");
return -EBUSY;
}
/* The processed vlan->vid is excluded from the search because the VLAN
* can be re-added with a different set of flags, so it's easiest to
* ignore its old flags from the VLAN database software copy.
*/
vsc73xx_bridge_vlan_summary(vsc, port, &summary, vlan->vid);
/* VSC73XX allows only three untagged states: none, one or all */
if ((untagged && summary.num_tagged > 0 && summary.num_untagged > 0) ||
(!untagged && summary.num_untagged > 1)) {
NL_SET_ERR_MSG_MOD(extack,
"Port can have only none, one or all untagged vlan");
return -EBUSY;
}
vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid);
if (!vsc73xx_vlan) {
vsc73xx_vlan = kzalloc(sizeof(*vsc73xx_vlan), GFP_KERNEL);
if (!vsc73xx_vlan)
return -ENOMEM;
vsc73xx_vlan->vid = vlan->vid;
list_add_tail(&vsc73xx_vlan->list, &vsc->vlans);
}
vsc73xx_vlan->portmask |= BIT(port);
/* CPU port must be always tagged because source port identification is
* based on tag_8021q.
*/
if (port == CPU_PORT)
goto update_vlan_table;
if (untagged)
vsc73xx_vlan->untagged |= BIT(port);
else
vsc73xx_vlan->untagged &= ~BIT(port);
portinfo = &vsc->portinfo[port];
if (pvid) {
portinfo->pvid_vlan_filtering_configured = true;
portinfo->pvid_vlan_filtering = vlan->vid;
} else if (portinfo->pvid_vlan_filtering_configured &&
portinfo->pvid_vlan_filtering == vlan->vid) {
portinfo->pvid_vlan_filtering_configured = false;
}
commit_to_hardware = !vsc73xx_tag_8021q_active(dp);
if (commit_to_hardware) {
ret = vsc73xx_vlan_commit_settings(vsc, port);
if (ret)
goto err;
}
update_vlan_table:
ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, true);
if (!ret)
return 0;
err:
vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port);
return ret;
}
static int vsc73xx_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct vsc73xx_bridge_vlan *vsc73xx_vlan;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret;
ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, false);
if (ret)
return ret;
portinfo = &vsc->portinfo[port];
if (portinfo->pvid_vlan_filtering_configured &&
portinfo->pvid_vlan_filtering == vlan->vid)
portinfo->pvid_vlan_filtering_configured = false;
vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid);
if (vsc73xx_vlan)
vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port);
commit_to_hardware = !vsc73xx_tag_8021q_active(dsa_to_port(ds, port));
if (commit_to_hardware)
return vsc73xx_vlan_commit_settings(vsc, port);
return 0;
}
static int vsc73xx_tag_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
u16 flags)
{
bool pvid = flags & BRIDGE_VLAN_INFO_PVID;
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
bool commit_to_hardware;
int ret;
portinfo = &vsc->portinfo[port];
if (pvid) {
portinfo->pvid_tag_8021q_configured = true;
portinfo->pvid_tag_8021q = vid;
}
commit_to_hardware = vsc73xx_tag_8021q_active(dsa_to_port(ds, port));
if (commit_to_hardware) {
ret = vsc73xx_vlan_commit_settings(vsc, port);
if (ret)
return ret;
}
return vsc73xx_update_vlan_table(vsc, port, vid, true);
}
static int vsc73xx_tag_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
{
struct vsc73xx_portinfo *portinfo;
struct vsc73xx *vsc = ds->priv;
portinfo = &vsc->portinfo[port];
if (portinfo->pvid_tag_8021q_configured &&
portinfo->pvid_tag_8021q == vid) {
struct dsa_port *dp = dsa_to_port(ds, port);
bool commit_to_hardware;
int err;
portinfo->pvid_tag_8021q_configured = false;
commit_to_hardware = vsc73xx_tag_8021q_active(dp);
if (commit_to_hardware) {
err = vsc73xx_vlan_commit_settings(vsc, port);
if (err)
return err;
}
}
return vsc73xx_update_vlan_table(vsc, port, vid, false);
}
static int vsc73xx_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & ~BR_LEARNING)
return -EINVAL;
return 0;
}
static int vsc73xx_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
if (flags.mask & BR_LEARNING) {
u32 val = flags.val & BR_LEARNING ? BIT(port) : 0;
struct vsc73xx *vsc = ds->priv;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_LEARNMASK, BIT(port), val);
}
return 0;
}
static void vsc73xx_refresh_fwd_map(struct dsa_switch *ds, int port, u8 state)
{
struct dsa_port *other_dp, *dp = dsa_to_port(ds, port);
struct vsc73xx *vsc = ds->priv;
u16 mask;
if (state != BR_STATE_FORWARDING) {
/* Ports that aren't in the forwarding state must not
* forward packets anywhere.
*/
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + port,
VSC73XX_SRCMASKS_PORTS_MASK, 0);
dsa_switch_for_each_available_port(other_dp, ds) {
if (other_dp == dp)
continue;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + other_dp->index,
BIT(port), 0);
}
return;
}
/* Forwarding ports must forward to the CPU and to other ports
* in the same bridge
*/
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + CPU_PORT, BIT(port), BIT(port));
mask = BIT(CPU_PORT);
dsa_switch_for_each_user_port(other_dp, ds) {
int other_port = other_dp->index;
if (port == other_port || !dsa_port_bridge_same(dp, other_dp) ||
other_dp->stp_state != BR_STATE_FORWARDING)
continue;
mask |= BIT(other_port);
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + other_port,
BIT(port), BIT(port));
}
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_SRCMASKS + port,
VSC73XX_SRCMASKS_PORTS_MASK, mask);
}
/* FIXME: STP frames aren't forwarded at this moment. BPDU frames are
* forwarded only from and to PI/SI interface. For more info see chapter
* 2.7.1 (CPU Forwarding) in datasheet.
* This function is required for tag_8021q operations.
*/
static void vsc73xx_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct dsa_port *dp = dsa_to_port(ds, port);
struct vsc73xx *vsc = ds->priv;
u32 val = 0;
if (state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING)
val = dp->learning ? BIT(port) : 0;
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_LEARNMASK, BIT(port), val);
val = (state == BR_STATE_BLOCKING || state == BR_STATE_DISABLED) ?
0 : BIT(port);
vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_RECVMASK, BIT(port), val);
/* CPU Port should always forward packets when user ports are forwarding
* so let's configure it from other ports only.
*/
if (port != CPU_PORT)
vsc73xx_refresh_fwd_map(ds, port, state);
}
static u16 vsc73xx_calc_hash(const unsigned char *addr, u16 vid)
{
/* VID 5-0, MAC 47-44 */
u16 hash = FIELD_PREP(VSC73XX_HASH0_VID_TO_MASK,
FIELD_GET(VSC73XX_HASH0_VID_FROM_MASK, vid)) |
FIELD_PREP(VSC73XX_HASH0_MAC0_TO_MASK,
FIELD_GET(VSC73XX_HASH0_MAC0_FROM_MASK, addr[0]));
/* MAC 43-33 */
hash ^= FIELD_PREP(VSC73XX_HASH1_MAC0_TO_MASK,
FIELD_GET(VSC73XX_HASH1_MAC0_FROM_MASK, addr[0])) |
FIELD_PREP(VSC73XX_HASH1_MAC1_TO_MASK,
FIELD_GET(VSC73XX_HASH1_MAC1_FROM_MASK, addr[1]));
/* MAC 32-22 */
hash ^= FIELD_PREP(VSC73XX_HASH2_MAC1_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC1_FROM_MASK, addr[1])) |
FIELD_PREP(VSC73XX_HASH2_MAC2_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC2_FROM_MASK, addr[2])) |
FIELD_PREP(VSC73XX_HASH2_MAC3_TO_MASK,
FIELD_GET(VSC73XX_HASH2_MAC3_FROM_MASK, addr[3]));
/* MAC 21-11 */
hash ^= FIELD_PREP(VSC73XX_HASH3_MAC3_TO_MASK,
FIELD_GET(VSC73XX_HASH3_MAC3_FROM_MASK, addr[3])) |
FIELD_PREP(VSC73XX_HASH3_MAC4_TO_MASK,
FIELD_GET(VSC73XX_HASH3_MAC4_FROM_MASK, addr[4]));
/* MAC 10-0 */
hash ^= FIELD_PREP(VSC73XX_HASH4_MAC4_TO_MASK,
FIELD_GET(VSC73XX_HASH4_MAC4_FROM_MASK, addr[4])) |
addr[5];
return hash;
}
static int
vsc73xx_port_wait_for_mac_table_cmd(struct vsc73xx *vsc)
{
int ret, err;
u32 val;
ret = read_poll_timeout(vsc73xx_read, err,
err < 0 ||
((val & VSC73XX_MACACCESS_CMD_MASK) ==
VSC73XX_MACACCESS_CMD_IDLE),
VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US,
false, vsc, VSC73XX_BLOCK_ANALYZER,
0, VSC73XX_MACACCESS, &val);
if (ret)
return ret;
return err;
}
static int vsc73xx_port_read_mac_table_row(struct vsc73xx *vsc, u16 index,
struct vsc73xx_fdb *fdb)
{
int ret, i;
u32 val;
if (!fdb)
return -EINVAL;
if (index >= VSC73XX_NUM_FDB_ROWS)
return -EINVAL;
for (i = 0; i < VSC73XX_NUM_BUCKETS; i++) {
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACTINDX,
(i ? 0 : VSC73XX_MACTINDX_SHADOW) |
FIELD_PREP(VSC73XX_MACTINDX_BUCKET_MSK, i) |
index);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS,
VSC73XX_MACACCESS_CMD_MASK,
VSC73XX_MACACCESS_CMD_READ_ENTRY);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS, &val);
if (ret)
return ret;
fdb[i].valid = FIELD_GET(VSC73XX_MACACCESS_VALID, val);
if (!fdb[i].valid)
continue;
fdb[i].port = FIELD_GET(VSC73XX_MACACCESS_DEST_IDX_MASK, val);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACHDATA, &val);
if (ret)
return ret;
fdb[i].vid = FIELD_GET(VSC73XX_MACHDATA_VID, val);
fdb[i].mac[0] = FIELD_GET(VSC73XX_MACHDATA_MAC0, val);
fdb[i].mac[1] = FIELD_GET(VSC73XX_MACHDATA_MAC1, val);
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACLDATA, &val);
if (ret)
return ret;
fdb[i].mac[2] = FIELD_GET(VSC73XX_MACLDATA_MAC2, val);
fdb[i].mac[3] = FIELD_GET(VSC73XX_MACLDATA_MAC3, val);
fdb[i].mac[4] = FIELD_GET(VSC73XX_MACLDATA_MAC4, val);
fdb[i].mac[5] = FIELD_GET(VSC73XX_MACLDATA_MAC5, val);
}
return ret;
}
static int
vsc73xx_fdb_operation(struct vsc73xx *vsc, const unsigned char *addr, u16 vid,
u16 hash, u16 cmd_mask, u16 cmd_val)
{
int ret;
u32 val;
val = FIELD_PREP(VSC73XX_MACHDATA_VID, vid) |
FIELD_PREP(VSC73XX_MACHDATA_MAC0, addr[0]) |
FIELD_PREP(VSC73XX_MACHDATA_MAC1, addr[1]);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACHDATA,
val);
if (ret)
return ret;
val = FIELD_PREP(VSC73XX_MACLDATA_MAC2, addr[2]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC3, addr[3]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC4, addr[4]) |
FIELD_PREP(VSC73XX_MACLDATA_MAC5, addr[5]);
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACLDATA,
val);
if (ret)
return ret;
ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACTINDX,
hash);
if (ret)
return ret;
ret = vsc73xx_port_wait_for_mac_table_cmd(vsc);
if (ret)
return ret;
ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0,
VSC73XX_MACACCESS, cmd_mask, cmd_val);
if (ret)
return ret;
return vsc73xx_port_wait_for_mac_table_cmd(vsc);
}
static int vsc73xx_fdb_del_entry(struct vsc73xx *vsc, int port,
const unsigned char *addr, u16 vid)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
u16 hash = vsc73xx_calc_hash(addr, vid);
int bucket, ret;
mutex_lock(&vsc->fdb_lock);
ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb);
if (ret)
goto err;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (fdb[bucket].valid && fdb[bucket].port == port &&
ether_addr_equal(addr, fdb[bucket].mac))
break;
}
if (bucket == VSC73XX_NUM_BUCKETS) {
/* Can't find MAC in MAC table */
ret = -ENODATA;
goto err;
}
ret = vsc73xx_fdb_operation(vsc, addr, vid, hash,
VSC73XX_MACACCESS_CMD_MASK,
VSC73XX_MACACCESS_CMD_FORGET);
err:
mutex_unlock(&vsc->fdb_lock);
return ret;
}
static int vsc73xx_fdb_add_entry(struct vsc73xx *vsc, int port,
const unsigned char *addr, u16 vid)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
u16 hash = vsc73xx_calc_hash(addr, vid);
int bucket, ret;
u32 val;
mutex_lock(&vsc->fdb_lock);
ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb);
if (ret)
goto err;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (!fdb[bucket].valid)
break;
}
if (bucket == VSC73XX_NUM_BUCKETS) {
/* Bucket is full */
ret = -EOVERFLOW;
goto err;
}
val = VSC73XX_MACACCESS_VALID | VSC73XX_MACACCESS_LOCKED |
FIELD_PREP(VSC73XX_MACACCESS_DEST_IDX_MASK, port) |
VSC73XX_MACACCESS_CMD_LEARN;
ret = vsc73xx_fdb_operation(vsc, addr, vid, hash,
VSC73XX_MACACCESS_VALID |
VSC73XX_MACACCESS_LOCKED |
VSC73XX_MACACCESS_DEST_IDX_MASK |
VSC73XX_MACACCESS_CMD_MASK, val);
err:
mutex_unlock(&vsc->fdb_lock);
return ret;
}
static int vsc73xx_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
struct vsc73xx *vsc = ds->priv;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
return vsc73xx_fdb_add_entry(vsc, port, addr, vid);
}
static int vsc73xx_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid, struct dsa_db db)
{
struct vsc73xx *vsc = ds->priv;
if (!vid) {
switch (db.type) {
case DSA_DB_PORT:
vid = dsa_tag_8021q_standalone_vid(db.dp);
break;
case DSA_DB_BRIDGE:
vid = dsa_tag_8021q_bridge_vid(db.bridge.num);
break;
default:
return -EOPNOTSUPP;
}
}
return vsc73xx_fdb_del_entry(vsc, port, addr, vid);
}
static int vsc73xx_port_fdb_dump(struct dsa_switch *ds,
int port, dsa_fdb_dump_cb_t *cb, void *data)
{
struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS];
struct vsc73xx *vsc = ds->priv;
u16 i, bucket;
int err = 0;
mutex_lock(&vsc->fdb_lock);
for (i = 0; i < VSC73XX_NUM_FDB_ROWS; i++) {
err = vsc73xx_port_read_mac_table_row(vsc, i, fdb);
if (err)
goto unlock;
for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) {
if (!fdb[bucket].valid || fdb[bucket].port != port)
continue;
/* We need to hide dsa_8021q VLANs from the user */
if (vid_is_dsa_8021q(fdb[bucket].vid))
fdb[bucket].vid = 0;
err = cb(fdb[bucket].mac, fdb[bucket].vid, false, data);
if (err)
goto unlock;
}
}
unlock:
mutex_unlock(&vsc->fdb_lock);
return err;
}
static const struct phylink_mac_ops vsc73xx_phylink_mac_ops = {
.mac_config = vsc73xx_mac_config,
.mac_link_down = vsc73xx_mac_link_down,
.mac_link_up = vsc73xx_mac_link_up,
};
static const struct dsa_switch_ops vsc73xx_ds_ops = {
.get_tag_protocol = vsc73xx_get_tag_protocol,
.setup = vsc73xx_setup,
.teardown = vsc73xx_teardown,
.phy_read = vsc73xx_phy_read,
.phy_write = vsc73xx_phy_write,
.get_strings = vsc73xx_get_strings,
.get_ethtool_stats = vsc73xx_get_ethtool_stats,
.get_sset_count = vsc73xx_get_sset_count,
.port_enable = vsc73xx_port_enable,
.port_disable = vsc73xx_port_disable,
.port_pre_bridge_flags = vsc73xx_port_pre_bridge_flags,
.port_bridge_flags = vsc73xx_port_bridge_flags,
.port_bridge_join = dsa_tag_8021q_bridge_join,
.port_bridge_leave = dsa_tag_8021q_bridge_leave,
.port_change_mtu = vsc73xx_change_mtu,
.port_fdb_add = vsc73xx_fdb_add,
.port_fdb_del = vsc73xx_fdb_del,
.port_fdb_dump = vsc73xx_port_fdb_dump,
.port_max_mtu = vsc73xx_get_max_mtu,
.port_stp_state_set = vsc73xx_port_stp_state_set,
.port_vlan_filtering = vsc73xx_port_vlan_filtering,
.port_vlan_add = vsc73xx_port_vlan_add,
.port_vlan_del = vsc73xx_port_vlan_del,
.phylink_get_caps = vsc73xx_phylink_get_caps,
.tag_8021q_vlan_add = vsc73xx_tag_8021q_vlan_add,
.tag_8021q_vlan_del = vsc73xx_tag_8021q_vlan_del,
};
static int vsc73xx_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !!(val & BIT(offset));
}
static int vsc73xx_gpio_set(struct gpio_chip *chip, unsigned int offset,
int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset), tmp);
}
static int vsc73xx_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int val)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 tmp = val ? BIT(offset) : 0;
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4) | BIT(offset),
BIT(offset + 4) | tmp);
}
static int vsc73xx_gpio_direction_input(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, BIT(offset + 4),
0);
}
static int vsc73xx_gpio_get_direction(struct gpio_chip *chip,
unsigned int offset)
{
struct vsc73xx *vsc = gpiochip_get_data(chip);
u32 val;
int ret;
ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0,
VSC73XX_GPIO, &val);
if (ret)
return ret;
return !(val & BIT(offset + 4));
}
static int vsc73xx_gpio_probe(struct vsc73xx *vsc)
{
int ret;
vsc->gc.label = devm_kasprintf(vsc->dev, GFP_KERNEL, "VSC%04x",
vsc->chipid);
if (!vsc->gc.label)
return -ENOMEM;
vsc->gc.ngpio = 4;
vsc->gc.owner = THIS_MODULE;
vsc->gc.parent = vsc->dev;
vsc->gc.base = -1;
vsc->gc.get = vsc73xx_gpio_get;
vsc->gc.set_rv = vsc73xx_gpio_set;
vsc->gc.direction_input = vsc73xx_gpio_direction_input;
vsc->gc.direction_output = vsc73xx_gpio_direction_output;
vsc->gc.get_direction = vsc73xx_gpio_get_direction;
vsc->gc.can_sleep = true;
ret = devm_gpiochip_add_data(vsc->dev, &vsc->gc, vsc);
if (ret) {
dev_err(vsc->dev, "unable to register GPIO chip\n");
return ret;
}
return 0;
}
int vsc73xx_probe(struct vsc73xx *vsc)
{
struct device *dev = vsc->dev;
int ret;
/* Release reset, if any */
vsc->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(vsc->reset)) {
dev_err(dev, "failed to get RESET GPIO\n");
return PTR_ERR(vsc->reset);
}
if (vsc->reset)
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
if (ret == -EAGAIN) {
dev_err(vsc->dev,
"Chip seems to be out of control. Assert reset and try again.\n");
gpiod_set_value_cansleep(vsc->reset, 1);
/* Reset pulse should be 20ns minimum, according to datasheet
* table 245, so 10us should be fine
*/
usleep_range(10, 100);
gpiod_set_value_cansleep(vsc->reset, 0);
/* Wait 20ms according to datasheet table 245 */
msleep(20);
ret = vsc73xx_detect(vsc);
}
if (ret) {
dev_err(dev, "no chip found (%d)\n", ret);
return -ENODEV;
}
mutex_init(&vsc->fdb_lock);
eth_random_addr(vsc->addr);
dev_info(vsc->dev,
"MAC for control frames: %02X:%02X:%02X:%02X:%02X:%02X\n",
vsc->addr[0], vsc->addr[1], vsc->addr[2],
vsc->addr[3], vsc->addr[4], vsc->addr[5]);
vsc->ds = devm_kzalloc(dev, sizeof(*vsc->ds), GFP_KERNEL);
if (!vsc->ds)
return -ENOMEM;
vsc->ds->dev = dev;
vsc->ds->num_ports = VSC73XX_MAX_NUM_PORTS;
vsc->ds->priv = vsc;
vsc->ds->ops = &vsc73xx_ds_ops;
vsc->ds->phylink_mac_ops = &vsc73xx_phylink_mac_ops;
ret = dsa_register_switch(vsc->ds);
if (ret) {
dev_err(dev, "unable to register switch (%d)\n", ret);
return ret;
}
ret = vsc73xx_gpio_probe(vsc);
if (ret) {
dsa_unregister_switch(vsc->ds);
return ret;
}
return 0;
}
EXPORT_SYMBOL(vsc73xx_probe);
void vsc73xx_remove(struct vsc73xx *vsc)
{
dsa_unregister_switch(vsc->ds);
gpiod_set_value(vsc->reset, 1);
}
EXPORT_SYMBOL(vsc73xx_remove);
net: dsa: be compatible with masters which unregister on shutdown Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17 16:34:33 +03:00
void vsc73xx_shutdown(struct vsc73xx *vsc)
{
dsa_switch_shutdown(vsc->ds);
}
EXPORT_SYMBOL(vsc73xx_shutdown);
MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
MODULE_DESCRIPTION("Vitesse VSC7385/7388/7395/7398 driver");
MODULE_LICENSE("GPL v2");