linux/drivers/net/dsa/sja1105/sja1105_dynamic_config.c

1414 lines
49 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com>
*/
#include "sja1105.h"
/* In the dynamic configuration interface, the switch exposes a register-like
* view of some of the static configuration tables.
* Many times the field organization of the dynamic tables is abbreviated (not
* all fields are dynamically reconfigurable) and different from the static
* ones, but the key reason for having it is that we can spare a switch reset
* for settings that can be changed dynamically.
*
* This file creates a per-switch-family abstraction called
* struct sja1105_dynamic_table_ops and two operations that work with it:
* - sja1105_dynamic_config_write
* - sja1105_dynamic_config_read
*
* Compared to the struct sja1105_table_ops from sja1105_static_config.c,
* the dynamic accessors work with a compound buffer:
*
* packed_buf
*
* |
* V
* +-----------------------------------------+------------------+
* | ENTRY BUFFER | COMMAND BUFFER |
* +-----------------------------------------+------------------+
*
* <----------------------- packed_size ------------------------>
*
* The ENTRY BUFFER may or may not have the same layout, or size, as its static
* configuration table entry counterpart. When it does, the same packing
* function is reused (bar exceptional cases - see
* sja1105pqrs_dyn_l2_lookup_entry_packing).
*
* The reason for the COMMAND BUFFER being at the end is to be able to send
* a dynamic write command through a single SPI burst. By the time the switch
* reacts to the command, the ENTRY BUFFER is already populated with the data
* sent by the core.
*
* The COMMAND BUFFER is always SJA1105_SIZE_DYN_CMD bytes (one 32-bit word) in
* size.
*
* Sometimes the ENTRY BUFFER does not really exist (when the number of fields
* that can be reconfigured is small), then the switch repurposes some of the
* unused 32 bits of the COMMAND BUFFER to hold ENTRY data.
*
* The key members of struct sja1105_dynamic_table_ops are:
* - .entry_packing: A function that deals with packing an ENTRY structure
* into an SPI buffer, or retrieving an ENTRY structure
* from one.
* The @packed_buf pointer it's given does always point to
* the ENTRY portion of the buffer.
* - .cmd_packing: A function that deals with packing/unpacking the COMMAND
* structure to/from the SPI buffer.
* It is given the same @packed_buf pointer as .entry_packing,
* so most of the time, the @packed_buf points *behind* the
* COMMAND offset inside the buffer.
* To access the COMMAND portion of the buffer, the function
* knows its correct offset.
* Giving both functions the same pointer is handy because in
* extreme cases (see sja1105pqrs_dyn_l2_lookup_entry_packing)
* the .entry_packing is able to jump to the COMMAND portion,
* or vice-versa (sja1105pqrs_l2_lookup_cmd_packing).
* - .access: A bitmap of:
* OP_READ: Set if the hardware manual marks the ENTRY portion of the
* dynamic configuration table buffer as R (readable) after
* an SPI read command (the switch will populate the buffer).
* OP_WRITE: Set if the manual marks the ENTRY portion of the dynamic
* table buffer as W (writable) after an SPI write command
* (the switch will read the fields provided in the buffer).
* OP_DEL: Set if the manual says the VALIDENT bit is supported in the
* COMMAND portion of this dynamic config buffer (i.e. the
* specified entry can be invalidated through a SPI write
* command).
* OP_SEARCH: Set if the manual says that the index of an entry can
* be retrieved in the COMMAND portion of the buffer based
* on its ENTRY portion, as a result of a SPI write command.
* Only the TCAM-based FDB table on SJA1105 P/Q/R/S supports
* this.
net: dsa: sja1105: some table entries are always present when read dynamically The SJA1105 has a static configuration comprised of a number of tables with entries. Some of these can be read and modified at runtime as well, through the dynamic configuration interface. As a careful reader can notice from the comments in this file, the software interface for accessing a table entry through the dynamic reconfiguration is a bit of a no man's land, and varies wildly across switch generations and even from one kind of table to another. I have tried my best to come up with a software representation of a 'common denominator' SPI command to access a table entry through the dynamic configuration interface: struct sja1105_dyn_cmd { bool search; u64 valid; /* must be set to 1 */ u64 rdwrset; /* 0 to read, 1 to write */ u64 errors; u64 valident; /* 0 if entry is invalid, 1 if valid */ u64 index; }; Relevant to this patch is the VALIDENT bit, which for READ commands is populated by the switch and lets us know if we're looking at junk or at a real table entry. In SJA1105, the dynamic reconfiguration interface for management routes has notably not implemented the VALIDENT bit, leading to a workaround to ignore this field in sja1105_dynamic_config_read(), as it will be set to zero, but the data is valid nonetheless. In SJA1110, this pattern has sadly been abused to death, and while there are many more tables which can be read back over the dynamic config interface compared to SJA1105, their handling isn't in any way more uniform. Generally speaking, if there is a single possible entry in a given table, and loading that table in the static config is mandatory as per the documentation, then the VALIDENT bit is deemed as redundant and more than likely not implemented. So it is time to make the workaround more official, and add a bit to the flags implemented by dynamic config tables. It will be used by more tables when SJA1110 support arrives. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-31 01:59:39 +03:00
* OP_VALID_ANYWAY: Reading some tables through the dynamic config
* interface is possible even if the VALIDENT bit is not
* set in the writeback. So don't error out in that case.
* - .max_entry_count: The number of entries, counting from zero, that can be
* reconfigured through the dynamic interface. If a static
* table can be reconfigured at all dynamically, this
* number always matches the maximum number of supported
* static entries.
* - .packed_size: The length in bytes of the compound ENTRY + COMMAND BUFFER.
* Note that sometimes the compound buffer may contain holes in
* it (see sja1105_vlan_lookup_cmd_packing). The @packed_buf is
* contiguous however, so @packed_size includes any unused
* bytes.
* - .addr: The base SPI address at which the buffer must be written to the
* switch's memory. When looking at the hardware manual, this must
* always match the lowest documented address for the ENTRY, and not
* that of the COMMAND, since the other 32-bit words will follow along
* at the correct addresses.
*/
#define SJA1105_SIZE_DYN_CMD 4
#define SJA1105ET_SIZE_VL_LOOKUP_DYN_CMD \
SJA1105_SIZE_DYN_CMD
#define SJA1105PQRS_SIZE_VL_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105_SIZE_VL_LOOKUP_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_VL_POLICING_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105_SIZE_VL_POLICING_ENTRY)
#define SJA1105ET_SIZE_MAC_CONFIG_DYN_ENTRY \
SJA1105_SIZE_DYN_CMD
#define SJA1105ET_SIZE_L2_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105ET_SIZE_L2_LOOKUP_ENTRY)
#define SJA1105PQRS_SIZE_L2_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_L2_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1110_SIZE_L2_LOOKUP_ENTRY)
#define SJA1105_SIZE_VLAN_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + 4 + SJA1105_SIZE_VLAN_LOOKUP_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_VLAN_LOOKUP_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1110_SIZE_VLAN_LOOKUP_ENTRY)
#define SJA1105_SIZE_L2_FORWARDING_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105_SIZE_L2_FORWARDING_ENTRY)
#define SJA1105ET_SIZE_MAC_CONFIG_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105ET_SIZE_MAC_CONFIG_DYN_ENTRY)
#define SJA1105PQRS_SIZE_MAC_CONFIG_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_MAC_CONFIG_ENTRY)
#define SJA1105ET_SIZE_L2_LOOKUP_PARAMS_DYN_CMD \
SJA1105_SIZE_DYN_CMD
#define SJA1105PQRS_SIZE_L2_LOOKUP_PARAMS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_L2_LOOKUP_PARAMS_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_L2_LOOKUP_PARAMS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1110_SIZE_L2_LOOKUP_PARAMS_ENTRY)
#define SJA1105ET_SIZE_GENERAL_PARAMS_DYN_CMD \
SJA1105_SIZE_DYN_CMD
#define SJA1105PQRS_SIZE_GENERAL_PARAMS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_GENERAL_PARAMS_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_GENERAL_PARAMS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1110_SIZE_GENERAL_PARAMS_ENTRY)
#define SJA1105PQRS_SIZE_AVB_PARAMS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_AVB_PARAMS_ENTRY)
#define SJA1105_SIZE_RETAGGING_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105_SIZE_RETAGGING_ENTRY)
#define SJA1105ET_SIZE_CBS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105ET_SIZE_CBS_ENTRY)
#define SJA1105PQRS_SIZE_CBS_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105PQRS_SIZE_CBS_ENTRY)
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
#define SJA1110_SIZE_XMII_PARAMS_DYN_CMD \
SJA1110_SIZE_XMII_PARAMS_ENTRY
#define SJA1110_SIZE_L2_POLICING_DYN_CMD \
(SJA1105_SIZE_DYN_CMD + SJA1105_SIZE_L2_POLICING_ENTRY)
#define SJA1110_SIZE_L2_FORWARDING_PARAMS_DYN_CMD \
SJA1105_SIZE_L2_FORWARDING_PARAMS_ENTRY
#define SJA1105_MAX_DYN_CMD_SIZE \
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
SJA1110_SIZE_GENERAL_PARAMS_DYN_CMD
struct sja1105_dyn_cmd {
bool search;
u64 valid;
u64 rdwrset;
u64 errors;
u64 valident;
u64 index;
};
enum sja1105_hostcmd {
SJA1105_HOSTCMD_SEARCH = 1,
SJA1105_HOSTCMD_READ = 2,
SJA1105_HOSTCMD_WRITE = 3,
SJA1105_HOSTCMD_INVALIDATE = 4,
};
/* Command and entry overlap */
static void
sja1105et_vl_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(buf, &cmd->valid, 31, 31, size, op);
sja1105_packing(buf, &cmd->errors, 30, 30, size, op);
sja1105_packing(buf, &cmd->rdwrset, 29, 29, size, op);
sja1105_packing(buf, &cmd->index, 9, 0, size, op);
}
/* Command and entry are separate */
static void
sja1105pqrs_vl_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_VL_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->rdwrset, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 9, 0, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_vl_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 11, 0, size, op);
}
static size_t sja1105et_vl_lookup_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_vl_lookup_entry *entry = entry_ptr;
const int size = SJA1105ET_SIZE_VL_LOOKUP_DYN_CMD;
sja1105_packing(buf, &entry->egrmirr, 21, 17, size, op);
sja1105_packing(buf, &entry->ingrmirr, 16, 16, size, op);
return size;
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_vl_policing_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_VL_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->index, 11, 0, size, op);
}
static void
sja1105pqrs_common_l2_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op, int entry_size)
{
const int size = SJA1105_SIZE_DYN_CMD;
u8 *p = buf + entry_size;
u64 hostcmd;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->valident, 27, 27, size, op);
/* VALIDENT is supposed to indicate "keep or not", but in SJA1105 E/T,
* using it to delete a management route was unsupported. UM10944
* said about it:
*
* In case of a write access with the MGMTROUTE flag set,
* the flag will be ignored. It will always be found cleared
* for read accesses with the MGMTROUTE flag set.
*
* SJA1105 P/Q/R/S keeps the same behavior w.r.t. VALIDENT, but there
* is now another flag called HOSTCMD which does more stuff (quoting
* from UM11040):
*
* A write request is accepted only when HOSTCMD is set to write host
* or invalid. A read request is accepted only when HOSTCMD is set to
* search host or read host.
*
* So it is possible to translate a RDWRSET/VALIDENT combination into
* HOSTCMD so that we keep the dynamic command API in place, and
* at the same time achieve compatibility with the management route
* command structure.
*/
if (cmd->rdwrset == SPI_READ) {
if (cmd->search)
hostcmd = SJA1105_HOSTCMD_SEARCH;
else
hostcmd = SJA1105_HOSTCMD_READ;
} else {
/* SPI_WRITE */
if (cmd->valident)
hostcmd = SJA1105_HOSTCMD_WRITE;
else
hostcmd = SJA1105_HOSTCMD_INVALIDATE;
}
sja1105_packing(p, &hostcmd, 25, 23, size, op);
}
static void
sja1105pqrs_l2_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
int entry_size = SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY;
sja1105pqrs_common_l2_lookup_cmd_packing(buf, cmd, op, entry_size);
/* Hack - The hardware takes the 'index' field within
* struct sja1105_l2_lookup_entry as the index on which this command
* will operate. However it will ignore everything else, so 'index'
* is logically part of command but physically part of entry.
* Populate the 'index' entry field from within the command callback,
* such that our API doesn't need to ask for a full-blown entry
* structure when e.g. a delete is requested.
*/
sja1105_packing(buf, &cmd->index, 15, 6, entry_size, op);
}
static void
sja1110_l2_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
int entry_size = SJA1110_SIZE_L2_LOOKUP_ENTRY;
sja1105pqrs_common_l2_lookup_cmd_packing(buf, cmd, op, entry_size);
sja1105_packing(buf, &cmd->index, 10, 1, entry_size, op);
}
/* The switch is so retarded that it makes our command/entry abstraction
* crumble apart.
*
* On P/Q/R/S, the switch tries to say whether a FDB entry
* is statically programmed or dynamically learned via a flag called LOCKEDS.
* The hardware manual says about this fiels:
*
* On write will specify the format of ENTRY.
* On read the flag will be found cleared at times the VALID flag is found
* set. The flag will also be found cleared in response to a read having the
* MGMTROUTE flag set. In response to a read with the MGMTROUTE flag
* cleared, the flag be set if the most recent access operated on an entry
* that was either loaded by configuration or through dynamic reconfiguration
* (as opposed to automatically learned entries).
*
* The trouble with this flag is that it's part of the *command* to access the
* dynamic interface, and not part of the *entry* retrieved from it.
* Otherwise said, for a sja1105_dynamic_config_read, LOCKEDS is supposed to be
* an output from the switch into the command buffer, and for a
* sja1105_dynamic_config_write, the switch treats LOCKEDS as an input
* (hence we can write either static, or automatically learned entries, from
* the core).
* But the manual contradicts itself in the last phrase where it says that on
* read, LOCKEDS will be set to 1 for all FDB entries written through the
* dynamic interface (therefore, the value of LOCKEDS from the
* sja1105_dynamic_config_write is not really used for anything, it'll store a
* 1 anyway).
* This means you can't really write a FDB entry with LOCKEDS=0 (automatically
* learned) into the switch, which kind of makes sense.
* As for reading through the dynamic interface, it doesn't make too much sense
* to put LOCKEDS into the command, since the switch will inevitably have to
* ignore it (otherwise a command would be like "read the FDB entry 123, but
* only if it's dynamically learned" <- well how am I supposed to know?) and
* just use it as an output buffer for its findings. But guess what... that's
* what the entry buffer is for!
* Unfortunately, what really breaks this abstraction is the fact that it
* wasn't designed having the fact in mind that the switch can output
* entry-related data as writeback through the command buffer.
* However, whether a FDB entry is statically or dynamically learned *is* part
* of the entry and not the command data, no matter what the switch thinks.
* In order to do that, we'll need to wrap around the
* sja1105pqrs_l2_lookup_entry_packing from sja1105_static_config.c, and take
* a peek outside of the caller-supplied @buf (the entry buffer), to reach the
* command buffer.
*/
static size_t
sja1105pqrs_dyn_l2_lookup_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_l2_lookup_entry *entry = entry_ptr;
u8 *cmd = buf + SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(cmd, &entry->lockeds, 28, 28, size, op);
return sja1105pqrs_l2_lookup_entry_packing(buf, entry_ptr, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static size_t sja1110_dyn_l2_lookup_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_l2_lookup_entry *entry = entry_ptr;
u8 *cmd = buf + SJA1110_SIZE_L2_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(cmd, &entry->lockeds, 28, 28, size, op);
return sja1110_l2_lookup_entry_packing(buf, entry_ptr, op);
}
static void
sja1105et_l2_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105ET_SIZE_L2_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->valident, 27, 27, size, op);
/* Hack - see comments above. */
sja1105_packing(buf, &cmd->index, 29, 20,
SJA1105ET_SIZE_L2_LOOKUP_ENTRY, op);
}
static size_t sja1105et_dyn_l2_lookup_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_l2_lookup_entry *entry = entry_ptr;
u8 *cmd = buf + SJA1105ET_SIZE_L2_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(cmd, &entry->lockeds, 28, 28, size, op);
return sja1105et_l2_lookup_entry_packing(buf, entry_ptr, op);
}
static void
sja1105et_mgmt_route_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105ET_SIZE_L2_LOOKUP_ENTRY;
u64 mgmtroute = 1;
sja1105et_l2_lookup_cmd_packing(buf, cmd, op);
if (op == PACK)
sja1105_pack(p, &mgmtroute, 26, 26, SJA1105_SIZE_DYN_CMD);
}
static size_t sja1105et_mgmt_route_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_mgmt_entry *entry = entry_ptr;
const size_t size = SJA1105ET_SIZE_L2_LOOKUP_ENTRY;
/* UM10944: To specify if a PTP egress timestamp shall be captured on
* each port upon transmission of the frame, the LSB of VLANID in the
* ENTRY field provided by the host must be set.
* Bit 1 of VLANID then specifies the register where the timestamp for
* this port is stored in.
*/
sja1105_packing(buf, &entry->tsreg, 85, 85, size, op);
sja1105_packing(buf, &entry->takets, 84, 84, size, op);
sja1105_packing(buf, &entry->macaddr, 83, 36, size, op);
sja1105_packing(buf, &entry->destports, 35, 31, size, op);
sja1105_packing(buf, &entry->enfport, 30, 30, size, op);
return size;
}
static void
sja1105pqrs_mgmt_route_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY;
u64 mgmtroute = 1;
sja1105pqrs_l2_lookup_cmd_packing(buf, cmd, op);
if (op == PACK)
sja1105_pack(p, &mgmtroute, 26, 26, SJA1105_SIZE_DYN_CMD);
}
static size_t sja1105pqrs_mgmt_route_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
const size_t size = SJA1105PQRS_SIZE_L2_LOOKUP_ENTRY;
struct sja1105_mgmt_entry *entry = entry_ptr;
/* In P/Q/R/S, enfport got renamed to mgmtvalid, but its purpose
* is the same (driver uses it to confirm that frame was sent).
* So just keep the name from E/T.
*/
sja1105_packing(buf, &entry->tsreg, 71, 71, size, op);
sja1105_packing(buf, &entry->takets, 70, 70, size, op);
sja1105_packing(buf, &entry->macaddr, 69, 22, size, op);
sja1105_packing(buf, &entry->destports, 21, 17, size, op);
sja1105_packing(buf, &entry->enfport, 16, 16, size, op);
return size;
}
/* In E/T, entry is at addresses 0x27-0x28. There is a 4 byte gap at 0x29,
* and command is at 0x2a. Similarly in P/Q/R/S there is a 1 register gap
* between entry (0x2d, 0x2e) and command (0x30).
*/
static void
sja1105_vlan_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_VLAN_LOOKUP_ENTRY + 4;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->valident, 27, 27, size, op);
/* Hack - see comments above, applied for 'vlanid' field of
* struct sja1105_vlan_lookup_entry.
*/
sja1105_packing(buf, &cmd->index, 38, 27,
SJA1105_SIZE_VLAN_LOOKUP_ENTRY, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
/* In SJA1110 there is no gap between the command and the data, yay... */
static void
sja1110_vlan_lookup_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1110_SIZE_VLAN_LOOKUP_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
u64 type_entry = 0;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
/* Hack: treat 'vlanid' field of struct sja1105_vlan_lookup_entry as
* cmd->index.
*/
sja1105_packing(buf, &cmd->index, 38, 27,
SJA1110_SIZE_VLAN_LOOKUP_ENTRY, op);
/* But the VALIDENT bit has disappeared, now we are supposed to
* invalidate an entry through the TYPE_ENTRY field of the entry..
* This is a hack to transform the non-zero quality of the TYPE_ENTRY
* field into a VALIDENT bit.
*/
if (op == PACK && !cmd->valident) {
sja1105_packing(buf, &type_entry, 40, 39,
SJA1110_SIZE_VLAN_LOOKUP_ENTRY, PACK);
} else if (op == UNPACK) {
sja1105_packing(buf, &type_entry, 40, 39,
SJA1110_SIZE_VLAN_LOOKUP_ENTRY, UNPACK);
cmd->valident = !!type_entry;
}
}
static void
sja1105_l2_forwarding_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_L2_FORWARDING_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->rdwrset, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 4, 0, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_l2_forwarding_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_L2_FORWARDING_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 4, 0, size, op);
}
static void
sja1105et_mac_config_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
const int size = SJA1105_SIZE_DYN_CMD;
/* Yup, user manual definitions are reversed */
u8 *reg1 = buf + 4;
sja1105_packing(reg1, &cmd->valid, 31, 31, size, op);
sja1105_packing(reg1, &cmd->index, 26, 24, size, op);
}
static size_t sja1105et_mac_config_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
const int size = SJA1105ET_SIZE_MAC_CONFIG_DYN_ENTRY;
struct sja1105_mac_config_entry *entry = entry_ptr;
/* Yup, user manual definitions are reversed */
u8 *reg1 = buf + 4;
u8 *reg2 = buf;
sja1105_packing(reg1, &entry->speed, 30, 29, size, op);
sja1105_packing(reg1, &entry->drpdtag, 23, 23, size, op);
sja1105_packing(reg1, &entry->drpuntag, 22, 22, size, op);
sja1105_packing(reg1, &entry->retag, 21, 21, size, op);
sja1105_packing(reg1, &entry->dyn_learn, 20, 20, size, op);
sja1105_packing(reg1, &entry->egress, 19, 19, size, op);
sja1105_packing(reg1, &entry->ingress, 18, 18, size, op);
sja1105_packing(reg1, &entry->ing_mirr, 17, 17, size, op);
sja1105_packing(reg1, &entry->egr_mirr, 16, 16, size, op);
sja1105_packing(reg1, &entry->vlanprio, 14, 12, size, op);
sja1105_packing(reg1, &entry->vlanid, 11, 0, size, op);
sja1105_packing(reg2, &entry->tp_delin, 31, 16, size, op);
sja1105_packing(reg2, &entry->tp_delout, 15, 0, size, op);
/* MAC configuration table entries which can't be reconfigured:
* top, base, enabled, ifg, maxage, drpnona664
*/
/* Bogus return value, not used anywhere */
return 0;
}
static void
sja1105pqrs_mac_config_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
const int size = SJA1105ET_SIZE_MAC_CONFIG_DYN_ENTRY;
u8 *p = buf + SJA1105PQRS_SIZE_MAC_CONFIG_ENTRY;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->rdwrset, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 2, 0, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_mac_config_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_MAC_CONFIG_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 3, 0, size, op);
}
static void
sja1105et_l2_lookup_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
sja1105_packing(buf, &cmd->valid, 31, 31,
SJA1105ET_SIZE_L2_LOOKUP_PARAMS_DYN_CMD, op);
}
static size_t
sja1105et_l2_lookup_params_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_l2_lookup_params_entry *entry = entry_ptr;
sja1105_packing(buf, &entry->poly, 7, 0,
SJA1105ET_SIZE_L2_LOOKUP_PARAMS_DYN_CMD, op);
/* Bogus return value, not used anywhere */
return 0;
}
static void
sja1105pqrs_l2_lookup_params_cmd_packing(void *buf,
struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_L2_LOOKUP_PARAMS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_l2_lookup_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1110_SIZE_L2_LOOKUP_PARAMS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
}
static void
sja1105et_general_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
const int size = SJA1105ET_SIZE_GENERAL_PARAMS_DYN_CMD;
sja1105_packing(buf, &cmd->valid, 31, 31, size, op);
sja1105_packing(buf, &cmd->errors, 30, 30, size, op);
}
static size_t
sja1105et_general_params_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
struct sja1105_general_params_entry *entry = entry_ptr;
const int size = SJA1105ET_SIZE_GENERAL_PARAMS_DYN_CMD;
sja1105_packing(buf, &entry->mirr_port, 2, 0, size, op);
/* Bogus return value, not used anywhere */
return 0;
}
static void
sja1105pqrs_general_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_GENERAL_PARAMS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->rdwrset, 28, 28, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_general_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1110_SIZE_GENERAL_PARAMS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
}
static void
sja1105pqrs_avb_params_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_AVB_PARAMS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->rdwrset, 29, 29, size, op);
}
static void
sja1105_retagging_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_RETAGGING_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->errors, 30, 30, size, op);
sja1105_packing(p, &cmd->valident, 29, 29, size, op);
sja1105_packing(p, &cmd->rdwrset, 28, 28, size, op);
sja1105_packing(p, &cmd->index, 5, 0, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void
sja1110_retagging_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_RETAGGING_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->valident, 28, 28, size, op);
sja1105_packing(p, &cmd->index, 4, 0, size, op);
}
static void sja1105et_cbs_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105ET_SIZE_CBS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->index, 19, 16, size, op);
}
static size_t sja1105et_cbs_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
const size_t size = SJA1105ET_SIZE_CBS_ENTRY;
struct sja1105_cbs_entry *entry = entry_ptr;
u8 *cmd = buf + size;
u32 *p = buf;
sja1105_packing(cmd, &entry->port, 5, 3, SJA1105_SIZE_DYN_CMD, op);
sja1105_packing(cmd, &entry->prio, 2, 0, SJA1105_SIZE_DYN_CMD, op);
sja1105_packing(p + 3, &entry->credit_lo, 31, 0, size, op);
sja1105_packing(p + 2, &entry->credit_hi, 31, 0, size, op);
sja1105_packing(p + 1, &entry->send_slope, 31, 0, size, op);
sja1105_packing(p + 0, &entry->idle_slope, 31, 0, size, op);
return size;
}
static void sja1105pqrs_cbs_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_CBS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 3, 0, size, op);
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static void sja1110_cbs_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105PQRS_SIZE_CBS_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 7, 0, size, op);
}
static size_t sja1105pqrs_cbs_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
const size_t size = SJA1105PQRS_SIZE_CBS_ENTRY;
struct sja1105_cbs_entry *entry = entry_ptr;
sja1105_packing(buf, &entry->port, 159, 157, size, op);
sja1105_packing(buf, &entry->prio, 156, 154, size, op);
sja1105_packing(buf, &entry->credit_lo, 153, 122, size, op);
sja1105_packing(buf, &entry->credit_hi, 121, 90, size, op);
sja1105_packing(buf, &entry->send_slope, 89, 58, size, op);
sja1105_packing(buf, &entry->idle_slope, 57, 26, size, op);
return size;
}
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
static size_t sja1110_cbs_entry_packing(void *buf, void *entry_ptr,
enum packing_op op)
{
const size_t size = SJA1105PQRS_SIZE_CBS_ENTRY;
struct sja1105_cbs_entry *entry = entry_ptr;
u64 entry_type = SJA1110_CBS_SHAPER;
sja1105_packing(buf, &entry_type, 159, 159, size, op);
sja1105_packing(buf, &entry->credit_lo, 151, 120, size, op);
sja1105_packing(buf, &entry->credit_hi, 119, 88, size, op);
sja1105_packing(buf, &entry->send_slope, 87, 56, size, op);
sja1105_packing(buf, &entry->idle_slope, 55, 24, size, op);
return size;
}
static void sja1110_dummy_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
}
static void
sja1110_l2_policing_cmd_packing(void *buf, struct sja1105_dyn_cmd *cmd,
enum packing_op op)
{
u8 *p = buf + SJA1105_SIZE_L2_POLICING_ENTRY;
const int size = SJA1105_SIZE_DYN_CMD;
sja1105_packing(p, &cmd->valid, 31, 31, size, op);
sja1105_packing(p, &cmd->rdwrset, 30, 30, size, op);
sja1105_packing(p, &cmd->errors, 29, 29, size, op);
sja1105_packing(p, &cmd->index, 6, 0, size, op);
}
#define OP_READ BIT(0)
#define OP_WRITE BIT(1)
#define OP_DEL BIT(2)
#define OP_SEARCH BIT(3)
net: dsa: sja1105: some table entries are always present when read dynamically The SJA1105 has a static configuration comprised of a number of tables with entries. Some of these can be read and modified at runtime as well, through the dynamic configuration interface. As a careful reader can notice from the comments in this file, the software interface for accessing a table entry through the dynamic reconfiguration is a bit of a no man's land, and varies wildly across switch generations and even from one kind of table to another. I have tried my best to come up with a software representation of a 'common denominator' SPI command to access a table entry through the dynamic configuration interface: struct sja1105_dyn_cmd { bool search; u64 valid; /* must be set to 1 */ u64 rdwrset; /* 0 to read, 1 to write */ u64 errors; u64 valident; /* 0 if entry is invalid, 1 if valid */ u64 index; }; Relevant to this patch is the VALIDENT bit, which for READ commands is populated by the switch and lets us know if we're looking at junk or at a real table entry. In SJA1105, the dynamic reconfiguration interface for management routes has notably not implemented the VALIDENT bit, leading to a workaround to ignore this field in sja1105_dynamic_config_read(), as it will be set to zero, but the data is valid nonetheless. In SJA1110, this pattern has sadly been abused to death, and while there are many more tables which can be read back over the dynamic config interface compared to SJA1105, their handling isn't in any way more uniform. Generally speaking, if there is a single possible entry in a given table, and loading that table in the static config is mandatory as per the documentation, then the VALIDENT bit is deemed as redundant and more than likely not implemented. So it is time to make the workaround more official, and add a bit to the flags implemented by dynamic config tables. It will be used by more tables when SJA1110 support arrives. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-31 01:59:39 +03:00
#define OP_VALID_ANYWAY BIT(4)
/* SJA1105E/T: First generation */
const struct sja1105_dynamic_table_ops sja1105et_dyn_ops[BLK_IDX_MAX_DYN] = {
[BLK_IDX_VL_LOOKUP] = {
.entry_packing = sja1105et_vl_lookup_entry_packing,
.cmd_packing = sja1105et_vl_lookup_cmd_packing,
.access = OP_WRITE,
.max_entry_count = SJA1105_MAX_VL_LOOKUP_COUNT,
.packed_size = SJA1105ET_SIZE_VL_LOOKUP_DYN_CMD,
.addr = 0x35,
},
[BLK_IDX_L2_LOOKUP] = {
.entry_packing = sja1105et_dyn_l2_lookup_entry_packing,
.cmd_packing = sja1105et_l2_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_DEL),
.max_entry_count = SJA1105_MAX_L2_LOOKUP_COUNT,
.packed_size = SJA1105ET_SIZE_L2_LOOKUP_DYN_CMD,
.addr = 0x20,
},
[BLK_IDX_MGMT_ROUTE] = {
.entry_packing = sja1105et_mgmt_route_entry_packing,
.cmd_packing = sja1105et_mgmt_route_cmd_packing,
net: dsa: sja1105: some table entries are always present when read dynamically The SJA1105 has a static configuration comprised of a number of tables with entries. Some of these can be read and modified at runtime as well, through the dynamic configuration interface. As a careful reader can notice from the comments in this file, the software interface for accessing a table entry through the dynamic reconfiguration is a bit of a no man's land, and varies wildly across switch generations and even from one kind of table to another. I have tried my best to come up with a software representation of a 'common denominator' SPI command to access a table entry through the dynamic configuration interface: struct sja1105_dyn_cmd { bool search; u64 valid; /* must be set to 1 */ u64 rdwrset; /* 0 to read, 1 to write */ u64 errors; u64 valident; /* 0 if entry is invalid, 1 if valid */ u64 index; }; Relevant to this patch is the VALIDENT bit, which for READ commands is populated by the switch and lets us know if we're looking at junk or at a real table entry. In SJA1105, the dynamic reconfiguration interface for management routes has notably not implemented the VALIDENT bit, leading to a workaround to ignore this field in sja1105_dynamic_config_read(), as it will be set to zero, but the data is valid nonetheless. In SJA1110, this pattern has sadly been abused to death, and while there are many more tables which can be read back over the dynamic config interface compared to SJA1105, their handling isn't in any way more uniform. Generally speaking, if there is a single possible entry in a given table, and loading that table in the static config is mandatory as per the documentation, then the VALIDENT bit is deemed as redundant and more than likely not implemented. So it is time to make the workaround more official, and add a bit to the flags implemented by dynamic config tables. It will be used by more tables when SJA1110 support arrives. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-31 01:59:39 +03:00
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.max_entry_count = SJA1105_NUM_PORTS,
.packed_size = SJA1105ET_SIZE_L2_LOOKUP_DYN_CMD,
.addr = 0x20,
},
[BLK_IDX_VLAN_LOOKUP] = {
.entry_packing = sja1105_vlan_lookup_entry_packing,
.cmd_packing = sja1105_vlan_lookup_cmd_packing,
.access = (OP_WRITE | OP_DEL),
.max_entry_count = SJA1105_MAX_VLAN_LOOKUP_COUNT,
.packed_size = SJA1105_SIZE_VLAN_LOOKUP_DYN_CMD,
.addr = 0x27,
},
[BLK_IDX_L2_FORWARDING] = {
.entry_packing = sja1105_l2_forwarding_entry_packing,
.cmd_packing = sja1105_l2_forwarding_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_FORWARDING_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105_SIZE_L2_FORWARDING_DYN_CMD,
.addr = 0x24,
},
[BLK_IDX_MAC_CONFIG] = {
.entry_packing = sja1105et_mac_config_entry_packing,
.cmd_packing = sja1105et_mac_config_cmd_packing,
.max_entry_count = SJA1105_MAX_MAC_CONFIG_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105ET_SIZE_MAC_CONFIG_DYN_CMD,
.addr = 0x36,
},
[BLK_IDX_L2_LOOKUP_PARAMS] = {
.entry_packing = sja1105et_l2_lookup_params_entry_packing,
.cmd_packing = sja1105et_l2_lookup_params_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_LOOKUP_PARAMS_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105ET_SIZE_L2_LOOKUP_PARAMS_DYN_CMD,
.addr = 0x38,
},
[BLK_IDX_GENERAL_PARAMS] = {
.entry_packing = sja1105et_general_params_entry_packing,
.cmd_packing = sja1105et_general_params_cmd_packing,
.max_entry_count = SJA1105_MAX_GENERAL_PARAMS_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105ET_SIZE_GENERAL_PARAMS_DYN_CMD,
.addr = 0x34,
},
[BLK_IDX_RETAGGING] = {
.entry_packing = sja1105_retagging_entry_packing,
.cmd_packing = sja1105_retagging_cmd_packing,
.max_entry_count = SJA1105_MAX_RETAGGING_COUNT,
.access = (OP_WRITE | OP_DEL),
.packed_size = SJA1105_SIZE_RETAGGING_DYN_CMD,
.addr = 0x31,
},
[BLK_IDX_CBS] = {
.entry_packing = sja1105et_cbs_entry_packing,
.cmd_packing = sja1105et_cbs_cmd_packing,
.max_entry_count = SJA1105ET_MAX_CBS_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105ET_SIZE_CBS_DYN_CMD,
.addr = 0x2c,
},
};
/* SJA1105P/Q/R/S: Second generation */
const struct sja1105_dynamic_table_ops sja1105pqrs_dyn_ops[BLK_IDX_MAX_DYN] = {
[BLK_IDX_VL_LOOKUP] = {
.entry_packing = sja1105_vl_lookup_entry_packing,
.cmd_packing = sja1105pqrs_vl_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE),
.max_entry_count = SJA1105_MAX_VL_LOOKUP_COUNT,
.packed_size = SJA1105PQRS_SIZE_VL_LOOKUP_DYN_CMD,
.addr = 0x47,
},
[BLK_IDX_L2_LOOKUP] = {
.entry_packing = sja1105pqrs_dyn_l2_lookup_entry_packing,
.cmd_packing = sja1105pqrs_l2_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_DEL | OP_SEARCH),
.max_entry_count = SJA1105_MAX_L2_LOOKUP_COUNT,
.packed_size = SJA1105PQRS_SIZE_L2_LOOKUP_DYN_CMD,
.addr = 0x24,
},
[BLK_IDX_MGMT_ROUTE] = {
.entry_packing = sja1105pqrs_mgmt_route_entry_packing,
.cmd_packing = sja1105pqrs_mgmt_route_cmd_packing,
net: dsa: sja1105: some table entries are always present when read dynamically The SJA1105 has a static configuration comprised of a number of tables with entries. Some of these can be read and modified at runtime as well, through the dynamic configuration interface. As a careful reader can notice from the comments in this file, the software interface for accessing a table entry through the dynamic reconfiguration is a bit of a no man's land, and varies wildly across switch generations and even from one kind of table to another. I have tried my best to come up with a software representation of a 'common denominator' SPI command to access a table entry through the dynamic configuration interface: struct sja1105_dyn_cmd { bool search; u64 valid; /* must be set to 1 */ u64 rdwrset; /* 0 to read, 1 to write */ u64 errors; u64 valident; /* 0 if entry is invalid, 1 if valid */ u64 index; }; Relevant to this patch is the VALIDENT bit, which for READ commands is populated by the switch and lets us know if we're looking at junk or at a real table entry. In SJA1105, the dynamic reconfiguration interface for management routes has notably not implemented the VALIDENT bit, leading to a workaround to ignore this field in sja1105_dynamic_config_read(), as it will be set to zero, but the data is valid nonetheless. In SJA1110, this pattern has sadly been abused to death, and while there are many more tables which can be read back over the dynamic config interface compared to SJA1105, their handling isn't in any way more uniform. Generally speaking, if there is a single possible entry in a given table, and loading that table in the static config is mandatory as per the documentation, then the VALIDENT bit is deemed as redundant and more than likely not implemented. So it is time to make the workaround more official, and add a bit to the flags implemented by dynamic config tables. It will be used by more tables when SJA1110 support arrives. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-31 01:59:39 +03:00
.access = (OP_READ | OP_WRITE | OP_DEL | OP_SEARCH | OP_VALID_ANYWAY),
.max_entry_count = SJA1105_NUM_PORTS,
.packed_size = SJA1105PQRS_SIZE_L2_LOOKUP_DYN_CMD,
.addr = 0x24,
},
[BLK_IDX_VLAN_LOOKUP] = {
.entry_packing = sja1105_vlan_lookup_entry_packing,
.cmd_packing = sja1105_vlan_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_DEL),
.max_entry_count = SJA1105_MAX_VLAN_LOOKUP_COUNT,
.packed_size = SJA1105_SIZE_VLAN_LOOKUP_DYN_CMD,
.addr = 0x2D,
},
[BLK_IDX_L2_FORWARDING] = {
.entry_packing = sja1105_l2_forwarding_entry_packing,
.cmd_packing = sja1105_l2_forwarding_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_FORWARDING_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105_SIZE_L2_FORWARDING_DYN_CMD,
.addr = 0x2A,
},
[BLK_IDX_MAC_CONFIG] = {
.entry_packing = sja1105pqrs_mac_config_entry_packing,
.cmd_packing = sja1105pqrs_mac_config_cmd_packing,
.max_entry_count = SJA1105_MAX_MAC_CONFIG_COUNT,
.access = (OP_READ | OP_WRITE),
.packed_size = SJA1105PQRS_SIZE_MAC_CONFIG_DYN_CMD,
.addr = 0x4B,
},
[BLK_IDX_L2_LOOKUP_PARAMS] = {
.entry_packing = sja1105pqrs_l2_lookup_params_entry_packing,
.cmd_packing = sja1105pqrs_l2_lookup_params_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_LOOKUP_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE),
.packed_size = SJA1105PQRS_SIZE_L2_LOOKUP_PARAMS_DYN_CMD,
.addr = 0x54,
},
[BLK_IDX_AVB_PARAMS] = {
.entry_packing = sja1105pqrs_avb_params_entry_packing,
.cmd_packing = sja1105pqrs_avb_params_cmd_packing,
.max_entry_count = SJA1105_MAX_AVB_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE),
.packed_size = SJA1105PQRS_SIZE_AVB_PARAMS_DYN_CMD,
.addr = 0x8003,
},
[BLK_IDX_GENERAL_PARAMS] = {
.entry_packing = sja1105pqrs_general_params_entry_packing,
.cmd_packing = sja1105pqrs_general_params_cmd_packing,
.max_entry_count = SJA1105_MAX_GENERAL_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE),
.packed_size = SJA1105PQRS_SIZE_GENERAL_PARAMS_DYN_CMD,
.addr = 0x3B,
},
[BLK_IDX_RETAGGING] = {
.entry_packing = sja1105_retagging_entry_packing,
.cmd_packing = sja1105_retagging_cmd_packing,
.max_entry_count = SJA1105_MAX_RETAGGING_COUNT,
.access = (OP_READ | OP_WRITE | OP_DEL),
.packed_size = SJA1105_SIZE_RETAGGING_DYN_CMD,
.addr = 0x38,
},
[BLK_IDX_CBS] = {
.entry_packing = sja1105pqrs_cbs_entry_packing,
.cmd_packing = sja1105pqrs_cbs_cmd_packing,
.max_entry_count = SJA1105PQRS_MAX_CBS_COUNT,
.access = OP_WRITE,
.packed_size = SJA1105PQRS_SIZE_CBS_DYN_CMD,
.addr = 0x32,
},
};
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
/* SJA1110: Third generation */
const struct sja1105_dynamic_table_ops sja1110_dyn_ops[BLK_IDX_MAX_DYN] = {
[BLK_IDX_VL_LOOKUP] = {
.entry_packing = sja1110_vl_lookup_entry_packing,
.cmd_packing = sja1110_vl_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.max_entry_count = SJA1110_MAX_VL_LOOKUP_COUNT,
.packed_size = SJA1105PQRS_SIZE_VL_LOOKUP_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x124),
},
[BLK_IDX_VL_POLICING] = {
.entry_packing = sja1110_vl_policing_entry_packing,
.cmd_packing = sja1110_vl_policing_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.max_entry_count = SJA1110_MAX_VL_POLICING_COUNT,
.packed_size = SJA1110_SIZE_VL_POLICING_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x310),
},
[BLK_IDX_L2_LOOKUP] = {
.entry_packing = sja1110_dyn_l2_lookup_entry_packing,
.cmd_packing = sja1110_l2_lookup_cmd_packing,
net: dsa: sja1105: add support for the SJA1110 switch family The SJA1110 is basically an SJA1105 with more ports, some integrated PHYs (100base-T1 and 100base-TX) and an embedded microcontroller which can be disabled, and the switch core can be controlled by a host running Linux, over SPI. This patch contains: - the static and dynamic config packing functions, for the tables that are common with SJA1105 - one more static config tables which is "unique" to the SJA1110 (actually it is a rehash of stuff that was placed somewhere else in SJA1105): the PCP Remapping Table - a reset and clock configuration procedure for the SJA1110 switch. This resets just the switch subsystem, and gates off the clock which powers on the embedded microcontroller. - an RGMII delay configuration procedure for SJA1110, which is very similar to SJA1105, but different enough for us to be unable to reuse it (this is a pattern that repeats itself) - some adaptations to dynamic config table entries which are no longer programmed in the same way. For example, to delete a VLAN, you used to write an entry through the dynamic reconfiguration interface with the desired VLAN ID, and with the VALIDENT bit set to false. Now, the VLAN table entries contain a TYPE_ENTRY field, which must be set to zero (in a backwards-incompatible way) in order for the entry to be deleted, or to some other entry for the VLAN to match "inner tagged" or "outer tagged" packets. - a similar thing for the static config: the xMII Mode Parameters Table encoding for SGMII and MII (the latter just when attached to a 100base-TX PHY) just isn't what it used to be in SJA1105. They are identical, except there is an extra "special" bit which needs to be set. Set it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-08 12:25:36 +03:00
.access = (OP_READ | OP_WRITE | OP_DEL | OP_SEARCH),
.max_entry_count = SJA1105_MAX_L2_LOOKUP_COUNT,
.packed_size = SJA1110_SIZE_L2_LOOKUP_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x8c),
},
[BLK_IDX_VLAN_LOOKUP] = {
.entry_packing = sja1110_vlan_lookup_entry_packing,
.cmd_packing = sja1110_vlan_lookup_cmd_packing,
.access = (OP_READ | OP_WRITE | OP_DEL),
.max_entry_count = SJA1105_MAX_VLAN_LOOKUP_COUNT,
.packed_size = SJA1110_SIZE_VLAN_LOOKUP_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0xb4),
},
[BLK_IDX_L2_FORWARDING] = {
.entry_packing = sja1110_l2_forwarding_entry_packing,
.cmd_packing = sja1110_l2_forwarding_cmd_packing,
.max_entry_count = SJA1110_MAX_L2_FORWARDING_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1105_SIZE_L2_FORWARDING_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0xa8),
},
[BLK_IDX_MAC_CONFIG] = {
.entry_packing = sja1110_mac_config_entry_packing,
.cmd_packing = sja1110_mac_config_cmd_packing,
.max_entry_count = SJA1110_MAX_MAC_CONFIG_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1105PQRS_SIZE_MAC_CONFIG_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x134),
},
[BLK_IDX_L2_LOOKUP_PARAMS] = {
.entry_packing = sja1110_l2_lookup_params_entry_packing,
.cmd_packing = sja1110_l2_lookup_params_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_LOOKUP_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1110_SIZE_L2_LOOKUP_PARAMS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x158),
},
[BLK_IDX_AVB_PARAMS] = {
.entry_packing = sja1105pqrs_avb_params_entry_packing,
.cmd_packing = sja1105pqrs_avb_params_cmd_packing,
.max_entry_count = SJA1105_MAX_AVB_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1105PQRS_SIZE_AVB_PARAMS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x2000C),
},
[BLK_IDX_GENERAL_PARAMS] = {
.entry_packing = sja1110_general_params_entry_packing,
.cmd_packing = sja1110_general_params_cmd_packing,
.max_entry_count = SJA1105_MAX_GENERAL_PARAMS_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1110_SIZE_GENERAL_PARAMS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0xe8),
},
[BLK_IDX_RETAGGING] = {
.entry_packing = sja1110_retagging_entry_packing,
.cmd_packing = sja1110_retagging_cmd_packing,
.max_entry_count = SJA1105_MAX_RETAGGING_COUNT,
.access = (OP_READ | OP_WRITE | OP_DEL),
.packed_size = SJA1105_SIZE_RETAGGING_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0xdc),
},
[BLK_IDX_CBS] = {
.entry_packing = sja1110_cbs_entry_packing,
.cmd_packing = sja1110_cbs_cmd_packing,
.max_entry_count = SJA1110_MAX_CBS_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1105PQRS_SIZE_CBS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0xc4),
},
[BLK_IDX_XMII_PARAMS] = {
.entry_packing = sja1110_xmii_params_entry_packing,
.cmd_packing = sja1110_dummy_cmd_packing,
.max_entry_count = SJA1105_MAX_XMII_PARAMS_COUNT,
.access = (OP_READ | OP_VALID_ANYWAY),
.packed_size = SJA1110_SIZE_XMII_PARAMS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x3c),
},
[BLK_IDX_L2_POLICING] = {
.entry_packing = sja1110_l2_policing_entry_packing,
.cmd_packing = sja1110_l2_policing_cmd_packing,
.max_entry_count = SJA1110_MAX_L2_POLICING_COUNT,
.access = (OP_READ | OP_WRITE | OP_VALID_ANYWAY),
.packed_size = SJA1110_SIZE_L2_POLICING_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x2fc),
},
[BLK_IDX_L2_FORWARDING_PARAMS] = {
.entry_packing = sja1110_l2_forwarding_params_entry_packing,
.cmd_packing = sja1110_dummy_cmd_packing,
.max_entry_count = SJA1105_MAX_L2_FORWARDING_PARAMS_COUNT,
.access = (OP_READ | OP_VALID_ANYWAY),
.packed_size = SJA1110_SIZE_L2_FORWARDING_PARAMS_DYN_CMD,
.addr = SJA1110_SPI_ADDR(0x20000),
},
};
#define SJA1105_DYNAMIC_CONFIG_SLEEP_US 10
#define SJA1105_DYNAMIC_CONFIG_TIMEOUT_US 100000
static int
sja1105_dynamic_config_poll_valid(struct sja1105_private *priv,
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
const struct sja1105_dynamic_table_ops *ops,
void *entry, bool check_valident,
bool check_errors)
{
u8 packed_buf[SJA1105_MAX_DYN_CMD_SIZE] = {};
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
struct sja1105_dyn_cmd cmd = {};
int rc;
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
/* Read back the whole entry + command structure. */
rc = sja1105_xfer_buf(priv, SPI_READ, ops->addr, packed_buf,
ops->packed_size);
if (rc)
return rc;
/* Unpack the command structure, and return it to the caller in case it
* needs to perform further checks on it (VALIDENT).
*/
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
ops->cmd_packing(packed_buf, &cmd, UNPACK);
/* Hardware hasn't cleared VALID => still working on it */
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
if (cmd.valid)
return -EAGAIN;
if (check_valident && !cmd.valident && !(ops->access & OP_VALID_ANYWAY))
return -ENOENT;
if (check_errors && cmd.errors)
return -EINVAL;
/* Don't dereference possibly NULL pointer - maybe caller
* only wanted to see whether the entry existed or not.
*/
if (entry)
ops->entry_packing(packed_buf, entry, UNPACK);
return 0;
}
/* Poll the dynamic config entry's control area until the hardware has
* cleared the VALID bit, which means we have confirmation that it has
* finished processing the command.
*/
static int
sja1105_dynamic_config_wait_complete(struct sja1105_private *priv,
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
const struct sja1105_dynamic_table_ops *ops,
void *entry, bool check_valident,
bool check_errors)
{
int err, rc;
err = read_poll_timeout(sja1105_dynamic_config_poll_valid,
rc, rc != -EAGAIN,
SJA1105_DYNAMIC_CONFIG_SLEEP_US,
SJA1105_DYNAMIC_CONFIG_TIMEOUT_US,
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
false, priv, ops, entry, check_valident,
check_errors);
return err < 0 ? err : rc;
}
/* Provides read access to the settings through the dynamic interface
* of the switch.
* @blk_idx is used as key to select from the sja1105_dynamic_table_ops.
* The selection is limited by the hardware in respect to which
* configuration blocks can be read through the dynamic interface.
* @index is used to retrieve a particular table entry. If negative,
* (and if the @blk_idx supports the searching operation) a search
* is performed by the @entry parameter.
* @entry Type-casted to an unpacked structure that holds a table entry
* of the type specified in @blk_idx.
* Usually an output argument. If @index is negative, then this
* argument is used as input/output: it should be pre-populated
* with the element to search for. Entries which support the
* search operation will have an "index" field (not the @index
* argument to this function) and that is where the found index
* will be returned (or left unmodified - thus negative - if not
* found).
*/
int sja1105_dynamic_config_read(struct sja1105_private *priv,
enum sja1105_blk_idx blk_idx,
int index, void *entry)
{
const struct sja1105_dynamic_table_ops *ops;
struct sja1105_dyn_cmd cmd = {0};
/* SPI payload buffer */
u8 packed_buf[SJA1105_MAX_DYN_CMD_SIZE] = {0};
int rc;
if (blk_idx >= BLK_IDX_MAX_DYN)
return -ERANGE;
ops = &priv->info->dyn_ops[blk_idx];
if (index >= 0 && index >= ops->max_entry_count)
return -ERANGE;
if (index < 0 && !(ops->access & OP_SEARCH))
return -EOPNOTSUPP;
if (!(ops->access & OP_READ))
return -EOPNOTSUPP;
if (ops->packed_size > SJA1105_MAX_DYN_CMD_SIZE)
return -ERANGE;
if (!ops->cmd_packing)
return -EOPNOTSUPP;
if (!ops->entry_packing)
return -EOPNOTSUPP;
cmd.valid = true; /* Trigger action on table entry */
cmd.rdwrset = SPI_READ; /* Action is read */
if (index < 0) {
/* Avoid copying a signed negative number to an u64 */
cmd.index = 0;
cmd.search = true;
} else {
cmd.index = index;
cmd.search = false;
}
cmd.valident = true;
ops->cmd_packing(packed_buf, &cmd, PACK);
if (cmd.search)
ops->entry_packing(packed_buf, entry, PACK);
/* Send SPI write operation: read config table entry */
net: dsa: sja1105: serialize access to the dynamic config interface The sja1105 hardware seems as concurrent as can be, but when we create a background script that adds/removes a rain of FDB entries without the rtnl_mutex taken, then in parallel we do another operation like run 'bridge fdb show', we can notice these errors popping up: sja1105 spi2.0: port 2 failed to read back entry for 00:01:02:03:00:40 vid 0: -ENOENT sja1105 spi2.0: port 2 failed to add 00:01:02:03:00:40 vid 0 to fdb: -2 sja1105 spi2.0: port 2 failed to read back entry for 00:01:02:03:00:46 vid 0: -ENOENT sja1105 spi2.0: port 2 failed to add 00:01:02:03:00:46 vid 0 to fdb: -2 Luckily what is going on does not require a major rework in the driver. The sja1105_dynamic_config_read() function sends multiple SPI buffers to the peripheral until the operation completes. We should not do anything until the hardware clears the VALID bit. But since there is no locking (i.e. right now we are implicitly serialized by the rtnl_mutex, but if we remove that), it might be possible that the process which performs the dynamic config read is preempted and another one performs a dynamic config write. What will happen in that case is that sja1105_dynamic_config_read(), when it resumes, expects to see VALIDENT set for the entry it reads back. But it won't. This can be corrected by introducing a mutex for serializing SPI accesses to the dynamic config interface which should be atomic with respect to each other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-24 20:17:50 +03:00
mutex_lock(&priv->dynamic_config_lock);
rc = sja1105_xfer_buf(priv, SPI_WRITE, ops->addr, packed_buf,
ops->packed_size);
if (rc < 0)
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
goto out;
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
rc = sja1105_dynamic_config_wait_complete(priv, ops, entry, true, false);
out:
mutex_unlock(&priv->dynamic_config_lock);
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
return rc;
}
int sja1105_dynamic_config_write(struct sja1105_private *priv,
enum sja1105_blk_idx blk_idx,
int index, void *entry, bool keep)
{
const struct sja1105_dynamic_table_ops *ops;
struct sja1105_dyn_cmd cmd = {0};
/* SPI payload buffer */
u8 packed_buf[SJA1105_MAX_DYN_CMD_SIZE] = {0};
int rc;
if (blk_idx >= BLK_IDX_MAX_DYN)
return -ERANGE;
ops = &priv->info->dyn_ops[blk_idx];
if (index >= ops->max_entry_count)
return -ERANGE;
if (index < 0)
return -ERANGE;
if (!(ops->access & OP_WRITE))
return -EOPNOTSUPP;
if (!keep && !(ops->access & OP_DEL))
return -EOPNOTSUPP;
if (ops->packed_size > SJA1105_MAX_DYN_CMD_SIZE)
return -ERANGE;
cmd.valident = keep; /* If false, deletes entry */
cmd.valid = true; /* Trigger action on table entry */
cmd.rdwrset = SPI_WRITE; /* Action is write */
cmd.index = index;
if (!ops->cmd_packing)
return -EOPNOTSUPP;
ops->cmd_packing(packed_buf, &cmd, PACK);
if (!ops->entry_packing)
return -EOPNOTSUPP;
/* Don't dereference potentially NULL pointer if just
* deleting a table entry is what was requested. For cases
* where 'index' field is physically part of entry structure,
* and needed here, we deal with that in the cmd_packing callback.
*/
if (keep)
ops->entry_packing(packed_buf, entry, PACK);
/* Send SPI write operation: read config table entry */
net: dsa: sja1105: serialize access to the dynamic config interface The sja1105 hardware seems as concurrent as can be, but when we create a background script that adds/removes a rain of FDB entries without the rtnl_mutex taken, then in parallel we do another operation like run 'bridge fdb show', we can notice these errors popping up: sja1105 spi2.0: port 2 failed to read back entry for 00:01:02:03:00:40 vid 0: -ENOENT sja1105 spi2.0: port 2 failed to add 00:01:02:03:00:40 vid 0 to fdb: -2 sja1105 spi2.0: port 2 failed to read back entry for 00:01:02:03:00:46 vid 0: -ENOENT sja1105 spi2.0: port 2 failed to add 00:01:02:03:00:46 vid 0 to fdb: -2 Luckily what is going on does not require a major rework in the driver. The sja1105_dynamic_config_read() function sends multiple SPI buffers to the peripheral until the operation completes. We should not do anything until the hardware clears the VALID bit. But since there is no locking (i.e. right now we are implicitly serialized by the rtnl_mutex, but if we remove that), it might be possible that the process which performs the dynamic config read is preempted and another one performs a dynamic config write. What will happen in that case is that sja1105_dynamic_config_read(), when it resumes, expects to see VALIDENT set for the entry it reads back. But it won't. This can be corrected by introducing a mutex for serializing SPI accesses to the dynamic config interface which should be atomic with respect to each other. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-10-24 20:17:50 +03:00
mutex_lock(&priv->dynamic_config_lock);
rc = sja1105_xfer_buf(priv, SPI_WRITE, ops->addr, packed_buf,
ops->packed_size);
if (rc < 0)
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
goto out;
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
rc = sja1105_dynamic_config_wait_complete(priv, ops, NULL, false, true);
out:
mutex_unlock(&priv->dynamic_config_lock);
net: dsa: sja1105: fix multicast forwarding working only for last added mdb entry The commit cited in Fixes: did 2 things: it refactored the read-back polling from sja1105_dynamic_config_read() into a new function, sja1105_dynamic_config_wait_complete(), and it called that from sja1105_dynamic_config_write() too. What is problematic is the refactoring. The refactored code from sja1105_dynamic_config_poll_valid() works like the previous one, but the problem is that it uses another packed_buf[] SPI buffer, and there was code at the end of sja1105_dynamic_config_read() which was relying on the read-back packed_buf[]: /* Don't dereference possibly NULL pointer - maybe caller * only wanted to see whether the entry existed or not. */ if (entry) ops->entry_packing(packed_buf, entry, UNPACK); After the change, the packed_buf[] that this code sees is no longer the entry read back from hardware, but the original entry that the caller passed to the sja1105_dynamic_config_read(), packed into this buffer. This difference is the most notable with the SJA1105_SEARCH uses from sja1105pqrs_fdb_add() - used for both fdb and mdb. There, we have logic added by commit 728db843df88 ("net: dsa: sja1105: ignore the FDB entry for unknown multicast when adding a new address") to figure out whether the address we're trying to add matches on any existing hardware entry, with the exception of the catch-all multicast address. That logic was broken, because with sja1105_dynamic_config_read() not working properly, it doesn't return us the entry read back from hardware, but the entry that we passed to it. And, since for multicast, a match will always exist, it will tell us that any mdb entry already exists at index=0 L2 Address Lookup table. It is index=0 because the caller doesn't know the index - it wants to find it out, and sja1105_dynamic_config_read() does: if (index < 0) { // SJA1105_SEARCH /* Avoid copying a signed negative number to an u64 */ cmd.index = 0; // <- this cmd.search = true; } else { cmd.index = index; cmd.search = false; } So, to the caller of sja1105_dynamic_config_read(), the returned info looks entirely legit, and it will add all mdb entries to FDB index 0. There, they will always overwrite each other (not to mention, potentially they can also overwrite a pre-existing bridge fdb entry), and the user-visible impact will be that only the last mdb entry will be forwarded as it should. The others won't (will be flooded or dropped, depending on the egress flood settings). Fixing is a bit more complicated, and involves either passing the same packed_buf[] to sja1105_dynamic_config_wait_complete(), or moving all the extra processing on the packed_buf[] to sja1105_dynamic_config_wait_complete(). I've opted for the latter, because it makes sja1105_dynamic_config_wait_complete() a bit more self-contained. Fixes: df405910ab9f ("net: dsa: sja1105: wait for dynamic config command completion on writes too") Reported-by: Yanan Yang <yanan.yang@nxp.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-08 16:33:50 +03:00
return rc;
}
static u8 sja1105_crc8_add(u8 crc, u8 byte, u8 poly)
{
int i;
for (i = 0; i < 8; i++) {
if ((crc ^ byte) & (1 << 7)) {
crc <<= 1;
crc ^= poly;
} else {
crc <<= 1;
}
byte <<= 1;
}
return crc;
}
/* CRC8 algorithm with non-reversed input, non-reversed output,
* no input xor and no output xor. Code customized for receiving
* the SJA1105 E/T FDB keys (vlanid, macaddr) as input. CRC polynomial
* is also received as argument in the Koopman notation that the switch
* hardware stores it in.
*/
u8 sja1105et_fdb_hash(struct sja1105_private *priv, const u8 *addr, u16 vid)
{
struct sja1105_l2_lookup_params_entry *l2_lookup_params =
priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS].entries;
u64 input, poly_koopman = l2_lookup_params->poly;
/* Convert polynomial from Koopman to 'normal' notation */
u8 poly = (u8)(1 + (poly_koopman << 1));
u8 crc = 0; /* seed */
int i;
input = ((u64)vid << 48) | ether_addr_to_u64(addr);
/* Mask the eight bytes starting from MSB one at a time */
for (i = 56; i >= 0; i -= 8) {
u8 byte = (input & (0xffull << i)) >> i;
crc = sja1105_crc8_add(crc, byte, poly);
}
return crc;
}