linux/drivers/net/dsa/ocelot/seville_vsc9953.c

1028 lines
34 KiB
C
Raw Permalink Normal View History

net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Distributed Switch Architecture VSC9953 driver
* Copyright (C) 2020, Maxim Kochetkov <fido_max@inbox.ru>
*/
#include <linux/platform_device.h>
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
#include <linux/types.h>
#include <soc/mscc/ocelot_vcap.h>
#include <soc/mscc/ocelot_sys.h>
#include <soc/mscc/ocelot.h>
#include <linux/mdio/mdio-mscc-miim.h>
#include <linux/mod_devicetable.h>
#include <linux/of_mdio.h>
#include <linux/pcs-lynx.h>
#include <linux/dsa/ocelot.h>
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
#include <linux/iopoll.h>
#include "felix.h"
#define VSC9953_NUM_PORTS 10
#define VSC9953_VCAP_POLICER_BASE 11
#define VSC9953_VCAP_POLICER_MAX 31
#define VSC9953_VCAP_POLICER_BASE2 120
#define VSC9953_VCAP_POLICER_MAX2 161
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
#define VSC9953_PORT_MODE_SERDES (OCELOT_PORT_MODE_1000BASEX | \
OCELOT_PORT_MODE_SGMII | \
OCELOT_PORT_MODE_QSGMII)
static const u32 vsc9953_port_modes[VSC9953_NUM_PORTS] = {
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
VSC9953_PORT_MODE_SERDES,
OCELOT_PORT_MODE_INTERNAL,
OCELOT_PORT_MODE_INTERNAL,
};
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static const u32 vsc9953_ana_regmap[] = {
REG(ANA_ADVLEARN, 0x00b500),
REG(ANA_VLANMASK, 0x00b504),
REG_RESERVED(ANA_PORT_B_DOMAIN),
REG(ANA_ANAGEFIL, 0x00b50c),
REG(ANA_ANEVENTS, 0x00b510),
REG(ANA_STORMLIMIT_BURST, 0x00b514),
REG(ANA_STORMLIMIT_CFG, 0x00b518),
REG(ANA_ISOLATED_PORTS, 0x00b528),
REG(ANA_COMMUNITY_PORTS, 0x00b52c),
REG(ANA_AUTOAGE, 0x00b530),
REG(ANA_MACTOPTIONS, 0x00b534),
REG(ANA_LEARNDISC, 0x00b538),
REG(ANA_AGENCTRL, 0x00b53c),
REG(ANA_MIRRORPORTS, 0x00b540),
REG(ANA_EMIRRORPORTS, 0x00b544),
REG(ANA_FLOODING, 0x00b548),
REG(ANA_FLOODING_IPMC, 0x00b54c),
REG(ANA_SFLOW_CFG, 0x00b550),
REG(ANA_PORT_MODE, 0x00b57c),
REG_RESERVED(ANA_CUT_THRU_CFG),
REG(ANA_PGID_PGID, 0x00b600),
REG(ANA_TABLES_ANMOVED, 0x00b4ac),
REG(ANA_TABLES_MACHDATA, 0x00b4b0),
REG(ANA_TABLES_MACLDATA, 0x00b4b4),
REG_RESERVED(ANA_TABLES_STREAMDATA),
REG(ANA_TABLES_MACACCESS, 0x00b4b8),
REG(ANA_TABLES_MACTINDX, 0x00b4bc),
REG(ANA_TABLES_VLANACCESS, 0x00b4c0),
REG(ANA_TABLES_VLANTIDX, 0x00b4c4),
REG_RESERVED(ANA_TABLES_ISDXACCESS),
REG_RESERVED(ANA_TABLES_ISDXTIDX),
REG(ANA_TABLES_ENTRYLIM, 0x00b480),
REG_RESERVED(ANA_TABLES_PTP_ID_HIGH),
REG_RESERVED(ANA_TABLES_PTP_ID_LOW),
REG_RESERVED(ANA_TABLES_STREAMACCESS),
REG_RESERVED(ANA_TABLES_STREAMTIDX),
REG_RESERVED(ANA_TABLES_SEQ_HISTORY),
REG_RESERVED(ANA_TABLES_SEQ_MASK),
REG_RESERVED(ANA_TABLES_SFID_MASK),
REG_RESERVED(ANA_TABLES_SFIDACCESS),
REG_RESERVED(ANA_TABLES_SFIDTIDX),
REG_RESERVED(ANA_MSTI_STATE),
REG_RESERVED(ANA_OAM_UPM_LM_CNT),
REG_RESERVED(ANA_SG_ACCESS_CTRL),
REG_RESERVED(ANA_SG_CONFIG_REG_1),
REG_RESERVED(ANA_SG_CONFIG_REG_2),
REG_RESERVED(ANA_SG_CONFIG_REG_3),
REG_RESERVED(ANA_SG_CONFIG_REG_4),
REG_RESERVED(ANA_SG_CONFIG_REG_5),
REG_RESERVED(ANA_SG_GCL_GS_CONFIG),
REG_RESERVED(ANA_SG_GCL_TI_CONFIG),
REG_RESERVED(ANA_SG_STATUS_REG_1),
REG_RESERVED(ANA_SG_STATUS_REG_2),
REG_RESERVED(ANA_SG_STATUS_REG_3),
REG(ANA_PORT_VLAN_CFG, 0x000000),
REG(ANA_PORT_DROP_CFG, 0x000004),
REG(ANA_PORT_QOS_CFG, 0x000008),
REG(ANA_PORT_VCAP_CFG, 0x00000c),
REG(ANA_PORT_VCAP_S1_KEY_CFG, 0x000010),
REG(ANA_PORT_VCAP_S2_CFG, 0x00001c),
REG(ANA_PORT_PCP_DEI_MAP, 0x000020),
REG(ANA_PORT_CPU_FWD_CFG, 0x000060),
REG(ANA_PORT_CPU_FWD_BPDU_CFG, 0x000064),
REG(ANA_PORT_CPU_FWD_GARP_CFG, 0x000068),
REG(ANA_PORT_CPU_FWD_CCM_CFG, 0x00006c),
REG(ANA_PORT_PORT_CFG, 0x000070),
REG(ANA_PORT_POL_CFG, 0x000074),
REG_RESERVED(ANA_PORT_PTP_CFG),
REG_RESERVED(ANA_PORT_PTP_DLY1_CFG),
REG_RESERVED(ANA_PORT_PTP_DLY2_CFG),
REG_RESERVED(ANA_PORT_SFID_CFG),
REG(ANA_PFC_PFC_CFG, 0x00c000),
REG_RESERVED(ANA_PFC_PFC_TIMER),
REG_RESERVED(ANA_IPT_OAM_MEP_CFG),
REG_RESERVED(ANA_IPT_IPT),
REG_RESERVED(ANA_PPT_PPT),
REG_RESERVED(ANA_FID_MAP_FID_MAP),
REG(ANA_AGGR_CFG, 0x00c600),
REG(ANA_CPUQ_CFG, 0x00c604),
REG_RESERVED(ANA_CPUQ_CFG2),
REG(ANA_CPUQ_8021_CFG, 0x00c60c),
REG(ANA_DSCP_CFG, 0x00c64c),
REG(ANA_DSCP_REWR_CFG, 0x00c74c),
REG(ANA_VCAP_RNG_TYPE_CFG, 0x00c78c),
REG(ANA_VCAP_RNG_VAL_CFG, 0x00c7ac),
REG_RESERVED(ANA_VRAP_CFG),
REG_RESERVED(ANA_VRAP_HDR_DATA),
REG_RESERVED(ANA_VRAP_HDR_MASK),
REG(ANA_DISCARD_CFG, 0x00c7d8),
REG(ANA_FID_CFG, 0x00c7dc),
REG(ANA_POL_PIR_CFG, 0x00a000),
REG(ANA_POL_CIR_CFG, 0x00a004),
REG(ANA_POL_MODE_CFG, 0x00a008),
REG(ANA_POL_PIR_STATE, 0x00a00c),
REG(ANA_POL_CIR_STATE, 0x00a010),
REG_RESERVED(ANA_POL_STATE),
REG(ANA_POL_FLOWC, 0x00c280),
REG(ANA_POL_HYST, 0x00c2ec),
REG_RESERVED(ANA_POL_MISC_CFG),
};
static const u32 vsc9953_qs_regmap[] = {
REG(QS_XTR_GRP_CFG, 0x000000),
REG(QS_XTR_RD, 0x000008),
REG(QS_XTR_FRM_PRUNING, 0x000010),
REG(QS_XTR_FLUSH, 0x000018),
REG(QS_XTR_DATA_PRESENT, 0x00001c),
REG(QS_XTR_CFG, 0x000020),
REG(QS_INJ_GRP_CFG, 0x000024),
REG(QS_INJ_WR, 0x00002c),
REG(QS_INJ_CTRL, 0x000034),
REG(QS_INJ_STATUS, 0x00003c),
REG(QS_INJ_ERR, 0x000040),
REG_RESERVED(QS_INH_DBG),
};
static const u32 vsc9953_vcap_regmap[] = {
/* VCAP_CORE_CFG */
REG(VCAP_CORE_UPDATE_CTRL, 0x000000),
REG(VCAP_CORE_MV_CFG, 0x000004),
/* VCAP_CORE_CACHE */
REG(VCAP_CACHE_ENTRY_DAT, 0x000008),
REG(VCAP_CACHE_MASK_DAT, 0x000108),
REG(VCAP_CACHE_ACTION_DAT, 0x000208),
REG(VCAP_CACHE_CNT_DAT, 0x000308),
REG(VCAP_CACHE_TG_DAT, 0x000388),
/* VCAP_CONST */
REG(VCAP_CONST_VCAP_VER, 0x000398),
REG(VCAP_CONST_ENTRY_WIDTH, 0x00039c),
REG(VCAP_CONST_ENTRY_CNT, 0x0003a0),
REG(VCAP_CONST_ENTRY_SWCNT, 0x0003a4),
REG(VCAP_CONST_ENTRY_TG_WIDTH, 0x0003a8),
REG(VCAP_CONST_ACTION_DEF_CNT, 0x0003ac),
REG(VCAP_CONST_ACTION_WIDTH, 0x0003b0),
REG(VCAP_CONST_CNT_WIDTH, 0x0003b4),
REG_RESERVED(VCAP_CONST_CORE_CNT),
REG_RESERVED(VCAP_CONST_IF_CNT),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
};
static const u32 vsc9953_qsys_regmap[] = {
REG(QSYS_PORT_MODE, 0x003600),
REG(QSYS_SWITCH_PORT_MODE, 0x003630),
REG(QSYS_STAT_CNT_CFG, 0x00365c),
REG(QSYS_EEE_CFG, 0x003660),
REG(QSYS_EEE_THRES, 0x003688),
REG(QSYS_IGR_NO_SHARING, 0x00368c),
REG(QSYS_EGR_NO_SHARING, 0x003690),
REG(QSYS_SW_STATUS, 0x003694),
REG(QSYS_EXT_CPU_CFG, 0x0036c0),
REG_RESERVED(QSYS_PAD_CFG),
REG(QSYS_CPU_GROUP_MAP, 0x0036c8),
REG_RESERVED(QSYS_QMAP),
REG_RESERVED(QSYS_ISDX_SGRP),
REG_RESERVED(QSYS_TIMED_FRAME_ENTRY),
REG_RESERVED(QSYS_TFRM_MISC),
REG_RESERVED(QSYS_TFRM_PORT_DLY),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_1),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_2),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_3),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_4),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_5),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_6),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_7),
REG_RESERVED(QSYS_TFRM_TIMER_CFG_8),
REG(QSYS_RED_PROFILE, 0x003724),
REG(QSYS_RES_QOS_MODE, 0x003764),
REG(QSYS_RES_CFG, 0x004000),
REG(QSYS_RES_STAT, 0x004004),
REG(QSYS_EGR_DROP_MODE, 0x003768),
REG(QSYS_EQ_CTRL, 0x00376c),
REG_RESERVED(QSYS_EVENTS_CORE),
REG_RESERVED(QSYS_QMAXSDU_CFG_0),
REG_RESERVED(QSYS_QMAXSDU_CFG_1),
REG_RESERVED(QSYS_QMAXSDU_CFG_2),
REG_RESERVED(QSYS_QMAXSDU_CFG_3),
REG_RESERVED(QSYS_QMAXSDU_CFG_4),
REG_RESERVED(QSYS_QMAXSDU_CFG_5),
REG_RESERVED(QSYS_QMAXSDU_CFG_6),
REG_RESERVED(QSYS_QMAXSDU_CFG_7),
REG_RESERVED(QSYS_PREEMPTION_CFG),
REG(QSYS_CIR_CFG, 0x000000),
REG_RESERVED(QSYS_EIR_CFG),
REG(QSYS_SE_CFG, 0x000008),
REG(QSYS_SE_DWRR_CFG, 0x00000c),
REG_RESERVED(QSYS_SE_CONNECT),
REG_RESERVED(QSYS_SE_DLB_SENSE),
REG(QSYS_CIR_STATE, 0x000044),
REG_RESERVED(QSYS_EIR_STATE),
REG_RESERVED(QSYS_SE_STATE),
REG(QSYS_HSCH_MISC_CFG, 0x003774),
REG_RESERVED(QSYS_TAG_CONFIG),
REG_RESERVED(QSYS_TAS_PARAM_CFG_CTRL),
REG_RESERVED(QSYS_PORT_MAX_SDU),
REG_RESERVED(QSYS_PARAM_CFG_REG_1),
REG_RESERVED(QSYS_PARAM_CFG_REG_2),
REG_RESERVED(QSYS_PARAM_CFG_REG_3),
REG_RESERVED(QSYS_PARAM_CFG_REG_4),
REG_RESERVED(QSYS_PARAM_CFG_REG_5),
REG_RESERVED(QSYS_GCL_CFG_REG_1),
REG_RESERVED(QSYS_GCL_CFG_REG_2),
REG_RESERVED(QSYS_PARAM_STATUS_REG_1),
REG_RESERVED(QSYS_PARAM_STATUS_REG_2),
REG_RESERVED(QSYS_PARAM_STATUS_REG_3),
REG_RESERVED(QSYS_PARAM_STATUS_REG_4),
REG_RESERVED(QSYS_PARAM_STATUS_REG_5),
REG_RESERVED(QSYS_PARAM_STATUS_REG_6),
REG_RESERVED(QSYS_PARAM_STATUS_REG_7),
REG_RESERVED(QSYS_PARAM_STATUS_REG_8),
REG_RESERVED(QSYS_PARAM_STATUS_REG_9),
REG_RESERVED(QSYS_GCL_STATUS_REG_1),
REG_RESERVED(QSYS_GCL_STATUS_REG_2),
};
static const u32 vsc9953_rew_regmap[] = {
REG(REW_PORT_VLAN_CFG, 0x000000),
REG(REW_TAG_CFG, 0x000004),
REG(REW_PORT_CFG, 0x000008),
REG(REW_DSCP_CFG, 0x00000c),
REG(REW_PCP_DEI_QOS_MAP_CFG, 0x000010),
REG_RESERVED(REW_PTP_CFG),
REG_RESERVED(REW_PTP_DLY1_CFG),
REG_RESERVED(REW_RED_TAG_CFG),
REG(REW_DSCP_REMAP_DP1_CFG, 0x000610),
REG(REW_DSCP_REMAP_CFG, 0x000710),
REG_RESERVED(REW_STAT_CFG),
REG_RESERVED(REW_REW_STICKY),
REG_RESERVED(REW_PPT),
};
static const u32 vsc9953_sys_regmap[] = {
REG(SYS_COUNT_RX_OCTETS, 0x000000),
REG(SYS_COUNT_RX_UNICAST, 0x000004),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_RX_MULTICAST, 0x000008),
REG(SYS_COUNT_RX_BROADCAST, 0x00000c),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_RX_SHORTS, 0x000010),
REG(SYS_COUNT_RX_FRAGMENTS, 0x000014),
REG(SYS_COUNT_RX_JABBERS, 0x000018),
REG(SYS_COUNT_RX_CRC_ALIGN_ERRS, 0x00001c),
REG(SYS_COUNT_RX_SYM_ERRS, 0x000020),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_RX_64, 0x000024),
REG(SYS_COUNT_RX_65_127, 0x000028),
REG(SYS_COUNT_RX_128_255, 0x00002c),
REG(SYS_COUNT_RX_256_511, 0x000030),
REG(SYS_COUNT_RX_512_1023, 0x000034),
REG(SYS_COUNT_RX_1024_1526, 0x000038),
REG(SYS_COUNT_RX_1527_MAX, 0x00003c),
REG(SYS_COUNT_RX_PAUSE, 0x000040),
REG(SYS_COUNT_RX_CONTROL, 0x000044),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_RX_LONGS, 0x000048),
REG(SYS_COUNT_RX_CLASSIFIED_DROPS, 0x00004c),
REG(SYS_COUNT_RX_RED_PRIO_0, 0x000050),
REG(SYS_COUNT_RX_RED_PRIO_1, 0x000054),
REG(SYS_COUNT_RX_RED_PRIO_2, 0x000058),
REG(SYS_COUNT_RX_RED_PRIO_3, 0x00005c),
REG(SYS_COUNT_RX_RED_PRIO_4, 0x000060),
REG(SYS_COUNT_RX_RED_PRIO_5, 0x000064),
REG(SYS_COUNT_RX_RED_PRIO_6, 0x000068),
REG(SYS_COUNT_RX_RED_PRIO_7, 0x00006c),
REG(SYS_COUNT_RX_YELLOW_PRIO_0, 0x000070),
REG(SYS_COUNT_RX_YELLOW_PRIO_1, 0x000074),
REG(SYS_COUNT_RX_YELLOW_PRIO_2, 0x000078),
REG(SYS_COUNT_RX_YELLOW_PRIO_3, 0x00007c),
REG(SYS_COUNT_RX_YELLOW_PRIO_4, 0x000080),
REG(SYS_COUNT_RX_YELLOW_PRIO_5, 0x000084),
REG(SYS_COUNT_RX_YELLOW_PRIO_6, 0x000088),
REG(SYS_COUNT_RX_YELLOW_PRIO_7, 0x00008c),
REG(SYS_COUNT_RX_GREEN_PRIO_0, 0x000090),
REG(SYS_COUNT_RX_GREEN_PRIO_1, 0x000094),
REG(SYS_COUNT_RX_GREEN_PRIO_2, 0x000098),
REG(SYS_COUNT_RX_GREEN_PRIO_3, 0x00009c),
REG(SYS_COUNT_RX_GREEN_PRIO_4, 0x0000a0),
REG(SYS_COUNT_RX_GREEN_PRIO_5, 0x0000a4),
REG(SYS_COUNT_RX_GREEN_PRIO_6, 0x0000a8),
REG(SYS_COUNT_RX_GREEN_PRIO_7, 0x0000ac),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_TX_OCTETS, 0x000100),
REG(SYS_COUNT_TX_UNICAST, 0x000104),
REG(SYS_COUNT_TX_MULTICAST, 0x000108),
REG(SYS_COUNT_TX_BROADCAST, 0x00010c),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_TX_COLLISION, 0x000110),
REG(SYS_COUNT_TX_DROPS, 0x000114),
REG(SYS_COUNT_TX_PAUSE, 0x000118),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_COUNT_TX_64, 0x00011c),
REG(SYS_COUNT_TX_65_127, 0x000120),
REG(SYS_COUNT_TX_128_255, 0x000124),
REG(SYS_COUNT_TX_256_511, 0x000128),
REG(SYS_COUNT_TX_512_1023, 0x00012c),
REG(SYS_COUNT_TX_1024_1526, 0x000130),
REG(SYS_COUNT_TX_1527_MAX, 0x000134),
REG(SYS_COUNT_TX_YELLOW_PRIO_0, 0x000138),
REG(SYS_COUNT_TX_YELLOW_PRIO_1, 0x00013c),
REG(SYS_COUNT_TX_YELLOW_PRIO_2, 0x000140),
REG(SYS_COUNT_TX_YELLOW_PRIO_3, 0x000144),
REG(SYS_COUNT_TX_YELLOW_PRIO_4, 0x000148),
REG(SYS_COUNT_TX_YELLOW_PRIO_5, 0x00014c),
REG(SYS_COUNT_TX_YELLOW_PRIO_6, 0x000150),
REG(SYS_COUNT_TX_YELLOW_PRIO_7, 0x000154),
REG(SYS_COUNT_TX_GREEN_PRIO_0, 0x000158),
REG(SYS_COUNT_TX_GREEN_PRIO_1, 0x00015c),
REG(SYS_COUNT_TX_GREEN_PRIO_2, 0x000160),
REG(SYS_COUNT_TX_GREEN_PRIO_3, 0x000164),
REG(SYS_COUNT_TX_GREEN_PRIO_4, 0x000168),
REG(SYS_COUNT_TX_GREEN_PRIO_5, 0x00016c),
REG(SYS_COUNT_TX_GREEN_PRIO_6, 0x000170),
REG(SYS_COUNT_TX_GREEN_PRIO_7, 0x000174),
REG(SYS_COUNT_TX_AGED, 0x000178),
REG(SYS_COUNT_DROP_LOCAL, 0x000200),
REG(SYS_COUNT_DROP_TAIL, 0x000204),
REG(SYS_COUNT_DROP_YELLOW_PRIO_0, 0x000208),
REG(SYS_COUNT_DROP_YELLOW_PRIO_1, 0x00020c),
REG(SYS_COUNT_DROP_YELLOW_PRIO_2, 0x000210),
REG(SYS_COUNT_DROP_YELLOW_PRIO_3, 0x000214),
REG(SYS_COUNT_DROP_YELLOW_PRIO_4, 0x000218),
REG(SYS_COUNT_DROP_YELLOW_PRIO_5, 0x00021c),
REG(SYS_COUNT_DROP_YELLOW_PRIO_6, 0x000220),
REG(SYS_COUNT_DROP_YELLOW_PRIO_7, 0x000224),
REG(SYS_COUNT_DROP_GREEN_PRIO_0, 0x000228),
REG(SYS_COUNT_DROP_GREEN_PRIO_1, 0x00022c),
REG(SYS_COUNT_DROP_GREEN_PRIO_2, 0x000230),
REG(SYS_COUNT_DROP_GREEN_PRIO_3, 0x000234),
REG(SYS_COUNT_DROP_GREEN_PRIO_4, 0x000238),
REG(SYS_COUNT_DROP_GREEN_PRIO_5, 0x00023c),
REG(SYS_COUNT_DROP_GREEN_PRIO_6, 0x000240),
REG(SYS_COUNT_DROP_GREEN_PRIO_7, 0x000244),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
REG(SYS_RESET_CFG, 0x000318),
REG_RESERVED(SYS_SR_ETYPE_CFG),
REG(SYS_VLAN_ETYPE_CFG, 0x000320),
REG(SYS_PORT_MODE, 0x000324),
REG(SYS_FRONT_PORT_MODE, 0x000354),
REG(SYS_FRM_AGING, 0x00037c),
REG(SYS_STAT_CFG, 0x000380),
REG_RESERVED(SYS_SW_STATUS),
REG_RESERVED(SYS_MISC_CFG),
REG_RESERVED(SYS_REW_MAC_HIGH_CFG),
REG_RESERVED(SYS_REW_MAC_LOW_CFG),
REG_RESERVED(SYS_TIMESTAMP_OFFSET),
REG(SYS_PAUSE_CFG, 0x00044c),
REG(SYS_PAUSE_TOT_CFG, 0x000478),
REG(SYS_ATOP, 0x00047c),
REG(SYS_ATOP_TOT_CFG, 0x0004a8),
REG(SYS_MAC_FC_CFG, 0x0004ac),
REG(SYS_MMGT, 0x0004d4),
REG_RESERVED(SYS_MMGT_FAST),
REG_RESERVED(SYS_EVENTS_DIF),
REG_RESERVED(SYS_EVENTS_CORE),
REG_RESERVED(SYS_PTP_STATUS),
REG_RESERVED(SYS_PTP_TXSTAMP),
REG_RESERVED(SYS_PTP_NXT),
REG_RESERVED(SYS_PTP_CFG),
REG_RESERVED(SYS_RAM_INIT),
REG_RESERVED(SYS_CM_ADDR),
REG_RESERVED(SYS_CM_DATA_WR),
REG_RESERVED(SYS_CM_DATA_RD),
REG_RESERVED(SYS_CM_OP),
REG_RESERVED(SYS_CM_DATA),
};
static const u32 vsc9953_gcb_regmap[] = {
REG(GCB_SOFT_RST, 0x000008),
REG(GCB_MIIM_MII_STATUS, 0x0000ac),
REG(GCB_MIIM_MII_CMD, 0x0000b4),
REG(GCB_MIIM_MII_DATA, 0x0000b8),
};
static const u32 vsc9953_dev_gmii_regmap[] = {
REG(DEV_CLOCK_CFG, 0x0),
REG(DEV_PORT_MISC, 0x4),
REG_RESERVED(DEV_EVENTS),
REG(DEV_EEE_CFG, 0xc),
REG_RESERVED(DEV_RX_PATH_DELAY),
REG_RESERVED(DEV_TX_PATH_DELAY),
REG_RESERVED(DEV_PTP_PREDICT_CFG),
REG(DEV_MAC_ENA_CFG, 0x10),
REG(DEV_MAC_MODE_CFG, 0x14),
REG(DEV_MAC_MAXLEN_CFG, 0x18),
REG(DEV_MAC_TAGS_CFG, 0x1c),
REG(DEV_MAC_ADV_CHK_CFG, 0x20),
REG(DEV_MAC_IFG_CFG, 0x24),
REG(DEV_MAC_HDX_CFG, 0x28),
REG_RESERVED(DEV_MAC_DBG_CFG),
REG(DEV_MAC_FC_MAC_LOW_CFG, 0x30),
REG(DEV_MAC_FC_MAC_HIGH_CFG, 0x34),
REG(DEV_MAC_STICKY, 0x38),
REG_RESERVED(PCS1G_CFG),
REG_RESERVED(PCS1G_MODE_CFG),
REG_RESERVED(PCS1G_SD_CFG),
REG_RESERVED(PCS1G_ANEG_CFG),
REG_RESERVED(PCS1G_ANEG_NP_CFG),
REG_RESERVED(PCS1G_LB_CFG),
REG_RESERVED(PCS1G_DBG_CFG),
REG_RESERVED(PCS1G_CDET_CFG),
REG_RESERVED(PCS1G_ANEG_STATUS),
REG_RESERVED(PCS1G_ANEG_NP_STATUS),
REG_RESERVED(PCS1G_LINK_STATUS),
REG_RESERVED(PCS1G_LINK_DOWN_CNT),
REG_RESERVED(PCS1G_STICKY),
REG_RESERVED(PCS1G_DEBUG_STATUS),
REG_RESERVED(PCS1G_LPI_CFG),
REG_RESERVED(PCS1G_LPI_WAKE_ERROR_CNT),
REG_RESERVED(PCS1G_LPI_STATUS),
REG_RESERVED(PCS1G_TSTPAT_MODE_CFG),
REG_RESERVED(PCS1G_TSTPAT_STATUS),
REG_RESERVED(DEV_PCS_FX100_CFG),
REG_RESERVED(DEV_PCS_FX100_STATUS),
};
static const u32 *vsc9953_regmap[TARGET_MAX] = {
[ANA] = vsc9953_ana_regmap,
[QS] = vsc9953_qs_regmap,
[QSYS] = vsc9953_qsys_regmap,
[REW] = vsc9953_rew_regmap,
[SYS] = vsc9953_sys_regmap,
[S0] = vsc9953_vcap_regmap,
[S1] = vsc9953_vcap_regmap,
[S2] = vsc9953_vcap_regmap,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
[GCB] = vsc9953_gcb_regmap,
[DEV_GMII] = vsc9953_dev_gmii_regmap,
};
/* Addresses are relative to the device's base address */
net: dsa: felix: update regmap requests to be string-based Existing felix DSA drivers (vsc9959, vsc9953) are all switches that were integrated in NXP SoCs, which makes them a bit unusual compared to the usual Microchip branded Ocelot switches. To be precise, looking at Documentation/devicetree/bindings/net/mscc,vsc7514-switch.yaml, one can see 21 memory regions for the "switch" node, and these correspond to the "targets" of the switch IP, which are spread throughout the guts of that SoC's memory space. In NXP integrations, those targets still exist, but they were condensed within a single memory region, with no other peripheral in between them, so it made more sense for the driver to ioremap the entire memory space of the switch, and then find the targets within that memory space via some offsets hardcoded in the driver. The effect of this design decision is that now, the felix driver expects hardware instantiations to provide their own resource definitions, which is kind of odd when considering a typical device (those are retrieved from 'reg' properties in the device tree, using platform_get_resource() or similar). Allow other hardware instantiations that share the felix driver to not provide a hardcoded array of resources in the future. Instead, make the common denominator based on which regmaps are created be just the resource "names". Each instantiation comes with its own array of names that are mandatory for it, and with an optional array of resources. So we split the resources in 2 arrays, one is what's requested and the other is what's provided. There is one pool of provided resources, in felix->info->resources (of length felix->info->num_resources). There are 2 different ways of requesting a resource. One is by enum ocelot_target (this handles the global regmaps), and one is by int port (this handles the per-port ones). For the existing vsc9959 and vsc9953, it would be a bit stupid to request something that's not provided, given that the 2 arrays are both defined in the same place. The advantage is that we can now modify felix_request_regmap_by_name() to make felix->info->resources[] optional, and if absent, the implementation can call dev_get_regmap() and this is something that is compatible with MFD. Co-developed-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-27 22:15:20 +03:00
static const struct resource vsc9953_resources[] = {
DEFINE_RES_MEM_NAMED(0x0010000, 0x0010000, "sys"),
DEFINE_RES_MEM_NAMED(0x0030000, 0x0010000, "rew"),
DEFINE_RES_MEM_NAMED(0x0040000, 0x0000400, "s0"),
DEFINE_RES_MEM_NAMED(0x0050000, 0x0000400, "s1"),
DEFINE_RES_MEM_NAMED(0x0060000, 0x0000400, "s2"),
DEFINE_RES_MEM_NAMED(0x0070000, 0x0000200, "devcpu_gcb"),
DEFINE_RES_MEM_NAMED(0x0080000, 0x0000100, "qs"),
DEFINE_RES_MEM_NAMED(0x0090000, 0x00000cc, "ptp"),
DEFINE_RES_MEM_NAMED(0x0100000, 0x0010000, "port0"),
DEFINE_RES_MEM_NAMED(0x0110000, 0x0010000, "port1"),
DEFINE_RES_MEM_NAMED(0x0120000, 0x0010000, "port2"),
DEFINE_RES_MEM_NAMED(0x0130000, 0x0010000, "port3"),
DEFINE_RES_MEM_NAMED(0x0140000, 0x0010000, "port4"),
DEFINE_RES_MEM_NAMED(0x0150000, 0x0010000, "port5"),
DEFINE_RES_MEM_NAMED(0x0160000, 0x0010000, "port6"),
DEFINE_RES_MEM_NAMED(0x0170000, 0x0010000, "port7"),
DEFINE_RES_MEM_NAMED(0x0180000, 0x0010000, "port8"),
DEFINE_RES_MEM_NAMED(0x0190000, 0x0010000, "port9"),
net: dsa: felix: update regmap requests to be string-based Existing felix DSA drivers (vsc9959, vsc9953) are all switches that were integrated in NXP SoCs, which makes them a bit unusual compared to the usual Microchip branded Ocelot switches. To be precise, looking at Documentation/devicetree/bindings/net/mscc,vsc7514-switch.yaml, one can see 21 memory regions for the "switch" node, and these correspond to the "targets" of the switch IP, which are spread throughout the guts of that SoC's memory space. In NXP integrations, those targets still exist, but they were condensed within a single memory region, with no other peripheral in between them, so it made more sense for the driver to ioremap the entire memory space of the switch, and then find the targets within that memory space via some offsets hardcoded in the driver. The effect of this design decision is that now, the felix driver expects hardware instantiations to provide their own resource definitions, which is kind of odd when considering a typical device (those are retrieved from 'reg' properties in the device tree, using platform_get_resource() or similar). Allow other hardware instantiations that share the felix driver to not provide a hardcoded array of resources in the future. Instead, make the common denominator based on which regmaps are created be just the resource "names". Each instantiation comes with its own array of names that are mandatory for it, and with an optional array of resources. So we split the resources in 2 arrays, one is what's requested and the other is what's provided. There is one pool of provided resources, in felix->info->resources (of length felix->info->num_resources). There are 2 different ways of requesting a resource. One is by enum ocelot_target (this handles the global regmaps), and one is by int port (this handles the per-port ones). For the existing vsc9959 and vsc9953, it would be a bit stupid to request something that's not provided, given that the 2 arrays are both defined in the same place. The advantage is that we can now modify felix_request_regmap_by_name() to make felix->info->resources[] optional, and if absent, the implementation can call dev_get_regmap() and this is something that is compatible with MFD. Co-developed-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-27 22:15:20 +03:00
DEFINE_RES_MEM_NAMED(0x0200000, 0x0020000, "qsys"),
DEFINE_RES_MEM_NAMED(0x0280000, 0x0010000, "ana"),
};
static const char * const vsc9953_resource_names[TARGET_MAX] = {
[SYS] = "sys",
[REW] = "rew",
[S0] = "s0",
[S1] = "s1",
[S2] = "s2",
[GCB] = "devcpu_gcb",
[QS] = "qs",
[PTP] = "ptp",
[QSYS] = "qsys",
[ANA] = "ana",
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
};
static const struct reg_field vsc9953_regfields[REGFIELD_MAX] = {
[ANA_ADVLEARN_VLAN_CHK] = REG_FIELD(ANA_ADVLEARN, 10, 10),
[ANA_ADVLEARN_LEARN_MIRROR] = REG_FIELD(ANA_ADVLEARN, 0, 9),
[ANA_ANEVENTS_AUTOAGE] = REG_FIELD(ANA_ANEVENTS, 24, 24),
[ANA_ANEVENTS_STORM_DROP] = REG_FIELD(ANA_ANEVENTS, 22, 22),
[ANA_ANEVENTS_LEARN_DROP] = REG_FIELD(ANA_ANEVENTS, 21, 21),
[ANA_ANEVENTS_AGED_ENTRY] = REG_FIELD(ANA_ANEVENTS, 20, 20),
[ANA_ANEVENTS_CPU_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 19, 19),
[ANA_ANEVENTS_AUTO_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 18, 18),
[ANA_ANEVENTS_LEARN_REMOVE] = REG_FIELD(ANA_ANEVENTS, 17, 17),
[ANA_ANEVENTS_AUTO_LEARNED] = REG_FIELD(ANA_ANEVENTS, 16, 16),
[ANA_ANEVENTS_AUTO_MOVED] = REG_FIELD(ANA_ANEVENTS, 15, 15),
[ANA_ANEVENTS_CLASSIFIED_DROP] = REG_FIELD(ANA_ANEVENTS, 13, 13),
[ANA_ANEVENTS_CLASSIFIED_COPY] = REG_FIELD(ANA_ANEVENTS, 12, 12),
[ANA_ANEVENTS_VLAN_DISCARD] = REG_FIELD(ANA_ANEVENTS, 11, 11),
[ANA_ANEVENTS_FWD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 10, 10),
[ANA_ANEVENTS_MULTICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 9, 9),
[ANA_ANEVENTS_UNICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 8, 8),
[ANA_ANEVENTS_DEST_KNOWN] = REG_FIELD(ANA_ANEVENTS, 7, 7),
[ANA_ANEVENTS_BUCKET3_MATCH] = REG_FIELD(ANA_ANEVENTS, 6, 6),
[ANA_ANEVENTS_BUCKET2_MATCH] = REG_FIELD(ANA_ANEVENTS, 5, 5),
[ANA_ANEVENTS_BUCKET1_MATCH] = REG_FIELD(ANA_ANEVENTS, 4, 4),
[ANA_ANEVENTS_BUCKET0_MATCH] = REG_FIELD(ANA_ANEVENTS, 3, 3),
[ANA_ANEVENTS_CPU_OPERATION] = REG_FIELD(ANA_ANEVENTS, 2, 2),
[ANA_ANEVENTS_DMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 1, 1),
[ANA_ANEVENTS_SMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 0, 0),
[ANA_TABLES_MACACCESS_B_DOM] = REG_FIELD(ANA_TABLES_MACACCESS, 16, 16),
[ANA_TABLES_MACTINDX_BUCKET] = REG_FIELD(ANA_TABLES_MACTINDX, 11, 12),
[ANA_TABLES_MACTINDX_M_INDEX] = REG_FIELD(ANA_TABLES_MACTINDX, 0, 10),
[SYS_RESET_CFG_CORE_ENA] = REG_FIELD(SYS_RESET_CFG, 7, 7),
[SYS_RESET_CFG_MEM_ENA] = REG_FIELD(SYS_RESET_CFG, 6, 6),
[SYS_RESET_CFG_MEM_INIT] = REG_FIELD(SYS_RESET_CFG, 5, 5),
[GCB_SOFT_RST_SWC_RST] = REG_FIELD(GCB_SOFT_RST, 0, 0),
[GCB_MIIM_MII_STATUS_PENDING] = REG_FIELD(GCB_MIIM_MII_STATUS, 2, 2),
[GCB_MIIM_MII_STATUS_BUSY] = REG_FIELD(GCB_MIIM_MII_STATUS, 3, 3),
/* Replicated per number of ports (11), register size 4 per port */
[QSYS_SWITCH_PORT_MODE_PORT_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 13, 13, 11, 4),
[QSYS_SWITCH_PORT_MODE_YEL_RSRVD] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 10, 10, 11, 4),
[QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 9, 9, 11, 4),
[QSYS_SWITCH_PORT_MODE_TX_PFC_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 1, 8, 11, 4),
[QSYS_SWITCH_PORT_MODE_TX_PFC_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 0, 0, 11, 4),
[SYS_PORT_MODE_INCL_INJ_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 4, 5, 11, 4),
[SYS_PORT_MODE_INCL_XTR_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 2, 3, 11, 4),
[SYS_PORT_MODE_INCL_HDR_ERR] = REG_FIELD_ID(SYS_PORT_MODE, 0, 0, 11, 4),
[SYS_PAUSE_CFG_PAUSE_START] = REG_FIELD_ID(SYS_PAUSE_CFG, 11, 20, 11, 4),
[SYS_PAUSE_CFG_PAUSE_STOP] = REG_FIELD_ID(SYS_PAUSE_CFG, 1, 10, 11, 4),
[SYS_PAUSE_CFG_PAUSE_ENA] = REG_FIELD_ID(SYS_PAUSE_CFG, 0, 1, 11, 4),
};
static const struct vcap_field vsc9953_vcap_es0_keys[] = {
[VCAP_ES0_EGR_PORT] = { 0, 4},
[VCAP_ES0_IGR_PORT] = { 4, 4},
[VCAP_ES0_RSV] = { 8, 2},
[VCAP_ES0_L2_MC] = { 10, 1},
[VCAP_ES0_L2_BC] = { 11, 1},
[VCAP_ES0_VID] = { 12, 12},
[VCAP_ES0_DP] = { 24, 1},
[VCAP_ES0_PCP] = { 25, 3},
};
static const struct vcap_field vsc9953_vcap_es0_actions[] = {
[VCAP_ES0_ACT_PUSH_OUTER_TAG] = { 0, 2},
[VCAP_ES0_ACT_PUSH_INNER_TAG] = { 2, 1},
[VCAP_ES0_ACT_TAG_A_TPID_SEL] = { 3, 2},
[VCAP_ES0_ACT_TAG_A_VID_SEL] = { 5, 1},
[VCAP_ES0_ACT_TAG_A_PCP_SEL] = { 6, 2},
[VCAP_ES0_ACT_TAG_A_DEI_SEL] = { 8, 2},
[VCAP_ES0_ACT_TAG_B_TPID_SEL] = { 10, 2},
[VCAP_ES0_ACT_TAG_B_VID_SEL] = { 12, 1},
[VCAP_ES0_ACT_TAG_B_PCP_SEL] = { 13, 2},
[VCAP_ES0_ACT_TAG_B_DEI_SEL] = { 15, 2},
[VCAP_ES0_ACT_VID_A_VAL] = { 17, 12},
[VCAP_ES0_ACT_PCP_A_VAL] = { 29, 3},
[VCAP_ES0_ACT_DEI_A_VAL] = { 32, 1},
[VCAP_ES0_ACT_VID_B_VAL] = { 33, 12},
[VCAP_ES0_ACT_PCP_B_VAL] = { 45, 3},
[VCAP_ES0_ACT_DEI_B_VAL] = { 48, 1},
[VCAP_ES0_ACT_RSV] = { 49, 24},
[VCAP_ES0_ACT_HIT_STICKY] = { 73, 1},
};
static const struct vcap_field vsc9953_vcap_is1_keys[] = {
[VCAP_IS1_HK_TYPE] = { 0, 1},
[VCAP_IS1_HK_LOOKUP] = { 1, 2},
[VCAP_IS1_HK_IGR_PORT_MASK] = { 3, 11},
[VCAP_IS1_HK_RSV] = { 14, 10},
/* VCAP_IS1_HK_OAM_Y1731 not supported */
[VCAP_IS1_HK_L2_MC] = { 24, 1},
[VCAP_IS1_HK_L2_BC] = { 25, 1},
[VCAP_IS1_HK_IP_MC] = { 26, 1},
[VCAP_IS1_HK_VLAN_TAGGED] = { 27, 1},
[VCAP_IS1_HK_VLAN_DBL_TAGGED] = { 28, 1},
[VCAP_IS1_HK_TPID] = { 29, 1},
[VCAP_IS1_HK_VID] = { 30, 12},
[VCAP_IS1_HK_DEI] = { 42, 1},
[VCAP_IS1_HK_PCP] = { 43, 3},
/* Specific Fields for IS1 Half Key S1_NORMAL */
[VCAP_IS1_HK_L2_SMAC] = { 46, 48},
[VCAP_IS1_HK_ETYPE_LEN] = { 94, 1},
[VCAP_IS1_HK_ETYPE] = { 95, 16},
[VCAP_IS1_HK_IP_SNAP] = {111, 1},
[VCAP_IS1_HK_IP4] = {112, 1},
/* Layer-3 Information */
[VCAP_IS1_HK_L3_FRAGMENT] = {113, 1},
[VCAP_IS1_HK_L3_FRAG_OFS_GT0] = {114, 1},
[VCAP_IS1_HK_L3_OPTIONS] = {115, 1},
[VCAP_IS1_HK_L3_DSCP] = {116, 6},
[VCAP_IS1_HK_L3_IP4_SIP] = {122, 32},
/* Layer-4 Information */
[VCAP_IS1_HK_TCP_UDP] = {154, 1},
[VCAP_IS1_HK_TCP] = {155, 1},
[VCAP_IS1_HK_L4_SPORT] = {156, 16},
[VCAP_IS1_HK_L4_RNG] = {172, 8},
/* Specific Fields for IS1 Half Key S1_5TUPLE_IP4 */
[VCAP_IS1_HK_IP4_INNER_TPID] = { 46, 1},
[VCAP_IS1_HK_IP4_INNER_VID] = { 47, 12},
[VCAP_IS1_HK_IP4_INNER_DEI] = { 59, 1},
[VCAP_IS1_HK_IP4_INNER_PCP] = { 60, 3},
[VCAP_IS1_HK_IP4_IP4] = { 63, 1},
[VCAP_IS1_HK_IP4_L3_FRAGMENT] = { 64, 1},
[VCAP_IS1_HK_IP4_L3_FRAG_OFS_GT0] = { 65, 1},
[VCAP_IS1_HK_IP4_L3_OPTIONS] = { 66, 1},
[VCAP_IS1_HK_IP4_L3_DSCP] = { 67, 6},
[VCAP_IS1_HK_IP4_L3_IP4_DIP] = { 73, 32},
[VCAP_IS1_HK_IP4_L3_IP4_SIP] = {105, 32},
[VCAP_IS1_HK_IP4_L3_PROTO] = {137, 8},
[VCAP_IS1_HK_IP4_TCP_UDP] = {145, 1},
[VCAP_IS1_HK_IP4_TCP] = {146, 1},
[VCAP_IS1_HK_IP4_L4_RNG] = {147, 8},
[VCAP_IS1_HK_IP4_IP_PAYLOAD_S1_5TUPLE] = {155, 32},
};
static const struct vcap_field vsc9953_vcap_is1_actions[] = {
[VCAP_IS1_ACT_DSCP_ENA] = { 0, 1},
[VCAP_IS1_ACT_DSCP_VAL] = { 1, 6},
[VCAP_IS1_ACT_QOS_ENA] = { 7, 1},
[VCAP_IS1_ACT_QOS_VAL] = { 8, 3},
[VCAP_IS1_ACT_DP_ENA] = { 11, 1},
[VCAP_IS1_ACT_DP_VAL] = { 12, 1},
[VCAP_IS1_ACT_PAG_OVERRIDE_MASK] = { 13, 8},
[VCAP_IS1_ACT_PAG_VAL] = { 21, 8},
[VCAP_IS1_ACT_RSV] = { 29, 11},
[VCAP_IS1_ACT_VID_REPLACE_ENA] = { 40, 1},
[VCAP_IS1_ACT_VID_ADD_VAL] = { 41, 12},
[VCAP_IS1_ACT_FID_SEL] = { 53, 2},
[VCAP_IS1_ACT_FID_VAL] = { 55, 13},
[VCAP_IS1_ACT_PCP_DEI_ENA] = { 68, 1},
[VCAP_IS1_ACT_PCP_VAL] = { 69, 3},
[VCAP_IS1_ACT_DEI_VAL] = { 72, 1},
[VCAP_IS1_ACT_VLAN_POP_CNT_ENA] = { 73, 1},
[VCAP_IS1_ACT_VLAN_POP_CNT] = { 74, 2},
[VCAP_IS1_ACT_CUSTOM_ACE_TYPE_ENA] = { 76, 4},
[VCAP_IS1_ACT_HIT_STICKY] = { 80, 1},
};
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static struct vcap_field vsc9953_vcap_is2_keys[] = {
/* Common: 41 bits */
[VCAP_IS2_TYPE] = { 0, 4},
[VCAP_IS2_HK_FIRST] = { 4, 1},
[VCAP_IS2_HK_PAG] = { 5, 8},
[VCAP_IS2_HK_IGR_PORT_MASK] = { 13, 11},
[VCAP_IS2_HK_RSV2] = { 24, 1},
[VCAP_IS2_HK_HOST_MATCH] = { 25, 1},
[VCAP_IS2_HK_L2_MC] = { 26, 1},
[VCAP_IS2_HK_L2_BC] = { 27, 1},
[VCAP_IS2_HK_VLAN_TAGGED] = { 28, 1},
[VCAP_IS2_HK_VID] = { 29, 12},
[VCAP_IS2_HK_DEI] = { 41, 1},
[VCAP_IS2_HK_PCP] = { 42, 3},
/* MAC_ETYPE / MAC_LLC / MAC_SNAP / OAM common */
[VCAP_IS2_HK_L2_DMAC] = { 45, 48},
[VCAP_IS2_HK_L2_SMAC] = { 93, 48},
/* MAC_ETYPE (TYPE=000) */
[VCAP_IS2_HK_MAC_ETYPE_ETYPE] = {141, 16},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0] = {157, 16},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1] = {173, 8},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2] = {181, 3},
/* MAC_LLC (TYPE=001) */
[VCAP_IS2_HK_MAC_LLC_L2_LLC] = {141, 40},
/* MAC_SNAP (TYPE=010) */
[VCAP_IS2_HK_MAC_SNAP_L2_SNAP] = {141, 40},
/* MAC_ARP (TYPE=011) */
[VCAP_IS2_HK_MAC_ARP_SMAC] = { 45, 48},
[VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK] = { 93, 1},
[VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK] = { 94, 1},
[VCAP_IS2_HK_MAC_ARP_LEN_OK] = { 95, 1},
[VCAP_IS2_HK_MAC_ARP_TARGET_MATCH] = { 96, 1},
[VCAP_IS2_HK_MAC_ARP_SENDER_MATCH] = { 97, 1},
[VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN] = { 98, 1},
[VCAP_IS2_HK_MAC_ARP_OPCODE] = { 99, 2},
[VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP] = {101, 32},
[VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP] = {133, 32},
[VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP] = {165, 1},
/* IP4_TCP_UDP / IP4_OTHER common */
[VCAP_IS2_HK_IP4] = { 45, 1},
[VCAP_IS2_HK_L3_FRAGMENT] = { 46, 1},
[VCAP_IS2_HK_L3_FRAG_OFS_GT0] = { 47, 1},
[VCAP_IS2_HK_L3_OPTIONS] = { 48, 1},
[VCAP_IS2_HK_IP4_L3_TTL_GT0] = { 49, 1},
[VCAP_IS2_HK_L3_TOS] = { 50, 8},
[VCAP_IS2_HK_L3_IP4_DIP] = { 58, 32},
[VCAP_IS2_HK_L3_IP4_SIP] = { 90, 32},
[VCAP_IS2_HK_DIP_EQ_SIP] = {122, 1},
/* IP4_TCP_UDP (TYPE=100) */
[VCAP_IS2_HK_TCP] = {123, 1},
[VCAP_IS2_HK_L4_DPORT] = {124, 16},
[VCAP_IS2_HK_L4_SPORT] = {140, 16},
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
[VCAP_IS2_HK_L4_RNG] = {156, 8},
[VCAP_IS2_HK_L4_SPORT_EQ_DPORT] = {164, 1},
[VCAP_IS2_HK_L4_SEQUENCE_EQ0] = {165, 1},
[VCAP_IS2_HK_L4_FIN] = {166, 1},
[VCAP_IS2_HK_L4_SYN] = {167, 1},
[VCAP_IS2_HK_L4_RST] = {168, 1},
[VCAP_IS2_HK_L4_PSH] = {169, 1},
[VCAP_IS2_HK_L4_ACK] = {170, 1},
[VCAP_IS2_HK_L4_URG] = {171, 1},
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
/* IP4_OTHER (TYPE=101) */
[VCAP_IS2_HK_IP4_L3_PROTO] = {123, 8},
[VCAP_IS2_HK_L3_PAYLOAD] = {131, 56},
/* IP6_STD (TYPE=110) */
[VCAP_IS2_HK_IP6_L3_TTL_GT0] = { 45, 1},
[VCAP_IS2_HK_L3_IP6_SIP] = { 46, 128},
[VCAP_IS2_HK_IP6_L3_PROTO] = {174, 8},
};
static struct vcap_field vsc9953_vcap_is2_actions[] = {
[VCAP_IS2_ACT_HIT_ME_ONCE] = { 0, 1},
[VCAP_IS2_ACT_CPU_COPY_ENA] = { 1, 1},
[VCAP_IS2_ACT_CPU_QU_NUM] = { 2, 3},
[VCAP_IS2_ACT_MASK_MODE] = { 5, 2},
[VCAP_IS2_ACT_MIRROR_ENA] = { 7, 1},
[VCAP_IS2_ACT_LRN_DIS] = { 8, 1},
[VCAP_IS2_ACT_POLICE_ENA] = { 9, 1},
[VCAP_IS2_ACT_POLICE_IDX] = { 10, 8},
[VCAP_IS2_ACT_POLICE_VCAP_ONLY] = { 21, 1},
[VCAP_IS2_ACT_PORT_MASK] = { 22, 10},
[VCAP_IS2_ACT_ACL_ID] = { 44, 6},
[VCAP_IS2_ACT_HIT_CNT] = { 50, 32},
};
static struct vcap_props vsc9953_vcap_props[] = {
[VCAP_ES0] = {
.action_type_width = 0,
.action_table = {
[ES0_ACTION_TYPE_NORMAL] = {
.width = 73, /* HIT_STICKY not included */
.count = 1,
},
},
.target = S0,
.keys = vsc9953_vcap_es0_keys,
.actions = vsc9953_vcap_es0_actions,
},
[VCAP_IS1] = {
.action_type_width = 0,
.action_table = {
[IS1_ACTION_TYPE_NORMAL] = {
.width = 80, /* HIT_STICKY not included */
.count = 4,
},
},
.target = S1,
.keys = vsc9953_vcap_is1_keys,
.actions = vsc9953_vcap_is1_actions,
},
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
[VCAP_IS2] = {
.action_type_width = 1,
.action_table = {
[IS2_ACTION_TYPE_NORMAL] = {
.width = 50, /* HIT_CNT not included */
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.count = 2
},
[IS2_ACTION_TYPE_SMAC_SIP] = {
.width = 6,
.count = 4
},
},
.target = S2,
.keys = vsc9953_vcap_is2_keys,
.actions = vsc9953_vcap_is2_actions,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
},
};
#define VSC9953_INIT_TIMEOUT 50000
#define VSC9953_GCB_RST_SLEEP 100
#define VSC9953_SYS_RAMINIT_SLEEP 80
static int vsc9953_gcb_soft_rst_status(struct ocelot *ocelot)
{
int val;
ocelot_field_read(ocelot, GCB_SOFT_RST_SWC_RST, &val);
return val;
}
static int vsc9953_sys_ram_init_status(struct ocelot *ocelot)
{
int val;
ocelot_field_read(ocelot, SYS_RESET_CFG_MEM_INIT, &val);
return val;
}
/* CORE_ENA is in SYS:SYSTEM:RESET_CFG
* MEM_INIT is in SYS:SYSTEM:RESET_CFG
* MEM_ENA is in SYS:SYSTEM:RESET_CFG
*/
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static int vsc9953_reset(struct ocelot *ocelot)
{
int val, err;
/* soft-reset the switch core */
ocelot_field_write(ocelot, GCB_SOFT_RST_SWC_RST, 1);
err = readx_poll_timeout(vsc9953_gcb_soft_rst_status, ocelot, val, !val,
VSC9953_GCB_RST_SLEEP, VSC9953_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch core reset\n");
return err;
}
/* initialize switch mem ~40us */
ocelot_field_write(ocelot, SYS_RESET_CFG_MEM_ENA, 1);
ocelot_field_write(ocelot, SYS_RESET_CFG_MEM_INIT, 1);
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
err = readx_poll_timeout(vsc9953_sys_ram_init_status, ocelot, val, !val,
VSC9953_SYS_RAMINIT_SLEEP,
VSC9953_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch sram init\n");
return err;
}
/* enable switch core */
ocelot_field_write(ocelot, SYS_RESET_CFG_CORE_ENA, 1);
return 0;
}
/* Watermark encode
* Bit 9: Unit; 0:1, 1:16
* Bit 8-0: Value to be multiplied with unit
*/
static u16 vsc9953_wm_enc(u16 value)
{
WARN_ON(value >= 16 * BIT(9));
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
if (value >= BIT(9))
return BIT(9) | (value / 16);
return value;
}
static u16 vsc9953_wm_dec(u16 wm)
{
WARN_ON(wm & ~GENMASK(9, 0));
if (wm & BIT(9))
return (wm & GENMASK(8, 0)) * 16;
return wm;
}
static void vsc9953_wm_stat(u32 val, u32 *inuse, u32 *maxuse)
{
*inuse = (val & GENMASK(25, 13)) >> 13;
*maxuse = val & GENMASK(12, 0);
}
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static const struct ocelot_ops vsc9953_ops = {
.reset = vsc9953_reset,
.wm_enc = vsc9953_wm_enc,
.wm_dec = vsc9953_wm_dec,
.wm_stat = vsc9953_wm_stat,
.port_to_netdev = felix_port_to_netdev,
.netdev_to_port = felix_netdev_to_port,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
};
static int vsc9953_mdio_bus_alloc(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct device *dev = ocelot->dev;
struct mii_bus *bus;
int port;
int rc;
felix->pcs = devm_kcalloc(dev, felix->info->num_ports,
sizeof(struct phylink_pcs *),
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
GFP_KERNEL);
if (!felix->pcs) {
dev_err(dev, "failed to allocate array for PCS PHYs\n");
return -ENOMEM;
}
rc = mscc_miim_setup(dev, &bus, "VSC9953 internal MDIO bus",
ocelot->targets[GCB],
net: dsa: seville: ignore mscc-miim read errors from Lynx PCS During the refactoring in the commit below, vsc9953_mdio_read() was replaced with mscc_miim_read(), which has one extra step: it checks for the MSCC_MIIM_DATA_ERROR bits before returning the result. On T1040RDB, there are 8 QSGMII PCSes belonging to the switch, and they are organized in 2 groups. First group responds to MDIO addresses 4-7 because QSGMIIACR1[MDEV_PORT] is 1, and the second group responds to MDIO addresses 8-11 because QSGMIIBCR1[MDEV_PORT] is 2. I have double checked that these values are correctly set in the SERDES, as well as PCCR1[QSGMA_CFG] and PCCR1[QSGMB_CFG] are both 0b01. mscc_miim_read: phyad 8 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 8 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 8 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 8 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 9 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 9 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 9 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 9 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 10 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 10 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 10 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 10 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 11 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 11 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 11 reg 0x1 MIIM_DATA 0x2d mscc_miim_read: phyad 11 reg 0x5 MIIM_DATA 0x5801 mscc_miim_read: phyad 4 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 4 reg 0x5 MIIM_DATA 0x3da01, ERROR mscc_miim_read: phyad 5 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 5 reg 0x5 MIIM_DATA 0x35801, ERROR mscc_miim_read: phyad 5 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 5 reg 0x5 MIIM_DATA 0x35801, ERROR mscc_miim_read: phyad 6 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 6 reg 0x5 MIIM_DATA 0x35801, ERROR mscc_miim_read: phyad 6 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 6 reg 0x5 MIIM_DATA 0x35801, ERROR mscc_miim_read: phyad 7 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 7 reg 0x5 MIIM_DATA 0x35801, ERROR mscc_miim_read: phyad 7 reg 0x1 MIIM_DATA 0x3002d, ERROR mscc_miim_read: phyad 7 reg 0x5 MIIM_DATA 0x35801, ERROR As can be seen, the data in MIIM_DATA is still valid despite having the MSCC_MIIM_DATA_ERROR bits set. The driver as introduced in commit 84705fc16552 ("net: dsa: felix: introduce support for Seville VSC9953 switch") was ignoring these bits, perhaps deliberately (although unbeknownst to me). This is an old IP and the hardware team cannot seem to be able to help me track down a plausible reason for these failures. I'll keep investigating, but in the meantime, this is a direct regression which must be restored to a working state. The only thing I can do is keep ignoring the errors as before. Fixes: b99658452355 ("net: dsa: ocelot: felix: utilize shared mscc-miim driver for indirect MDIO access") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-02-24 17:52:33 +02:00
ocelot->map[GCB][GCB_MIIM_MII_STATUS & REG_MASK],
true);
if (rc) {
dev_err(dev, "failed to setup MDIO bus\n");
return rc;
}
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
/* Needed in order to initialize the bus mutex lock */
net: dsa: seville: register the mdiobus under devres As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The Seville VSC9959 switch is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the seville switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The seville driver has a code structure that could accommodate both the mdiobus_unregister and mdiobus_free calls, but it has an external dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls devm_mdiobus_alloc_size() on its behalf. So rather than restructuring that, and exporting yet one more symbol mscc_miim_teardown(), let's work with devres and replace of_mdiobus_register with the devres variant. When we use all-devres, we can ensure that devres doesn't free a still-registered bus (it either runs both callbacks, or none). Fixes: ac3a68d56651 ("net: phy: don't abuse devres in devm_mdiobus_register()") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-07 18:15:51 +02:00
rc = devm_of_mdiobus_register(dev, bus, NULL);
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
if (rc < 0) {
dev_err(dev, "failed to register MDIO bus\n");
return rc;
}
felix->imdio = bus;
for (port = 0; port < felix->info->num_ports; port++) {
struct ocelot_port *ocelot_port = ocelot->ports[port];
struct phylink_pcs *phylink_pcs;
int addr = port + 4;
if (dsa_is_unused_port(felix->ds, port))
continue;
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
if (ocelot_port->phy_mode == PHY_INTERFACE_MODE_INTERNAL)
continue;
phylink_pcs = lynx_pcs_create_mdiodev(felix->imdio, addr);
if (IS_ERR(phylink_pcs))
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
continue;
felix->pcs[port] = phylink_pcs;
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
dev_info(dev, "Found PCS at internal MDIO address %d\n", addr);
}
return 0;
}
static void vsc9953_mdio_bus_free(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
int port;
for (port = 0; port < ocelot->num_phys_ports; port++) {
struct phylink_pcs *phylink_pcs = felix->pcs[port];
if (phylink_pcs)
lynx_pcs_destroy(phylink_pcs);
}
net: dsa: seville: register the mdiobus under devres As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The Seville VSC9959 switch is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the seville switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The seville driver has a code structure that could accommodate both the mdiobus_unregister and mdiobus_free calls, but it has an external dependency upon mscc_miim_setup() from mdio-mscc-miim.c, which calls devm_mdiobus_alloc_size() on its behalf. So rather than restructuring that, and exporting yet one more symbol mscc_miim_teardown(), let's work with devres and replace of_mdiobus_register with the devres variant. When we use all-devres, we can ensure that devres doesn't free a still-registered bus (it either runs both callbacks, or none). Fixes: ac3a68d56651 ("net: phy: don't abuse devres in devm_mdiobus_register()") Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-02-07 18:15:51 +02:00
/* mdiobus_unregister and mdiobus_free handled by devres */
}
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static const struct felix_info seville_info_vsc9953 = {
net: dsa: felix: update regmap requests to be string-based Existing felix DSA drivers (vsc9959, vsc9953) are all switches that were integrated in NXP SoCs, which makes them a bit unusual compared to the usual Microchip branded Ocelot switches. To be precise, looking at Documentation/devicetree/bindings/net/mscc,vsc7514-switch.yaml, one can see 21 memory regions for the "switch" node, and these correspond to the "targets" of the switch IP, which are spread throughout the guts of that SoC's memory space. In NXP integrations, those targets still exist, but they were condensed within a single memory region, with no other peripheral in between them, so it made more sense for the driver to ioremap the entire memory space of the switch, and then find the targets within that memory space via some offsets hardcoded in the driver. The effect of this design decision is that now, the felix driver expects hardware instantiations to provide their own resource definitions, which is kind of odd when considering a typical device (those are retrieved from 'reg' properties in the device tree, using platform_get_resource() or similar). Allow other hardware instantiations that share the felix driver to not provide a hardcoded array of resources in the future. Instead, make the common denominator based on which regmaps are created be just the resource "names". Each instantiation comes with its own array of names that are mandatory for it, and with an optional array of resources. So we split the resources in 2 arrays, one is what's requested and the other is what's provided. There is one pool of provided resources, in felix->info->resources (of length felix->info->num_resources). There are 2 different ways of requesting a resource. One is by enum ocelot_target (this handles the global regmaps), and one is by int port (this handles the per-port ones). For the existing vsc9959 and vsc9953, it would be a bit stupid to request something that's not provided, given that the 2 arrays are both defined in the same place. The advantage is that we can now modify felix_request_regmap_by_name() to make felix->info->resources[] optional, and if absent, the implementation can call dev_get_regmap() and this is something that is compatible with MFD. Co-developed-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Colin Foster <colin.foster@in-advantage.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-27 22:15:20 +03:00
.resources = vsc9953_resources,
.num_resources = ARRAY_SIZE(vsc9953_resources),
.resource_names = vsc9953_resource_names,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.regfields = vsc9953_regfields,
.map = vsc9953_regmap,
.ops = &vsc9953_ops,
.vcap = vsc9953_vcap_props,
.vcap_pol_base = VSC9953_VCAP_POLICER_BASE,
.vcap_pol_max = VSC9953_VCAP_POLICER_MAX,
.vcap_pol_base2 = VSC9953_VCAP_POLICER_BASE2,
.vcap_pol_max2 = VSC9953_VCAP_POLICER_MAX2,
.quirks = FELIX_MAC_QUIRKS,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.num_mact_rows = 2048,
.num_ports = VSC9953_NUM_PORTS,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.mdio_bus_alloc = vsc9953_mdio_bus_alloc,
.mdio_bus_free = vsc9953_mdio_bus_free,
.port_modes = vsc9953_port_modes,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
};
static int seville_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "Invalid resource\n");
return -EINVAL;
}
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
return felix_register_switch(dev, res->start, 1, false, false,
DSA_TAG_PROTO_SEVILLE,
&seville_info_vsc9953);
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
}
static void seville_remove(struct platform_device *pdev)
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
{
net: dsa: be compatible with masters which unregister on shutdown Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17 16:34:33 +03:00
struct felix *felix = platform_get_drvdata(pdev);
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
net: dsa: be compatible with masters which unregister on shutdown Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17 16:34:33 +03:00
if (!felix)
return;
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
dsa_unregister_switch(felix->ds);
}
net: dsa: be compatible with masters which unregister on shutdown Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17 16:34:33 +03:00
static void seville_shutdown(struct platform_device *pdev)
{
struct felix *felix = platform_get_drvdata(pdev);
if (!felix)
return;
dsa_switch_shutdown(felix->ds);
platform_set_drvdata(pdev, NULL);
}
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
static const struct of_device_id seville_of_match[] = {
{ .compatible = "mscc,vsc9953-switch" },
{ },
};
MODULE_DEVICE_TABLE(of, seville_of_match);
static struct platform_driver seville_vsc9953_driver = {
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.probe = seville_probe,
.remove = seville_remove,
net: dsa: be compatible with masters which unregister on shutdown Lino reports that on his system with bcmgenet as DSA master and KSZ9897 as a switch, rebooting or shutting down never works properly. What does the bcmgenet driver have special to trigger this, that other DSA masters do not? It has an implementation of ->shutdown which simply calls its ->remove implementation. Otherwise said, it unregisters its network interface on shutdown. This message can be seen in a loop, and it hangs the reboot process there: unregister_netdevice: waiting for eth0 to become free. Usage count = 3 So why 3? A usage count of 1 is normal for a registered network interface, and any virtual interface which links itself as an upper of that will increment it via dev_hold. In the case of DSA, this is the call path: dsa_slave_create -> netdev_upper_dev_link -> __netdev_upper_dev_link -> __netdev_adjacent_dev_insert -> dev_hold So a DSA switch with 3 interfaces will result in a usage count elevated by two, and netdev_wait_allrefs will wait until they have gone away. Other stacked interfaces, like VLAN, watch NETDEV_UNREGISTER events and delete themselves, but DSA cannot just vanish and go poof, at most it can unbind itself from the switch devices, but that must happen strictly earlier compared to when the DSA master unregisters its net_device, so reacting on the NETDEV_UNREGISTER event is way too late. It seems that it is a pretty established pattern to have a driver's ->shutdown hook redirect to its ->remove hook, so the same code is executed regardless of whether the driver is unbound from the device, or the system is just shutting down. As Florian puts it, it is quite a big hammer for bcmgenet to unregister its net_device during shutdown, but having a common code path with the driver unbind helps ensure it is well tested. So DSA, for better or for worse, has to live with that and engage in an arms race of implementing the ->shutdown hook too, from all individual drivers, and do something sane when paired with masters that unregister their net_device there. The only sane thing to do, of course, is to unlink from the master. However, complications arise really quickly. The pattern of redirecting ->shutdown to ->remove is not unique to bcmgenet or even to net_device drivers. In fact, SPI controllers do it too (see dspi_shutdown -> dspi_remove), and presumably, I2C controllers and MDIO controllers do it too (this is something I have not researched too deeply, but even if this is not the case today, it is certainly plausible to happen in the future, and must be taken into consideration). Since DSA switches might be SPI devices, I2C devices, MDIO devices, the insane implication is that for the exact same DSA switch device, we might have both ->shutdown and ->remove getting called. So we need to do something with that insane environment. The pattern I've come up with is "if this, then not that", so if either ->shutdown or ->remove gets called, we set the device's drvdata to NULL, and in the other hook, we check whether the drvdata is NULL and just do nothing. This is probably not necessary for platform devices, just for devices on buses, but I would really insist for consistency among drivers, because when code is copy-pasted, it is not always copy-pasted from the best sources. So depending on whether the DSA switch's ->remove or ->shutdown will get called first, we cannot really guarantee even for the same driver if rebooting will result in the same code path on all platforms. But nonetheless, we need to do something minimally reasonable on ->shutdown too to fix the bug. Of course, the ->remove will do more (a full teardown of the tree, with all data structures freed, and this is why the bug was not caught for so long). The new ->shutdown method is kept separate from dsa_unregister_switch not because we couldn't have unregistered the switch, but simply in the interest of doing something quick and to the point. The big question is: does the DSA switch's ->shutdown get called earlier than the DSA master's ->shutdown? If not, there is still a risk that we might still trigger the WARN_ON in unregister_netdevice that says we are attempting to unregister a net_device which has uppers. That's no good. Although the reference to the master net_device won't physically go away even if DSA's ->shutdown comes afterwards, remember we have a dev_hold on it. The answer to that question lies in this comment above device_link_add: * A side effect of the link creation is re-ordering of dpm_list and the * devices_kset list by moving the consumer device and all devices depending * on it to the ends of these lists (that does not happen to devices that have * not been registered when this function is called). so the fact that DSA uses device_link_add towards its master is not exactly for nothing. device_shutdown() walks devices_kset from the back, so this is our guarantee that DSA's shutdown happens before the master's shutdown. Fixes: 2f1e8ea726e9 ("net: dsa: link interfaces with the DSA master to get rid of lockdep warnings") Link: https://lore.kernel.org/netdev/20210909095324.12978-1-LinoSanfilippo@gmx.de/ Reported-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-17 16:34:33 +03:00
.shutdown = seville_shutdown,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
.driver = {
.name = "mscc_seville",
.of_match_table = seville_of_match,
net: dsa: felix: introduce support for Seville VSC9953 switch This is another switch from Vitesse / Microsemi / Microchip, that has 10 ports (8 external, 2 internal) and is integrated into the Freescale / NXP T1040 PowerPC SoC. It is very similar to Felix from NXP LS1028A, except that this is a platform device and Felix is a PCI device, and it doesn't support IEEE 1588 and TSN. Like Felix, this driver configures its own PCS on the internal MDIO bus using a phy_device abstraction for it (yes, it will be refactored to use a raw mdio_device, like other phylink drivers do, but let's keep it like that for now). But unlike Felix, the MDIO bus and the PCS are not from the same vendor. The PCS is the same QorIQ/Layerscape PCS as found in Felix/ENETC/DPAA*, but the internal MDIO bus that is used to access it is actually an instantiation of drivers/net/phy/mdio-mscc-miim.c. But it would be difficult to reuse that driver (it doesn't even use regmap, and it's less than 200 lines of code), so we hand-roll here some internal MDIO bus accessors within seville_vsc9953.c, which serves the purpose of driving the PCS absolutely fine. Also, same as Felix, the PCS doesn't support dynamic reconfiguration of SerDes protocol, so we need to do pre-validation of PHY mode from device tree and not let phylink change it. Signed-off-by: Maxim Kochetkov <fido_max@inbox.ru> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-13 19:57:10 +03:00
},
};
module_platform_driver(seville_vsc9953_driver);
MODULE_DESCRIPTION("Seville Switch driver");
MODULE_LICENSE("GPL v2");