linux/drivers/mtd/nand/qpic_common.c

782 lines
22 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
* Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/qcom_adm.h>
#include <linux/dma/qcom_bam_dma.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mtd/nand-qpic-common.h>
/**
* qcom_free_bam_transaction() - Frees the BAM transaction memory
* @nandc: qpic nand controller
*
* This function frees the bam transaction memory
*/
void qcom_free_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn = nandc->bam_txn;
kfree(bam_txn);
}
EXPORT_SYMBOL(qcom_free_bam_transaction);
/**
* qcom_alloc_bam_transaction() - allocate BAM transaction
* @nandc: qpic nand controller
*
* This function will allocate and initialize the BAM transaction structure
*/
struct bam_transaction *
qcom_alloc_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn;
size_t bam_txn_size;
unsigned int num_cw = nandc->max_cwperpage;
void *bam_txn_buf;
bam_txn_size =
sizeof(*bam_txn) + num_cw *
((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
bam_txn_buf = kzalloc(bam_txn_size, GFP_KERNEL);
if (!bam_txn_buf)
return NULL;
bam_txn = bam_txn_buf;
bam_txn_buf += sizeof(*bam_txn);
bam_txn->bam_ce = bam_txn_buf;
bam_txn->bam_ce_nitems = QPIC_PER_CW_CMD_ELEMENTS * num_cw;
bam_txn_buf += sizeof(*bam_txn->bam_ce) * bam_txn->bam_ce_nitems;
bam_txn->cmd_sgl = bam_txn_buf;
bam_txn->cmd_sgl_nitems = QPIC_PER_CW_CMD_SGL * num_cw;
bam_txn_buf += sizeof(*bam_txn->cmd_sgl) * bam_txn->cmd_sgl_nitems;
bam_txn->data_sgl = bam_txn_buf;
bam_txn->data_sgl_nitems = QPIC_PER_CW_DATA_SGL * num_cw;
init_completion(&bam_txn->txn_done);
return bam_txn;
}
EXPORT_SYMBOL(qcom_alloc_bam_transaction);
/**
* qcom_clear_bam_transaction() - Clears the BAM transaction
* @nandc: qpic nand controller
*
* This function will clear the BAM transaction indexes.
*/
void qcom_clear_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn = nandc->bam_txn;
if (!nandc->props->supports_bam)
return;
memset(&bam_txn->bam_positions, 0, sizeof(bam_txn->bam_positions));
bam_txn->last_data_desc = NULL;
sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
QPIC_PER_CW_CMD_SGL);
sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
QPIC_PER_CW_DATA_SGL);
reinit_completion(&bam_txn->txn_done);
}
EXPORT_SYMBOL(qcom_clear_bam_transaction);
/**
* qcom_qpic_bam_dma_done() - Callback for DMA descriptor completion
* @data: data pointer
*
* This function is a callback for DMA descriptor completion
*/
void qcom_qpic_bam_dma_done(void *data)
{
struct bam_transaction *bam_txn = data;
complete(&bam_txn->txn_done);
}
EXPORT_SYMBOL(qcom_qpic_bam_dma_done);
/**
* qcom_nandc_dev_to_mem() - Check for dma sync for cpu or device
* @nandc: qpic nand controller
* @is_cpu: cpu or Device
*
* This function will check for dma sync for cpu or device
*/
inline void qcom_nandc_dev_to_mem(struct qcom_nand_controller *nandc, bool is_cpu)
{
if (!nandc->props->supports_bam)
return;
if (is_cpu)
dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
else
dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
}
EXPORT_SYMBOL(qcom_nandc_dev_to_mem);
/**
* qcom_prepare_bam_async_desc() - Prepare DMA descriptor
* @nandc: qpic nand controller
* @chan: dma channel
* @flags: flags to control DMA descriptor preparation
*
* This function maps the scatter gather list for DMA transfer and forms the
* DMA descriptor for BAM.This descriptor will be added in the NAND DMA
* descriptor queue which will be submitted to DMA engine.
*/
int qcom_prepare_bam_async_desc(struct qcom_nand_controller *nandc,
struct dma_chan *chan, unsigned long flags)
{
struct desc_info *desc;
struct scatterlist *sgl;
unsigned int sgl_cnt;
int ret;
struct bam_transaction *bam_txn = nandc->bam_txn;
enum dma_transfer_direction dir_eng;
struct dma_async_tx_descriptor *dma_desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
if (chan == nandc->cmd_chan) {
sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
} else if (chan == nandc->tx_chan) {
sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
} else {
sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
dir_eng = DMA_DEV_TO_MEM;
desc->dir = DMA_FROM_DEVICE;
}
sg_mark_end(sgl + sgl_cnt - 1);
ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
if (ret == 0) {
dev_err(nandc->dev, "failure in mapping desc\n");
kfree(desc);
return -ENOMEM;
}
desc->sgl_cnt = sgl_cnt;
desc->bam_sgl = sgl;
dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
flags);
if (!dma_desc) {
dev_err(nandc->dev, "failure in prep desc\n");
dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
kfree(desc);
return -EINVAL;
}
desc->dma_desc = dma_desc;
/* update last data/command descriptor */
if (chan == nandc->cmd_chan)
bam_txn->last_cmd_desc = dma_desc;
else
bam_txn->last_data_desc = dma_desc;
list_add_tail(&desc->node, &nandc->desc_list);
return 0;
}
EXPORT_SYMBOL(qcom_prepare_bam_async_desc);
/**
* qcom_prep_bam_dma_desc_cmd() - Prepares the command descriptor for BAM DMA
* @nandc: qpic nand controller
* @read: read or write type
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to write to
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares the command descriptor for BAM DMA
* which will be used for NAND register reads and writes.
*/
int qcom_prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
int reg_off, const void *vaddr,
int size, unsigned int flags)
{
int bam_ce_size;
int i, ret;
struct bam_cmd_element *bam_ce_buffer;
struct bam_transaction *bam_txn = nandc->bam_txn;
u32 offset;
if (bam_txn->bam_ce_pos + size > bam_txn->bam_ce_nitems) {
dev_err(nandc->dev, "BAM %s array is full\n", "CE");
return -EINVAL;
}
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
/* fill the command desc */
for (i = 0; i < size; i++) {
offset = nandc->props->bam_offset + reg_off + 4 * i;
if (read)
bam_prep_ce(&bam_ce_buffer[i],
offset, BAM_READ_COMMAND,
reg_buf_dma_addr(nandc,
(__le32 *)vaddr + i));
else
bam_prep_ce_le32(&bam_ce_buffer[i],
offset, BAM_WRITE_COMMAND,
*((__le32 *)vaddr + i));
}
bam_txn->bam_ce_pos += size;
/* use the separate sgl after this command */
if (flags & NAND_BAM_NEXT_SGL) {
if (bam_txn->cmd_sgl_pos >= bam_txn->cmd_sgl_nitems) {
dev_err(nandc->dev, "BAM %s array is full\n",
"CMD sgl");
return -EINVAL;
}
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
bam_ce_size = (bam_txn->bam_ce_pos -
bam_txn->bam_ce_start) *
sizeof(struct bam_cmd_element);
sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
bam_ce_buffer, bam_ce_size);
bam_txn->cmd_sgl_pos++;
bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
if (flags & NAND_BAM_NWD) {
ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan,
DMA_PREP_FENCE | DMA_PREP_CMD);
if (ret)
return ret;
}
}
return 0;
}
EXPORT_SYMBOL(qcom_prep_bam_dma_desc_cmd);
/**
* qcom_prep_bam_dma_desc_data() - Prepares the data descriptor for BAM DMA
* @nandc: qpic nand controller
* @read: read or write type
* @vaddr: virtual address of the buffer we want to write to
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares the data descriptor for BAM DMA which
* will be used for NAND data reads and writes.
*/
int qcom_prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
const void *vaddr, int size, unsigned int flags)
{
int ret;
struct bam_transaction *bam_txn = nandc->bam_txn;
if (read) {
if (bam_txn->rx_sgl_pos >= bam_txn->data_sgl_nitems) {
dev_err(nandc->dev, "BAM %s array is full\n", "RX sgl");
return -EINVAL;
}
sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
vaddr, size);
bam_txn->rx_sgl_pos++;
} else {
if (bam_txn->tx_sgl_pos >= bam_txn->data_sgl_nitems) {
dev_err(nandc->dev, "BAM %s array is full\n", "TX sgl");
return -EINVAL;
}
sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
vaddr, size);
bam_txn->tx_sgl_pos++;
/*
* BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
* is not set, form the DMA descriptor
*/
if (!(flags & NAND_BAM_NO_EOT)) {
ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan,
DMA_PREP_INTERRUPT);
if (ret)
return ret;
}
}
return 0;
}
EXPORT_SYMBOL(qcom_prep_bam_dma_desc_data);
/**
* qcom_prep_adm_dma_desc() - Prepare descriptor for adma
* @nandc: qpic nand controller
* @read: read or write type
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to write to
* @size: adm dma transaction size in bytes
* @flow_control: flow controller
*
* This function will prepare descriptor for adma
*/
int qcom_prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
int reg_off, const void *vaddr, int size,
bool flow_control)
{
struct qcom_adm_peripheral_config periph_conf = {};
struct dma_async_tx_descriptor *dma_desc;
struct dma_slave_config slave_conf = {0};
enum dma_transfer_direction dir_eng;
struct desc_info *desc;
struct scatterlist *sgl;
int ret;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
sgl = &desc->adm_sgl;
sg_init_one(sgl, vaddr, size);
if (read) {
dir_eng = DMA_DEV_TO_MEM;
desc->dir = DMA_FROM_DEVICE;
} else {
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
}
ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
if (!ret) {
ret = -ENOMEM;
goto err;
}
slave_conf.device_fc = flow_control;
if (read) {
slave_conf.src_maxburst = 16;
slave_conf.src_addr = nandc->base_dma + reg_off;
if (nandc->data_crci) {
periph_conf.crci = nandc->data_crci;
slave_conf.peripheral_config = &periph_conf;
slave_conf.peripheral_size = sizeof(periph_conf);
}
} else {
slave_conf.dst_maxburst = 16;
slave_conf.dst_addr = nandc->base_dma + reg_off;
if (nandc->cmd_crci) {
periph_conf.crci = nandc->cmd_crci;
slave_conf.peripheral_config = &periph_conf;
slave_conf.peripheral_size = sizeof(periph_conf);
}
}
ret = dmaengine_slave_config(nandc->chan, &slave_conf);
if (ret) {
dev_err(nandc->dev, "failed to configure dma channel\n");
goto err;
}
dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
if (!dma_desc) {
dev_err(nandc->dev, "failed to prepare desc\n");
ret = -EINVAL;
goto err;
}
desc->dma_desc = dma_desc;
list_add_tail(&desc->node, &nandc->desc_list);
return 0;
err:
kfree(desc);
return ret;
}
EXPORT_SYMBOL(qcom_prep_adm_dma_desc);
/**
* qcom_read_reg_dma() - read a given number of registers to the reg_read_buf pointer
* @nandc: qpic nand controller
* @first: offset of the first register in the contiguous block
* @num_regs: number of registers to read
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares a descriptor to read a given number of
* contiguous registers to the reg_read_buf pointer.
*/
int qcom_read_reg_dma(struct qcom_nand_controller *nandc, int first,
int num_regs, unsigned int flags)
{
bool flow_control = false;
void *vaddr;
vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
nandc->reg_read_pos += num_regs;
if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
first = dev_cmd_reg_addr(nandc, first);
if (nandc->props->supports_bam)
return qcom_prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
num_regs, flags);
if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
flow_control = true;
return qcom_prep_adm_dma_desc(nandc, true, first, vaddr,
num_regs * sizeof(u32), flow_control);
}
EXPORT_SYMBOL(qcom_read_reg_dma);
/**
* qcom_write_reg_dma() - write a given number of registers
* @nandc: qpic nand controller
* @vaddr: contiguous memory from where register value will
* be written
* @first: offset of the first register in the contiguous block
* @num_regs: number of registers to write
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares a descriptor to write a given number of
* contiguous registers
*/
int qcom_write_reg_dma(struct qcom_nand_controller *nandc, __le32 *vaddr,
int first, int num_regs, unsigned int flags)
{
bool flow_control = false;
if (first == NAND_EXEC_CMD)
flags |= NAND_BAM_NWD;
if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
if (nandc->props->supports_bam)
return qcom_prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
num_regs, flags);
if (first == NAND_FLASH_CMD)
flow_control = true;
return qcom_prep_adm_dma_desc(nandc, false, first, vaddr,
num_regs * sizeof(u32), flow_control);
}
EXPORT_SYMBOL(qcom_write_reg_dma);
/**
* qcom_read_data_dma() - transfer data
* @nandc: qpic nand controller
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to write to
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares a DMA descriptor to transfer data from the
* controller's internal buffer to the buffer 'vaddr'
*/
int qcom_read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
const u8 *vaddr, int size, unsigned int flags)
{
if (nandc->props->supports_bam)
return qcom_prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
return qcom_prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
}
EXPORT_SYMBOL(qcom_read_data_dma);
/**
* qcom_write_data_dma() - transfer data
* @nandc: qpic nand controller
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to read from
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*
* This function will prepares a DMA descriptor to transfer data from
* 'vaddr' to the controller's internal buffer
*/
int qcom_write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
const u8 *vaddr, int size, unsigned int flags)
{
if (nandc->props->supports_bam)
return qcom_prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
return qcom_prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
}
EXPORT_SYMBOL(qcom_write_data_dma);
/**
* qcom_submit_descs() - submit dma descriptor
* @nandc: qpic nand controller
*
* This function will submit all the prepared dma descriptor
* cmd or data descriptor
*/
int qcom_submit_descs(struct qcom_nand_controller *nandc)
{
struct desc_info *desc, *n;
dma_cookie_t cookie = 0;
struct bam_transaction *bam_txn = nandc->bam_txn;
int ret = 0;
if (nandc->props->supports_bam) {
if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
ret = qcom_prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
if (ret)
goto err_unmap_free_desc;
}
if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
ret = qcom_prepare_bam_async_desc(nandc, nandc->tx_chan,
DMA_PREP_INTERRUPT);
if (ret)
goto err_unmap_free_desc;
}
if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
ret = qcom_prepare_bam_async_desc(nandc, nandc->cmd_chan,
DMA_PREP_CMD);
if (ret)
goto err_unmap_free_desc;
}
}
list_for_each_entry(desc, &nandc->desc_list, node)
cookie = dmaengine_submit(desc->dma_desc);
if (nandc->props->supports_bam) {
bam_txn->last_cmd_desc->callback = qcom_qpic_bam_dma_done;
bam_txn->last_cmd_desc->callback_param = bam_txn;
dma_async_issue_pending(nandc->tx_chan);
dma_async_issue_pending(nandc->rx_chan);
dma_async_issue_pending(nandc->cmd_chan);
if (!wait_for_completion_timeout(&bam_txn->txn_done,
QPIC_NAND_COMPLETION_TIMEOUT))
ret = -ETIMEDOUT;
} else {
if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
ret = -ETIMEDOUT;
}
err_unmap_free_desc:
/*
* Unmap the dma sg_list and free the desc allocated by both
* qcom_prepare_bam_async_desc() and qcom_prep_adm_dma_desc() functions.
*/
list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
list_del(&desc->node);
if (nandc->props->supports_bam)
dma_unmap_sg(nandc->dev, desc->bam_sgl,
desc->sgl_cnt, desc->dir);
else
dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
desc->dir);
kfree(desc);
}
return ret;
}
EXPORT_SYMBOL(qcom_submit_descs);
/**
* qcom_clear_read_regs() - reset the read register buffer
* @nandc: qpic nand controller
*
* This function reset the register read buffer for next NAND operation
*/
void qcom_clear_read_regs(struct qcom_nand_controller *nandc)
{
nandc->reg_read_pos = 0;
qcom_nandc_dev_to_mem(nandc, false);
}
EXPORT_SYMBOL(qcom_clear_read_regs);
/**
* qcom_nandc_unalloc() - unallocate qpic nand controller
* @nandc: qpic nand controller
*
* This function will unallocate memory alloacted for qpic nand controller
*/
void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
{
if (nandc->props->supports_bam) {
if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
dma_unmap_single(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (nandc->tx_chan)
dma_release_channel(nandc->tx_chan);
if (nandc->rx_chan)
dma_release_channel(nandc->rx_chan);
if (nandc->cmd_chan)
dma_release_channel(nandc->cmd_chan);
} else {
if (nandc->chan)
dma_release_channel(nandc->chan);
}
}
EXPORT_SYMBOL(qcom_nandc_unalloc);
/**
* qcom_nandc_alloc() - Allocate qpic nand controller
* @nandc: qpic nand controller
*
* This function will allocate memory for qpic nand controller
*/
int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
{
int ret;
ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(nandc->dev, "failed to set DMA mask\n");
return ret;
}
/*
* we use the internal buffer for reading ONFI params, reading small
* data like ID and status, and preforming read-copy-write operations
* when writing to a codeword partially. 532 is the maximum possible
* size of a codeword for our nand controller
*/
nandc->buf_size = 532;
nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
if (!nandc->data_buffer)
return -ENOMEM;
nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
if (!nandc->regs)
return -ENOMEM;
nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
sizeof(*nandc->reg_read_buf),
GFP_KERNEL);
if (!nandc->reg_read_buf)
return -ENOMEM;
if (nandc->props->supports_bam) {
nandc->reg_read_dma =
dma_map_single(nandc->dev, nandc->reg_read_buf,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
return -EIO;
}
nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
if (IS_ERR(nandc->tx_chan)) {
ret = PTR_ERR(nandc->tx_chan);
nandc->tx_chan = NULL;
dev_err_probe(nandc->dev, ret,
"tx DMA channel request failed\n");
goto unalloc;
}
nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
if (IS_ERR(nandc->rx_chan)) {
ret = PTR_ERR(nandc->rx_chan);
nandc->rx_chan = NULL;
dev_err_probe(nandc->dev, ret,
"rx DMA channel request failed\n");
goto unalloc;
}
nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
if (IS_ERR(nandc->cmd_chan)) {
ret = PTR_ERR(nandc->cmd_chan);
nandc->cmd_chan = NULL;
dev_err_probe(nandc->dev, ret,
"cmd DMA channel request failed\n");
goto unalloc;
}
/*
* Initially allocate BAM transaction to read ONFI param page.
* After detecting all the devices, this BAM transaction will
* be freed and the next BAM transaction will be allocated with
* maximum codeword size
*/
nandc->max_cwperpage = 1;
nandc->bam_txn = qcom_alloc_bam_transaction(nandc);
if (!nandc->bam_txn) {
dev_err(nandc->dev,
"failed to allocate bam transaction\n");
ret = -ENOMEM;
goto unalloc;
}
} else {
nandc->chan = dma_request_chan(nandc->dev, "rxtx");
if (IS_ERR(nandc->chan)) {
ret = PTR_ERR(nandc->chan);
nandc->chan = NULL;
dev_err_probe(nandc->dev, ret,
"rxtx DMA channel request failed\n");
return ret;
}
}
INIT_LIST_HEAD(&nandc->desc_list);
INIT_LIST_HEAD(&nandc->host_list);
return 0;
unalloc:
qcom_nandc_unalloc(nandc);
return ret;
}
EXPORT_SYMBOL(qcom_nandc_alloc);
MODULE_DESCRIPTION("QPIC controller common api");
MODULE_LICENSE("GPL");