linux/drivers/media/platform/amphion/vpu_helpers.c

635 lines
15 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2020-2021 NXP
*/
#include <linux/init.h>
#include <linux/interconnect.h>
#include <linux/ioctl.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "vpu.h"
#include "vpu_defs.h"
#include "vpu_core.h"
#include "vpu_rpc.h"
#include "vpu_helpers.h"
int vpu_helper_find_in_array_u8(const u8 *array, u32 size, u32 x)
{
int i;
for (i = 0; i < size; i++) {
if (array[i] == x)
return i;
}
return 0;
}
bool vpu_helper_check_type(struct vpu_inst *inst, u32 type)
{
const struct vpu_format *pfmt;
for (pfmt = inst->formats; pfmt->pixfmt; pfmt++) {
if (!vpu_iface_check_format(inst, pfmt->pixfmt))
continue;
if (pfmt->type == type)
return true;
}
return false;
}
const struct vpu_format *vpu_helper_find_format(struct vpu_inst *inst, u32 type, u32 pixelfmt)
{
const struct vpu_format *pfmt;
if (!inst || !inst->formats)
return NULL;
if (!vpu_iface_check_format(inst, pixelfmt))
return NULL;
for (pfmt = inst->formats; pfmt->pixfmt; pfmt++) {
if (pfmt->pixfmt == pixelfmt && (!type || type == pfmt->type))
return pfmt;
}
return NULL;
}
const struct vpu_format *vpu_helper_find_sibling(struct vpu_inst *inst, u32 type, u32 pixelfmt)
{
const struct vpu_format *fmt;
const struct vpu_format *sibling;
fmt = vpu_helper_find_format(inst, type, pixelfmt);
if (!fmt || !fmt->sibling)
return NULL;
sibling = vpu_helper_find_format(inst, type, fmt->sibling);
if (!sibling || sibling->sibling != fmt->pixfmt ||
sibling->comp_planes != fmt->comp_planes)
return NULL;
return sibling;
}
bool vpu_helper_match_format(struct vpu_inst *inst, u32 type, u32 fmta, u32 fmtb)
{
const struct vpu_format *sibling;
if (fmta == fmtb)
return true;
sibling = vpu_helper_find_sibling(inst, type, fmta);
if (sibling && sibling->pixfmt == fmtb)
return true;
return false;
}
const struct vpu_format *vpu_helper_enum_format(struct vpu_inst *inst, u32 type, int index)
{
const struct vpu_format *pfmt;
int i = 0;
if (!inst || !inst->formats)
return NULL;
for (pfmt = inst->formats; pfmt->pixfmt; pfmt++) {
if (!vpu_iface_check_format(inst, pfmt->pixfmt))
continue;
if (pfmt->type == type) {
if (index == i)
return pfmt;
i++;
}
}
return NULL;
}
u32 vpu_helper_valid_frame_width(struct vpu_inst *inst, u32 width)
{
const struct vpu_core_resources *res;
if (!inst)
return width;
res = vpu_get_resource(inst);
if (!res)
return width;
if (res->max_width)
width = clamp(width, res->min_width, res->max_width);
if (res->step_width)
width = ALIGN(width, res->step_width);
return width;
}
u32 vpu_helper_valid_frame_height(struct vpu_inst *inst, u32 height)
{
const struct vpu_core_resources *res;
if (!inst)
return height;
res = vpu_get_resource(inst);
if (!res)
return height;
if (res->max_height)
height = clamp(height, res->min_height, res->max_height);
if (res->step_height)
height = ALIGN(height, res->step_height);
return height;
}
static u32 get_nv12_plane_size(u32 width, u32 height, int plane_no,
u32 stride, u32 interlaced, u32 *pbl)
{
u32 bytesperline;
u32 size = 0;
bytesperline = width;
if (pbl)
bytesperline = max(bytesperline, *pbl);
bytesperline = ALIGN(bytesperline, stride);
height = ALIGN(height, 2);
if (plane_no == 0)
size = bytesperline * height;
else if (plane_no == 1)
size = bytesperline * height >> 1;
if (pbl)
*pbl = bytesperline;
return size;
}
static u32 get_tiled_8l128_plane_size(u32 fmt, u32 width, u32 height, int plane_no,
u32 stride, u32 interlaced, u32 *pbl)
{
u32 ws = 3;
u32 hs = 7;
u32 bitdepth = 8;
u32 bytesperline;
u32 size = 0;
if (interlaced)
hs++;
if (fmt == V4L2_PIX_FMT_NV12M_10BE_8L128 || fmt == V4L2_PIX_FMT_NV12_10BE_8L128)
bitdepth = 10;
bytesperline = DIV_ROUND_UP(width * bitdepth, BITS_PER_BYTE);
if (pbl)
bytesperline = max(bytesperline, *pbl);
bytesperline = ALIGN(bytesperline, 1 << ws);
bytesperline = ALIGN(bytesperline, stride);
height = ALIGN(height, 1 << hs);
if (plane_no == 0)
size = bytesperline * height;
else if (plane_no == 1)
size = (bytesperline * ALIGN(height, 1 << (hs + 1))) >> 1;
if (pbl)
*pbl = bytesperline;
return size;
}
static u32 get_default_plane_size(u32 width, u32 height, int plane_no,
u32 stride, u32 interlaced, u32 *pbl)
{
u32 bytesperline;
u32 size = 0;
bytesperline = width;
if (pbl)
bytesperline = max(bytesperline, *pbl);
bytesperline = ALIGN(bytesperline, stride);
if (plane_no == 0)
size = bytesperline * height;
if (pbl)
*pbl = bytesperline;
return size;
}
u32 vpu_helper_get_plane_size(u32 fmt, u32 w, u32 h, int plane_no,
u32 stride, u32 interlaced, u32 *pbl)
{
switch (fmt) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV12M:
return get_nv12_plane_size(w, h, plane_no, stride, interlaced, pbl);
case V4L2_PIX_FMT_NV12_8L128:
case V4L2_PIX_FMT_NV12M_8L128:
case V4L2_PIX_FMT_NV12_10BE_8L128:
case V4L2_PIX_FMT_NV12M_10BE_8L128:
return get_tiled_8l128_plane_size(fmt, w, h, plane_no, stride, interlaced, pbl);
default:
return get_default_plane_size(w, h, plane_no, stride, interlaced, pbl);
}
}
int vpu_helper_copy_from_stream_buffer(struct vpu_buffer *stream_buffer,
u32 *rptr, u32 size, void *dst)
{
u32 offset;
u32 start;
u32 end;
void *virt;
if (!stream_buffer || !rptr || !dst)
return -EINVAL;
if (!size)
return 0;
offset = *rptr;
start = stream_buffer->phys;
end = start + stream_buffer->length;
virt = stream_buffer->virt;
if (offset < start || offset > end)
return -EINVAL;
if (offset + size <= end) {
memcpy(dst, virt + (offset - start), size);
} else {
memcpy(dst, virt + (offset - start), end - offset);
memcpy(dst + end - offset, virt, size + offset - end);
}
*rptr = vpu_helper_step_walk(stream_buffer, offset, size);
return 0;
}
int vpu_helper_copy_to_stream_buffer(struct vpu_buffer *stream_buffer,
u32 *wptr, u32 size, void *src)
{
u32 offset;
u32 start;
u32 end;
void *virt;
if (!stream_buffer || !wptr || !src)
return -EINVAL;
if (!size)
return 0;
offset = *wptr;
start = stream_buffer->phys;
end = start + stream_buffer->length;
virt = stream_buffer->virt;
if (offset < start || offset > end)
return -EINVAL;
if (offset + size <= end) {
memcpy(virt + (offset - start), src, size);
} else {
memcpy(virt + (offset - start), src, end - offset);
memcpy(virt, src + end - offset, size + offset - end);
}
*wptr = vpu_helper_step_walk(stream_buffer, offset, size);
return 0;
}
int vpu_helper_memset_stream_buffer(struct vpu_buffer *stream_buffer,
u32 *wptr, u8 val, u32 size)
{
u32 offset;
u32 start;
u32 end;
void *virt;
if (!stream_buffer || !wptr)
return -EINVAL;
if (!size)
return 0;
offset = *wptr;
start = stream_buffer->phys;
end = start + stream_buffer->length;
virt = stream_buffer->virt;
if (offset < start || offset > end)
return -EINVAL;
if (offset + size <= end) {
memset(virt + (offset - start), val, size);
} else {
memset(virt + (offset - start), val, end - offset);
memset(virt, val, size + offset - end);
}
offset += size;
if (offset >= end)
offset -= stream_buffer->length;
*wptr = offset;
return 0;
}
u32 vpu_helper_get_free_space(struct vpu_inst *inst)
{
struct vpu_rpc_buffer_desc desc;
if (vpu_iface_get_stream_buffer_desc(inst, &desc))
return 0;
if (desc.rptr > desc.wptr)
return desc.rptr - desc.wptr;
else if (desc.rptr < desc.wptr)
return (desc.end - desc.start + desc.rptr - desc.wptr);
else
return desc.end - desc.start;
}
u32 vpu_helper_get_used_space(struct vpu_inst *inst)
{
struct vpu_rpc_buffer_desc desc;
if (vpu_iface_get_stream_buffer_desc(inst, &desc))
return 0;
if (desc.wptr > desc.rptr)
return desc.wptr - desc.rptr;
else if (desc.wptr < desc.rptr)
return (desc.end - desc.start + desc.wptr - desc.rptr);
else
return 0;
}
int vpu_helper_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct vpu_inst *inst = ctrl_to_inst(ctrl);
switch (ctrl->id) {
case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
ctrl->val = inst->min_buffer_cap;
break;
case V4L2_CID_MIN_BUFFERS_FOR_OUTPUT:
ctrl->val = inst->min_buffer_out;
break;
default:
return -EINVAL;
}
return 0;
}
int vpu_helper_find_startcode(struct vpu_buffer *stream_buffer,
u32 pixelformat, u32 offset, u32 bytesused)
{
u32 start_code;
int start_code_size;
u32 val = 0;
int i;
int ret = -EINVAL;
if (!stream_buffer || !stream_buffer->virt)
return -EINVAL;
switch (pixelformat) {
case V4L2_PIX_FMT_H264:
start_code_size = 4;
start_code = 0x00000001;
break;
default:
return 0;
}
for (i = 0; i < bytesused; i++) {
val = (val << 8) | vpu_helper_read_byte(stream_buffer, offset + i);
if (i < start_code_size - 1)
continue;
if (val == start_code) {
ret = i + 1 - start_code_size;
break;
}
}
return ret;
}
int vpu_find_dst_by_src(struct vpu_pair *pairs, u32 cnt, u32 src)
{
u32 i;
if (!pairs || !cnt)
return -EINVAL;
for (i = 0; i < cnt; i++) {
if (pairs[i].src == src)
return pairs[i].dst;
}
return -EINVAL;
}
int vpu_find_src_by_dst(struct vpu_pair *pairs, u32 cnt, u32 dst)
{
u32 i;
if (!pairs || !cnt)
return -EINVAL;
for (i = 0; i < cnt; i++) {
if (pairs[i].dst == dst)
return pairs[i].src;
}
return -EINVAL;
}
const char *vpu_id_name(u32 id)
{
switch (id) {
case VPU_CMD_ID_NOOP: return "noop";
case VPU_CMD_ID_CONFIGURE_CODEC: return "configure codec";
case VPU_CMD_ID_START: return "start";
case VPU_CMD_ID_STOP: return "stop";
case VPU_CMD_ID_ABORT: return "abort";
case VPU_CMD_ID_RST_BUF: return "reset buf";
case VPU_CMD_ID_SNAPSHOT: return "snapshot";
case VPU_CMD_ID_FIRM_RESET: return "reset firmware";
case VPU_CMD_ID_UPDATE_PARAMETER: return "update parameter";
case VPU_CMD_ID_FRAME_ENCODE: return "encode frame";
case VPU_CMD_ID_SKIP: return "skip";
case VPU_CMD_ID_FS_ALLOC: return "alloc fb";
case VPU_CMD_ID_FS_RELEASE: return "release fb";
case VPU_CMD_ID_TIMESTAMP: return "timestamp";
case VPU_CMD_ID_DEBUG: return "debug";
case VPU_MSG_ID_RESET_DONE: return "reset done";
case VPU_MSG_ID_START_DONE: return "start done";
case VPU_MSG_ID_STOP_DONE: return "stop done";
case VPU_MSG_ID_ABORT_DONE: return "abort done";
case VPU_MSG_ID_BUF_RST: return "buf reset done";
case VPU_MSG_ID_MEM_REQUEST: return "mem request";
case VPU_MSG_ID_PARAM_UPD_DONE: return "param upd done";
case VPU_MSG_ID_FRAME_INPUT_DONE: return "frame input done";
case VPU_MSG_ID_ENC_DONE: return "encode done";
case VPU_MSG_ID_DEC_DONE: return "frame display";
case VPU_MSG_ID_FRAME_REQ: return "fb request";
case VPU_MSG_ID_FRAME_RELEASE: return "fb release";
case VPU_MSG_ID_SEQ_HDR_FOUND: return "seq hdr found";
case VPU_MSG_ID_RES_CHANGE: return "resolution change";
case VPU_MSG_ID_PIC_HDR_FOUND: return "pic hdr found";
case VPU_MSG_ID_PIC_DECODED: return "picture decoded";
case VPU_MSG_ID_PIC_EOS: return "eos";
case VPU_MSG_ID_FIFO_LOW: return "fifo low";
case VPU_MSG_ID_BS_ERROR: return "bs error";
case VPU_MSG_ID_UNSUPPORTED: return "unsupported";
case VPU_MSG_ID_FIRMWARE_XCPT: return "exception";
case VPU_MSG_ID_PIC_SKIPPED: return "skipped";
case VPU_MSG_ID_DBG_MSG: return "debug msg";
}
return "<unknown>";
}
const char *vpu_codec_state_name(enum vpu_codec_state state)
{
switch (state) {
case VPU_CODEC_STATE_DEINIT: return "initialization";
case VPU_CODEC_STATE_CONFIGURED: return "configured";
case VPU_CODEC_STATE_START: return "start";
case VPU_CODEC_STATE_STARTED: return "started";
case VPU_CODEC_STATE_ACTIVE: return "active";
case VPU_CODEC_STATE_SEEK: return "seek";
case VPU_CODEC_STATE_STOP: return "stop";
case VPU_CODEC_STATE_DRAIN: return "drain";
case VPU_CODEC_STATE_DYAMIC_RESOLUTION_CHANGE: return "resolution change";
}
return "<unknown>";
}
struct codec_id_mapping {
u32 id;
u32 v4l2_id;
};
static struct codec_id_mapping h264_profiles[] = {
{66, V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE},
{77, V4L2_MPEG_VIDEO_H264_PROFILE_MAIN},
{88, V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED},
{100, V4L2_MPEG_VIDEO_H264_PROFILE_HIGH}
};
static struct codec_id_mapping h264_levels[] = {
{10, V4L2_MPEG_VIDEO_H264_LEVEL_1_0},
{9, V4L2_MPEG_VIDEO_H264_LEVEL_1B},
{11, V4L2_MPEG_VIDEO_H264_LEVEL_1_1},
{12, V4L2_MPEG_VIDEO_H264_LEVEL_1_2},
{13, V4L2_MPEG_VIDEO_H264_LEVEL_1_3},
{20, V4L2_MPEG_VIDEO_H264_LEVEL_2_0},
{21, V4L2_MPEG_VIDEO_H264_LEVEL_2_1},
{22, V4L2_MPEG_VIDEO_H264_LEVEL_2_2},
{30, V4L2_MPEG_VIDEO_H264_LEVEL_3_0},
{31, V4L2_MPEG_VIDEO_H264_LEVEL_3_1},
{32, V4L2_MPEG_VIDEO_H264_LEVEL_3_2},
{40, V4L2_MPEG_VIDEO_H264_LEVEL_4_0},
{41, V4L2_MPEG_VIDEO_H264_LEVEL_4_1},
{42, V4L2_MPEG_VIDEO_H264_LEVEL_4_2},
{50, V4L2_MPEG_VIDEO_H264_LEVEL_5_0},
{51, V4L2_MPEG_VIDEO_H264_LEVEL_5_1},
{52, V4L2_MPEG_VIDEO_H264_LEVEL_5_2},
{60, V4L2_MPEG_VIDEO_H264_LEVEL_6_0},
{61, V4L2_MPEG_VIDEO_H264_LEVEL_6_1},
{62, V4L2_MPEG_VIDEO_H264_LEVEL_6_2}
};
static struct codec_id_mapping hevc_profiles[] = {
{1, V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN},
{2, V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10}
};
static struct codec_id_mapping hevc_levels[] = {
{30, V4L2_MPEG_VIDEO_HEVC_LEVEL_1},
{60, V4L2_MPEG_VIDEO_HEVC_LEVEL_2},
{63, V4L2_MPEG_VIDEO_HEVC_LEVEL_2_1},
{90, V4L2_MPEG_VIDEO_HEVC_LEVEL_3},
{93, V4L2_MPEG_VIDEO_HEVC_LEVEL_3_1},
{120, V4L2_MPEG_VIDEO_HEVC_LEVEL_4},
{123, V4L2_MPEG_VIDEO_HEVC_LEVEL_4_1},
{150, V4L2_MPEG_VIDEO_HEVC_LEVEL_5},
{153, V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1},
{156, V4L2_MPEG_VIDEO_HEVC_LEVEL_5_2},
{180, V4L2_MPEG_VIDEO_HEVC_LEVEL_6},
{183, V4L2_MPEG_VIDEO_HEVC_LEVEL_6_1},
{186, V4L2_MPEG_VIDEO_HEVC_LEVEL_6_2}
};
static u32 vpu_find_v4l2_id(u32 id, struct codec_id_mapping *array, u32 array_sz)
{
u32 i;
if (!array || !array_sz)
return 0;
for (i = 0; i < array_sz; i++) {
if (id == array[i].id)
return array[i].v4l2_id;
}
return 0;
}
u32 vpu_get_h264_v4l2_profile(struct vpu_dec_codec_info *hdr)
{
if (!hdr)
return 0;
/*
* In H.264 Document section A.2.1.1 Constrained Baseline profile
* Conformance of a bitstream to the Constrained Baseline profile is indicated by
* profile_idc being equal to 66 with constraint_set1_flag being equal to 1.
*/
if (hdr->profile_idc == 66 && hdr->constraint_set1_flag)
return V4L2_MPEG_VIDEO_H264_PROFILE_CONSTRAINED_BASELINE;
return vpu_find_v4l2_id(hdr->profile_idc, h264_profiles, ARRAY_SIZE(h264_profiles));
}
u32 vpu_get_h264_v4l2_level(struct vpu_dec_codec_info *hdr)
{
if (!hdr)
return 0;
/*
* In H.264 Document section 7.4.2.1.1 Sequence parameter set data semantics
* If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11,
* constraint_set3_flag equal to 1 indicates that the coded video sequence
* obeys all constraints specified in Annex A for level 1b
* and constraint_set3_flag equal to 0 indicates that the coded video sequence
* obeys all constraints specified in Annex A for level 1.1.
*/
if (hdr->level_idc == 11 && hdr->constraint_set3_flag &&
(hdr->profile_idc == 66 || hdr->profile_idc == 77 || hdr->profile_idc == 88))
return V4L2_MPEG_VIDEO_H264_LEVEL_1B;
return vpu_find_v4l2_id(hdr->level_idc, h264_levels, ARRAY_SIZE(h264_levels));
}
u32 vpu_get_hevc_v4l2_profile(struct vpu_dec_codec_info *hdr)
{
if (!hdr)
return 0;
return vpu_find_v4l2_id(hdr->profile_idc, hevc_profiles, ARRAY_SIZE(hevc_profiles));
}
u32 vpu_get_hevc_v4l2_level(struct vpu_dec_codec_info *hdr)
{
if (!hdr)
return 0;
return vpu_find_v4l2_id(hdr->level_idc, hevc_levels, ARRAY_SIZE(hevc_levels));
}