linux/drivers/iio/adc/ad4030.c

1229 lines
32 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices AD4030 and AD4630 ADC family driver.
*
* Copyright 2024 Analog Devices, Inc.
* Copyright 2024 BayLibre, SAS
*
* based on code from:
* Analog Devices, Inc.
* Sergiu Cuciurean <sergiu.cuciurean@analog.com>
* Nuno Sa <nuno.sa@analog.com>
* Marcelo Schmitt <marcelo.schmitt@analog.com>
* Liviu Adace <liviu.adace@analog.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#define AD4030_REG_INTERFACE_CONFIG_A 0x00
#define AD4030_REG_INTERFACE_CONFIG_A_SW_RESET (BIT(0) | BIT(7))
#define AD4030_REG_INTERFACE_CONFIG_B 0x01
#define AD4030_REG_DEVICE_CONFIG 0x02
#define AD4030_REG_CHIP_TYPE 0x03
#define AD4030_REG_PRODUCT_ID_L 0x04
#define AD4030_REG_PRODUCT_ID_H 0x05
#define AD4030_REG_CHIP_GRADE 0x06
#define AD4030_REG_CHIP_GRADE_AD4030_24_GRADE 0x10
#define AD4030_REG_CHIP_GRADE_AD4630_16_GRADE 0x03
#define AD4030_REG_CHIP_GRADE_AD4630_24_GRADE 0x00
#define AD4030_REG_CHIP_GRADE_AD4632_16_GRADE 0x05
#define AD4030_REG_CHIP_GRADE_AD4632_24_GRADE 0x02
#define AD4030_REG_CHIP_GRADE_MASK_CHIP_GRADE GENMASK(7, 3)
#define AD4030_REG_SCRATCH_PAD 0x0A
#define AD4030_REG_SPI_REVISION 0x0B
#define AD4030_REG_VENDOR_L 0x0C
#define AD4030_REG_VENDOR_H 0x0D
#define AD4030_REG_STREAM_MODE 0x0E
#define AD4030_REG_INTERFACE_CONFIG_C 0x10
#define AD4030_REG_INTERFACE_STATUS_A 0x11
#define AD4030_REG_EXIT_CFG_MODE 0x14
#define AD4030_REG_EXIT_CFG_MODE_EXIT_MSK BIT(0)
#define AD4030_REG_AVG 0x15
#define AD4030_REG_AVG_MASK_AVG_SYNC BIT(7)
#define AD4030_REG_AVG_MASK_AVG_VAL GENMASK(4, 0)
#define AD4030_REG_OFFSET_X0_0 0x16
#define AD4030_REG_OFFSET_X0_1 0x17
#define AD4030_REG_OFFSET_X0_2 0x18
#define AD4030_REG_OFFSET_X1_0 0x19
#define AD4030_REG_OFFSET_X1_1 0x1A
#define AD4030_REG_OFFSET_X1_2 0x1B
#define AD4030_REG_OFFSET_BYTES_NB 3
#define AD4030_REG_OFFSET_CHAN(ch) \
(AD4030_REG_OFFSET_X0_2 + (AD4030_REG_OFFSET_BYTES_NB * (ch)))
#define AD4030_REG_GAIN_X0_LSB 0x1C
#define AD4030_REG_GAIN_X0_MSB 0x1D
#define AD4030_REG_GAIN_X1_LSB 0x1E
#define AD4030_REG_GAIN_X1_MSB 0x1F
#define AD4030_REG_GAIN_MAX_GAIN 1999970
#define AD4030_REG_GAIN_BYTES_NB 2
#define AD4030_REG_GAIN_CHAN(ch) \
(AD4030_REG_GAIN_X0_MSB + (AD4030_REG_GAIN_BYTES_NB * (ch)))
#define AD4030_REG_MODES 0x20
#define AD4030_REG_MODES_MASK_OUT_DATA_MODE GENMASK(2, 0)
#define AD4030_REG_MODES_MASK_LANE_MODE GENMASK(7, 6)
#define AD4030_REG_OSCILATOR 0x21
#define AD4030_REG_IO 0x22
#define AD4030_REG_IO_MASK_IO2X BIT(1)
#define AD4030_REG_PAT0 0x23
#define AD4030_REG_PAT1 0x24
#define AD4030_REG_PAT2 0x25
#define AD4030_REG_PAT3 0x26
#define AD4030_REG_DIG_DIAG 0x34
#define AD4030_REG_DIG_ERR 0x35
/* Sequence starting with "1 0 1" to enable reg access */
#define AD4030_REG_ACCESS 0xA0
#define AD4030_MAX_IIO_SAMPLE_SIZE_BUFFERED BITS_TO_BYTES(64)
#define AD4030_MAX_HARDWARE_CHANNEL_NB 2
#define AD4030_MAX_IIO_CHANNEL_NB 5
#define AD4030_SINGLE_COMMON_BYTE_CHANNELS_MASK 0b10
#define AD4030_DUAL_COMMON_BYTE_CHANNELS_MASK 0b1100
#define AD4030_GAIN_MIDLE_POINT 0x8000
/*
* This accounts for 1 sample per channel plus one s64 for the timestamp,
* aligned on a s64 boundary
*/
#define AD4030_MAXIMUM_RX_BUFFER_SIZE \
(ALIGN(AD4030_MAX_IIO_SAMPLE_SIZE_BUFFERED * \
AD4030_MAX_HARDWARE_CHANNEL_NB, \
sizeof(s64)) + sizeof(s64))
#define AD4030_VREF_MIN_UV (4096 * MILLI)
#define AD4030_VREF_MAX_UV (5000 * MILLI)
#define AD4030_VIO_THRESHOLD_UV (1400 * MILLI)
#define AD4030_SPI_MAX_XFER_LEN 8
#define AD4030_SPI_MAX_REG_XFER_SPEED (80 * MEGA)
#define AD4030_TCNVH_NS 10
#define AD4030_TCNVL_NS 20
#define AD4030_TCYC_NS 500
#define AD4030_TCYC_ADJUSTED_NS (AD4030_TCYC_NS - AD4030_TCNVL_NS)
#define AD4030_TRESET_PW_NS 50
#define AD4632_TCYC_NS 2000
#define AD4632_TCYC_ADJUSTED_NS (AD4632_TCYC_NS - AD4030_TCNVL_NS)
#define AD4030_TRESET_COM_DELAY_MS 750
enum ad4030_out_mode {
AD4030_OUT_DATA_MD_DIFF,
AD4030_OUT_DATA_MD_16_DIFF_8_COM,
AD4030_OUT_DATA_MD_24_DIFF_8_COM,
AD4030_OUT_DATA_MD_30_AVERAGED_DIFF,
AD4030_OUT_DATA_MD_32_PATTERN,
};
enum {
AD4030_LANE_MD_1_PER_CH,
AD4030_LANE_MD_2_PER_CH,
AD4030_LANE_MD_4_PER_CH,
AD4030_LANE_MD_INTERLEAVED,
};
enum {
AD4030_SCAN_TYPE_NORMAL,
AD4030_SCAN_TYPE_AVG,
};
struct ad4030_chip_info {
const char *name;
const unsigned long *available_masks;
const struct iio_chan_spec channels[AD4030_MAX_IIO_CHANNEL_NB];
u8 grade;
u8 precision_bits;
/* Number of hardware channels */
int num_voltage_inputs;
unsigned int tcyc_ns;
};
struct ad4030_state {
struct spi_device *spi;
struct regmap *regmap;
const struct ad4030_chip_info *chip;
struct gpio_desc *cnv_gpio;
int vref_uv;
int vio_uv;
int offset_avail[3];
unsigned int avg_log2;
enum ad4030_out_mode mode;
/*
* DMA (thus cache coherency maintenance) requires the transfer buffers
* to live in their own cache lines.
*/
u8 tx_data[AD4030_SPI_MAX_XFER_LEN] __aligned(IIO_DMA_MINALIGN);
union {
u8 raw[AD4030_MAXIMUM_RX_BUFFER_SIZE];
struct {
s32 diff;
u8 common;
} single;
struct {
s32 diff[2];
u8 common[2];
} dual;
} rx_data;
};
/*
* For a chip with 2 hardware channel this will be used to create 2 common-mode
* channels:
* - voltage4
* - voltage5
* As the common-mode channels are after the differential ones, we compute the
* channel number like this:
* - _idx is the scan_index (the order in the output buffer)
* - _ch is the hardware channel number this common-mode channel is related
* - _idx - _ch gives us the number of channel in the chip
* - _idx - _ch * 2 is the starting number of the common-mode channels, since
* for each differential channel there is a common-mode channel
* - _idx - _ch * 2 + _ch gives the channel number for this specific common-mode
* channel
*/
#define AD4030_CHAN_CMO(_idx, _ch) { \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.address = (_ch), \
.channel = ((_idx) - (_ch)) * 2 + (_ch), \
.scan_index = (_idx), \
.scan_type = { \
.sign = 'u', \
.storagebits = 8, \
.realbits = 8, \
.endianness = IIO_BE, \
}, \
}
/*
* For a chip with 2 hardware channel this will be used to create 2 differential
* channels:
* - voltage0-voltage1
* - voltage2-voltage3
*/
#define AD4030_CHAN_DIFF(_idx, _scan_type) { \
.info_mask_shared_by_all = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_CALIBBIAS) | \
BIT(IIO_CHAN_INFO_RAW), \
.info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS) | \
BIT(IIO_CHAN_INFO_CALIBSCALE), \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.address = (_idx), \
.channel = (_idx) * 2, \
.channel2 = (_idx) * 2 + 1, \
.scan_index = (_idx), \
.differential = true, \
.has_ext_scan_type = 1, \
.ext_scan_type = _scan_type, \
.num_ext_scan_type = ARRAY_SIZE(_scan_type), \
}
static const int ad4030_average_modes[] = {
1, 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536,
};
static int ad4030_enter_config_mode(struct ad4030_state *st)
{
st->tx_data[0] = AD4030_REG_ACCESS;
struct spi_transfer xfer = {
.tx_buf = st->tx_data,
.len = 1,
.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
};
return spi_sync_transfer(st->spi, &xfer, 1);
}
static int ad4030_exit_config_mode(struct ad4030_state *st)
{
st->tx_data[0] = 0;
st->tx_data[1] = AD4030_REG_EXIT_CFG_MODE;
st->tx_data[2] = AD4030_REG_EXIT_CFG_MODE_EXIT_MSK;
struct spi_transfer xfer = {
.tx_buf = st->tx_data,
.len = 3,
.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
};
return spi_sync_transfer(st->spi, &xfer, 1);
}
static int ad4030_spi_read(void *context, const void *reg, size_t reg_size,
void *val, size_t val_size)
{
int ret;
struct ad4030_state *st = context;
struct spi_transfer xfer = {
.tx_buf = st->tx_data,
.rx_buf = st->rx_data.raw,
.len = reg_size + val_size,
.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
};
if (xfer.len > sizeof(st->tx_data) ||
xfer.len > sizeof(st->rx_data.raw))
return -EINVAL;
ret = ad4030_enter_config_mode(st);
if (ret)
return ret;
memset(st->tx_data, 0, sizeof(st->tx_data));
memcpy(st->tx_data, reg, reg_size);
ret = spi_sync_transfer(st->spi, &xfer, 1);
if (ret)
return ret;
memcpy(val, &st->rx_data.raw[reg_size], val_size);
return ad4030_exit_config_mode(st);
}
static int ad4030_spi_write(void *context, const void *data, size_t count)
{
int ret;
struct ad4030_state *st = context;
bool is_reset = count >= 3 &&
((u8 *)data)[0] == 0 &&
((u8 *)data)[1] == 0 &&
((u8 *)data)[2] == 0x81;
struct spi_transfer xfer = {
.tx_buf = st->tx_data,
.len = count,
.speed_hz = AD4030_SPI_MAX_REG_XFER_SPEED,
};
if (count > sizeof(st->tx_data))
return -EINVAL;
ret = ad4030_enter_config_mode(st);
if (ret)
return ret;
memcpy(st->tx_data, data, count);
ret = spi_sync_transfer(st->spi, &xfer, 1);
if (ret)
return ret;
/*
* From datasheet: "After a [...] reset, no SPI commands or conversions
* can be started for 750us"
* After a reset we are in conversion mode, no need to exit config mode
*/
if (is_reset) {
fsleep(750);
return 0;
}
return ad4030_exit_config_mode(st);
}
static const struct regmap_bus ad4030_regmap_bus = {
.read = ad4030_spi_read,
.write = ad4030_spi_write,
.reg_format_endian_default = REGMAP_ENDIAN_BIG,
};
static const struct regmap_range ad4030_regmap_rd_range[] = {
regmap_reg_range(AD4030_REG_INTERFACE_CONFIG_A, AD4030_REG_CHIP_GRADE),
regmap_reg_range(AD4030_REG_SCRATCH_PAD, AD4030_REG_STREAM_MODE),
regmap_reg_range(AD4030_REG_INTERFACE_CONFIG_C,
AD4030_REG_INTERFACE_STATUS_A),
regmap_reg_range(AD4030_REG_EXIT_CFG_MODE, AD4030_REG_PAT3),
regmap_reg_range(AD4030_REG_DIG_DIAG, AD4030_REG_DIG_ERR),
};
static const struct regmap_range ad4030_regmap_wr_range[] = {
regmap_reg_range(AD4030_REG_CHIP_TYPE, AD4030_REG_CHIP_GRADE),
regmap_reg_range(AD4030_REG_SPI_REVISION, AD4030_REG_VENDOR_H),
};
static const struct regmap_access_table ad4030_regmap_rd_table = {
.yes_ranges = ad4030_regmap_rd_range,
.n_yes_ranges = ARRAY_SIZE(ad4030_regmap_rd_range),
};
static const struct regmap_access_table ad4030_regmap_wr_table = {
.no_ranges = ad4030_regmap_wr_range,
.n_no_ranges = ARRAY_SIZE(ad4030_regmap_wr_range),
};
static const struct regmap_config ad4030_regmap_config = {
.reg_bits = 16,
.val_bits = 8,
.read_flag_mask = 0x80,
.rd_table = &ad4030_regmap_rd_table,
.wr_table = &ad4030_regmap_wr_table,
.max_register = AD4030_REG_DIG_ERR,
};
static int ad4030_get_chan_scale(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2)
{
struct ad4030_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
scan_type = iio_get_current_scan_type(indio_dev, st->chip->channels);
if (IS_ERR(scan_type))
return PTR_ERR(scan_type);
if (chan->differential)
*val = (st->vref_uv * 2) / MILLI;
else
*val = st->vref_uv / MILLI;
*val2 = scan_type->realbits;
return IIO_VAL_FRACTIONAL_LOG2;
}
static int ad4030_get_chan_calibscale(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2)
{
struct ad4030_state *st = iio_priv(indio_dev);
u16 gain;
int ret;
ret = regmap_bulk_read(st->regmap, AD4030_REG_GAIN_CHAN(chan->address),
st->rx_data.raw, AD4030_REG_GAIN_BYTES_NB);
if (ret)
return ret;
gain = get_unaligned_be16(st->rx_data.raw);
/* From datasheet: multiplied output = input × gain word/0x8000 */
*val = gain / AD4030_GAIN_MIDLE_POINT;
*val2 = mul_u64_u32_div(gain % AD4030_GAIN_MIDLE_POINT, NANO,
AD4030_GAIN_MIDLE_POINT);
return IIO_VAL_INT_PLUS_NANO;
}
/* Returns the offset where 1 LSB = (VREF/2^precision_bits - 1)/gain */
static int ad4030_get_chan_calibbias(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val)
{
struct ad4030_state *st = iio_priv(indio_dev);
int ret;
ret = regmap_bulk_read(st->regmap,
AD4030_REG_OFFSET_CHAN(chan->address),
st->rx_data.raw, AD4030_REG_OFFSET_BYTES_NB);
if (ret)
return ret;
switch (st->chip->precision_bits) {
case 16:
*val = sign_extend32(get_unaligned_be16(st->rx_data.raw), 15);
return IIO_VAL_INT;
case 24:
*val = sign_extend32(get_unaligned_be24(st->rx_data.raw), 23);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad4030_set_chan_calibscale(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int gain_int,
int gain_frac)
{
struct ad4030_state *st = iio_priv(indio_dev);
u64 gain;
if (gain_int < 0 || gain_frac < 0)
return -EINVAL;
gain = mul_u32_u32(gain_int, MICRO) + gain_frac;
if (gain > AD4030_REG_GAIN_MAX_GAIN)
return -EINVAL;
put_unaligned_be16(DIV_ROUND_CLOSEST_ULL(gain * AD4030_GAIN_MIDLE_POINT,
MICRO),
st->tx_data);
return regmap_bulk_write(st->regmap,
AD4030_REG_GAIN_CHAN(chan->address),
st->tx_data, AD4030_REG_GAIN_BYTES_NB);
}
static int ad4030_set_chan_calibbias(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int offset)
{
struct ad4030_state *st = iio_priv(indio_dev);
if (offset < st->offset_avail[0] || offset > st->offset_avail[2])
return -EINVAL;
st->tx_data[2] = 0;
switch (st->chip->precision_bits) {
case 16:
put_unaligned_be16(offset, st->tx_data);
break;
case 24:
put_unaligned_be24(offset, st->tx_data);
break;
default:
return -EINVAL;
}
return regmap_bulk_write(st->regmap,
AD4030_REG_OFFSET_CHAN(chan->address),
st->tx_data, AD4030_REG_OFFSET_BYTES_NB);
}
static int ad4030_set_avg_frame_len(struct iio_dev *dev, int avg_val)
{
struct ad4030_state *st = iio_priv(dev);
unsigned int avg_log2 = ilog2(avg_val);
unsigned int last_avg_idx = ARRAY_SIZE(ad4030_average_modes) - 1;
int ret;
if (avg_val < 0 || avg_val > ad4030_average_modes[last_avg_idx])
return -EINVAL;
ret = regmap_write(st->regmap, AD4030_REG_AVG,
AD4030_REG_AVG_MASK_AVG_SYNC |
FIELD_PREP(AD4030_REG_AVG_MASK_AVG_VAL, avg_log2));
if (ret)
return ret;
st->avg_log2 = avg_log2;
return 0;
}
static bool ad4030_is_common_byte_asked(struct ad4030_state *st,
unsigned int mask)
{
return mask & (st->chip->num_voltage_inputs == 1 ?
AD4030_SINGLE_COMMON_BYTE_CHANNELS_MASK :
AD4030_DUAL_COMMON_BYTE_CHANNELS_MASK);
}
static int ad4030_set_mode(struct iio_dev *indio_dev, unsigned long mask)
{
struct ad4030_state *st = iio_priv(indio_dev);
if (st->avg_log2 > 0) {
st->mode = AD4030_OUT_DATA_MD_30_AVERAGED_DIFF;
} else if (ad4030_is_common_byte_asked(st, mask)) {
switch (st->chip->precision_bits) {
case 16:
st->mode = AD4030_OUT_DATA_MD_16_DIFF_8_COM;
break;
case 24:
st->mode = AD4030_OUT_DATA_MD_24_DIFF_8_COM;
break;
default:
return -EINVAL;
}
} else {
st->mode = AD4030_OUT_DATA_MD_DIFF;
}
return regmap_update_bits(st->regmap, AD4030_REG_MODES,
AD4030_REG_MODES_MASK_OUT_DATA_MODE,
st->mode);
}
/*
* Descramble 2 32bits numbers out of a 64bits. The bits are interleaved:
* 1 bit for first number, 1 bit for the second, and so on...
*/
static void ad4030_extract_interleaved(u8 *src, u32 *ch0, u32 *ch1)
{
u8 h0, h1, l0, l1;
u32 out0, out1;
u8 *out0_raw = (u8 *)&out0;
u8 *out1_raw = (u8 *)&out1;
for (int i = 0; i < 4; i++) {
h0 = src[i * 2];
l1 = src[i * 2 + 1];
h1 = h0 << 1;
l0 = l1 >> 1;
h0 &= 0xAA;
l0 &= 0x55;
h1 &= 0xAA;
l1 &= 0x55;
h0 = (h0 | h0 << 001) & 0xCC;
h1 = (h1 | h1 << 001) & 0xCC;
l0 = (l0 | l0 >> 001) & 0x33;
l1 = (l1 | l1 >> 001) & 0x33;
h0 = (h0 | h0 << 002) & 0xF0;
h1 = (h1 | h1 << 002) & 0xF0;
l0 = (l0 | l0 >> 002) & 0x0F;
l1 = (l1 | l1 >> 002) & 0x0F;
out0_raw[i] = h0 | l0;
out1_raw[i] = h1 | l1;
}
*ch0 = out0;
*ch1 = out1;
}
static int ad4030_conversion(struct iio_dev *indio_dev)
{
struct ad4030_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type;
unsigned char diff_realbytes, diff_storagebytes;
unsigned int bytes_to_read;
unsigned long cnv_nb = BIT(st->avg_log2);
unsigned int i;
int ret;
scan_type = iio_get_current_scan_type(indio_dev, st->chip->channels);
if (IS_ERR(scan_type))
return PTR_ERR(scan_type);
diff_realbytes = BITS_TO_BYTES(scan_type->realbits);
diff_storagebytes = BITS_TO_BYTES(scan_type->storagebits);
/* Number of bytes for one differential channel */
bytes_to_read = diff_realbytes;
/* Add one byte if we are using a differential + common byte mode */
bytes_to_read += (st->mode == AD4030_OUT_DATA_MD_24_DIFF_8_COM ||
st->mode == AD4030_OUT_DATA_MD_16_DIFF_8_COM) ? 1 : 0;
/* Mulitiply by the number of hardware channels */
bytes_to_read *= st->chip->num_voltage_inputs;
for (i = 0; i < cnv_nb; i++) {
gpiod_set_value_cansleep(st->cnv_gpio, 1);
ndelay(AD4030_TCNVH_NS);
gpiod_set_value_cansleep(st->cnv_gpio, 0);
ndelay(st->chip->tcyc_ns);
}
ret = spi_read(st->spi, st->rx_data.raw, bytes_to_read);
if (ret)
return ret;
if (st->chip->num_voltage_inputs == 2)
ad4030_extract_interleaved(st->rx_data.raw,
&st->rx_data.dual.diff[0],
&st->rx_data.dual.diff[1]);
/*
* If no common mode voltage channel is enabled, we can use the raw
* data as is. Otherwise, we need to rearrange the data a bit to match
* the natural alignment of the IIO buffer.
*/
if (st->mode != AD4030_OUT_DATA_MD_16_DIFF_8_COM &&
st->mode != AD4030_OUT_DATA_MD_24_DIFF_8_COM)
return 0;
if (st->chip->num_voltage_inputs == 1) {
st->rx_data.single.common = st->rx_data.raw[diff_realbytes];
return 0;
}
for (i = 0; i < st->chip->num_voltage_inputs; i++)
st->rx_data.dual.common[i] =
st->rx_data.raw[diff_storagebytes * i + diff_realbytes];
return 0;
}
static int ad4030_single_conversion(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val)
{
struct ad4030_state *st = iio_priv(indio_dev);
int ret;
ret = ad4030_set_mode(indio_dev, BIT(chan->scan_index));
if (ret)
return ret;
ret = ad4030_conversion(indio_dev);
if (ret)
return ret;
if (chan->differential)
if (st->chip->num_voltage_inputs == 1)
*val = st->rx_data.single.diff;
else
*val = st->rx_data.dual.diff[chan->address];
else
if (st->chip->num_voltage_inputs == 1)
*val = st->rx_data.single.common;
else
*val = st->rx_data.dual.common[chan->address];
return IIO_VAL_INT;
}
static irqreturn_t ad4030_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad4030_state *st = iio_priv(indio_dev);
int ret;
ret = ad4030_conversion(indio_dev);
if (ret)
goto out;
iio_push_to_buffers_with_ts(indio_dev, &st->rx_data, sizeof(st->rx_data),
pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const int ad4030_gain_avail[3][2] = {
{ 0, 0 },
{ 0, 30518 },
{ 1, 999969482 },
};
static int ad4030_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *channel,
const int **vals, int *type,
int *length, long mask)
{
struct ad4030_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
*vals = st->offset_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_RANGE;
case IIO_CHAN_INFO_CALIBSCALE:
*vals = (void *)ad4030_gain_avail;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_RANGE;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = ad4030_average_modes;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(ad4030_average_modes);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int ad4030_read_raw_dispatch(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long info)
{
struct ad4030_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_RAW:
return ad4030_single_conversion(indio_dev, chan, val);
case IIO_CHAN_INFO_CALIBSCALE:
return ad4030_get_chan_calibscale(indio_dev, chan, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return ad4030_get_chan_calibbias(indio_dev, chan, val);
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = BIT(st->avg_log2);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ad4030_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long info)
{
int ret;
if (info == IIO_CHAN_INFO_SCALE)
return ad4030_get_chan_scale(indio_dev, chan, val, val2);
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4030_read_raw_dispatch(indio_dev, chan, val, val2, info);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4030_write_raw_dispatch(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long info)
{
switch (info) {
case IIO_CHAN_INFO_CALIBSCALE:
return ad4030_set_chan_calibscale(indio_dev, chan, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
if (val2 != 0)
return -EINVAL;
return ad4030_set_chan_calibbias(indio_dev, chan, val);
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
return ad4030_set_avg_frame_len(indio_dev, val);
default:
return -EINVAL;
}
}
static int ad4030_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long info)
{
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
ret = ad4030_write_raw_dispatch(indio_dev, chan, val, val2, info);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4030_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
const struct ad4030_state *st = iio_priv(indio_dev);
int ret;
if (!iio_device_claim_direct(indio_dev))
return -EBUSY;
if (readval)
ret = regmap_read(st->regmap, reg, readval);
else
ret = regmap_write(st->regmap, reg, writeval);
iio_device_release_direct(indio_dev);
return ret;
}
static int ad4030_read_label(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
char *label)
{
if (chan->differential)
return sprintf(label, "differential%lu\n", chan->address);
return sprintf(label, "common-mode%lu\n", chan->address);
}
static int ad4030_get_current_scan_type(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad4030_state *st = iio_priv(indio_dev);
return st->avg_log2 ? AD4030_SCAN_TYPE_AVG : AD4030_SCAN_TYPE_NORMAL;
}
static int ad4030_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
return ad4030_set_mode(indio_dev, *scan_mask);
}
static const struct iio_info ad4030_iio_info = {
.read_avail = ad4030_read_avail,
.read_raw = ad4030_read_raw,
.write_raw = ad4030_write_raw,
.debugfs_reg_access = ad4030_reg_access,
.read_label = ad4030_read_label,
.get_current_scan_type = ad4030_get_current_scan_type,
.update_scan_mode = ad4030_update_scan_mode,
};
static bool ad4030_validate_scan_mask(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct ad4030_state *st = iio_priv(indio_dev);
/* Asking for both common channels and averaging */
if (st->avg_log2 && ad4030_is_common_byte_asked(st, *scan_mask))
return false;
return true;
}
static const struct iio_buffer_setup_ops ad4030_buffer_setup_ops = {
.validate_scan_mask = ad4030_validate_scan_mask,
};
static int ad4030_regulators_get(struct ad4030_state *st)
{
struct device *dev = &st->spi->dev;
static const char * const ids[] = { "vdd-5v", "vdd-1v8" };
int ret;
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ids), ids);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulators\n");
st->vio_uv = devm_regulator_get_enable_read_voltage(dev, "vio");
if (st->vio_uv < 0)
return dev_err_probe(dev, st->vio_uv,
"Failed to enable and read vio voltage\n");
st->vref_uv = devm_regulator_get_enable_read_voltage(dev, "ref");
if (st->vref_uv < 0) {
if (st->vref_uv != -ENODEV)
return dev_err_probe(dev, st->vref_uv,
"Failed to read ref voltage\n");
/* if not using optional REF, the REFIN must be used */
st->vref_uv = devm_regulator_get_enable_read_voltage(dev,
"refin");
if (st->vref_uv < 0)
return dev_err_probe(dev, st->vref_uv,
"Failed to read refin voltage\n");
}
return 0;
}
static int ad4030_reset(struct ad4030_state *st)
{
struct device *dev = &st->spi->dev;
struct gpio_desc *reset;
reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(reset))
return dev_err_probe(dev, PTR_ERR(reset),
"Failed to get reset GPIO\n");
if (reset) {
ndelay(50);
gpiod_set_value_cansleep(reset, 0);
return 0;
}
return regmap_write(st->regmap, AD4030_REG_INTERFACE_CONFIG_A,
AD4030_REG_INTERFACE_CONFIG_A_SW_RESET);
}
static int ad4030_detect_chip_info(const struct ad4030_state *st)
{
unsigned int grade;
int ret;
ret = regmap_read(st->regmap, AD4030_REG_CHIP_GRADE, &grade);
if (ret)
return ret;
grade = FIELD_GET(AD4030_REG_CHIP_GRADE_MASK_CHIP_GRADE, grade);
if (grade != st->chip->grade)
dev_warn(&st->spi->dev, "Unknown grade(0x%x) for %s\n", grade,
st->chip->name);
return 0;
}
static int ad4030_config(struct ad4030_state *st)
{
int ret;
u8 reg_modes;
st->offset_avail[0] = (int)BIT(st->chip->precision_bits - 1) * -1;
st->offset_avail[1] = 1;
st->offset_avail[2] = BIT(st->chip->precision_bits - 1) - 1;
if (st->chip->num_voltage_inputs > 1)
reg_modes = FIELD_PREP(AD4030_REG_MODES_MASK_LANE_MODE,
AD4030_LANE_MD_INTERLEAVED);
else
reg_modes = FIELD_PREP(AD4030_REG_MODES_MASK_LANE_MODE,
AD4030_LANE_MD_1_PER_CH);
ret = regmap_write(st->regmap, AD4030_REG_MODES, reg_modes);
if (ret)
return ret;
if (st->vio_uv < AD4030_VIO_THRESHOLD_UV)
return regmap_write(st->regmap, AD4030_REG_IO,
AD4030_REG_IO_MASK_IO2X);
return 0;
}
static int ad4030_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad4030_state *st;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
st->regmap = devm_regmap_init(dev, &ad4030_regmap_bus, st,
&ad4030_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(dev, PTR_ERR(st->regmap),
"Failed to initialize regmap\n");
st->chip = spi_get_device_match_data(spi);
if (!st->chip)
return -EINVAL;
ret = ad4030_regulators_get(st);
if (ret)
return ret;
/*
* From datasheet: "Perform a reset no sooner than 3ms after the power
* supplies are valid and stable"
*/
fsleep(3000);
ret = ad4030_reset(st);
if (ret)
return ret;
ret = ad4030_detect_chip_info(st);
if (ret)
return ret;
ret = ad4030_config(st);
if (ret)
return ret;
st->cnv_gpio = devm_gpiod_get(dev, "cnv", GPIOD_OUT_LOW);
if (IS_ERR(st->cnv_gpio))
return dev_err_probe(dev, PTR_ERR(st->cnv_gpio),
"Failed to get cnv gpio\n");
/*
* One hardware channel is split in two software channels when using
* common byte mode. Add one more channel for the timestamp.
*/
indio_dev->num_channels = 2 * st->chip->num_voltage_inputs + 1;
indio_dev->name = st->chip->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &ad4030_iio_info;
indio_dev->channels = st->chip->channels;
indio_dev->available_scan_masks = st->chip->available_masks;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
ad4030_trigger_handler,
&ad4030_buffer_setup_ops);
if (ret)
return dev_err_probe(dev, ret,
"Failed to setup triggered buffer\n");
return devm_iio_device_register(dev, indio_dev);
}
static const unsigned long ad4030_channel_masks[] = {
/* Differential only */
BIT(0),
/* Differential and common-mode voltage */
GENMASK(1, 0),
0,
};
static const unsigned long ad4630_channel_masks[] = {
/* Differential only */
BIT(1) | BIT(0),
/* Differential with common byte */
GENMASK(3, 0),
0,
};
static const struct iio_scan_type ad4030_24_scan_types[] = {
[AD4030_SCAN_TYPE_NORMAL] = {
.sign = 's',
.storagebits = 32,
.realbits = 24,
.shift = 8,
.endianness = IIO_BE,
},
[AD4030_SCAN_TYPE_AVG] = {
.sign = 's',
.storagebits = 32,
.realbits = 30,
.shift = 2,
.endianness = IIO_BE,
},
};
static const struct iio_scan_type ad4030_16_scan_types[] = {
[AD4030_SCAN_TYPE_NORMAL] = {
.sign = 's',
.storagebits = 32,
.realbits = 16,
.shift = 16,
.endianness = IIO_BE,
},
[AD4030_SCAN_TYPE_AVG] = {
.sign = 's',
.storagebits = 32,
.realbits = 30,
.shift = 2,
.endianness = IIO_BE,
}
};
static const struct ad4030_chip_info ad4030_24_chip_info = {
.name = "ad4030-24",
.available_masks = ad4030_channel_masks,
.channels = {
AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
AD4030_CHAN_CMO(1, 0),
IIO_CHAN_SOFT_TIMESTAMP(2),
},
.grade = AD4030_REG_CHIP_GRADE_AD4030_24_GRADE,
.precision_bits = 24,
.num_voltage_inputs = 1,
.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
};
static const struct ad4030_chip_info ad4630_16_chip_info = {
.name = "ad4630-16",
.available_masks = ad4630_channel_masks,
.channels = {
AD4030_CHAN_DIFF(0, ad4030_16_scan_types),
AD4030_CHAN_DIFF(1, ad4030_16_scan_types),
AD4030_CHAN_CMO(2, 0),
AD4030_CHAN_CMO(3, 1),
IIO_CHAN_SOFT_TIMESTAMP(4),
},
.grade = AD4030_REG_CHIP_GRADE_AD4630_16_GRADE,
.precision_bits = 16,
.num_voltage_inputs = 2,
.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
};
static const struct ad4030_chip_info ad4630_24_chip_info = {
.name = "ad4630-24",
.available_masks = ad4630_channel_masks,
.channels = {
AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
AD4030_CHAN_DIFF(1, ad4030_24_scan_types),
AD4030_CHAN_CMO(2, 0),
AD4030_CHAN_CMO(3, 1),
IIO_CHAN_SOFT_TIMESTAMP(4),
},
.grade = AD4030_REG_CHIP_GRADE_AD4630_24_GRADE,
.precision_bits = 24,
.num_voltage_inputs = 2,
.tcyc_ns = AD4030_TCYC_ADJUSTED_NS,
};
static const struct ad4030_chip_info ad4632_16_chip_info = {
.name = "ad4632-16",
.available_masks = ad4630_channel_masks,
.channels = {
AD4030_CHAN_DIFF(0, ad4030_16_scan_types),
AD4030_CHAN_DIFF(1, ad4030_16_scan_types),
AD4030_CHAN_CMO(2, 0),
AD4030_CHAN_CMO(3, 1),
IIO_CHAN_SOFT_TIMESTAMP(4),
},
.grade = AD4030_REG_CHIP_GRADE_AD4632_16_GRADE,
.precision_bits = 16,
.num_voltage_inputs = 2,
.tcyc_ns = AD4632_TCYC_ADJUSTED_NS,
};
static const struct ad4030_chip_info ad4632_24_chip_info = {
.name = "ad4632-24",
.available_masks = ad4630_channel_masks,
.channels = {
AD4030_CHAN_DIFF(0, ad4030_24_scan_types),
AD4030_CHAN_DIFF(1, ad4030_24_scan_types),
AD4030_CHAN_CMO(2, 0),
AD4030_CHAN_CMO(3, 1),
IIO_CHAN_SOFT_TIMESTAMP(4),
},
.grade = AD4030_REG_CHIP_GRADE_AD4632_24_GRADE,
.precision_bits = 24,
.num_voltage_inputs = 2,
.tcyc_ns = AD4632_TCYC_ADJUSTED_NS,
};
static const struct spi_device_id ad4030_id_table[] = {
{ "ad4030-24", (kernel_ulong_t)&ad4030_24_chip_info },
{ "ad4630-16", (kernel_ulong_t)&ad4630_16_chip_info },
{ "ad4630-24", (kernel_ulong_t)&ad4630_24_chip_info },
{ "ad4632-16", (kernel_ulong_t)&ad4632_16_chip_info },
{ "ad4632-24", (kernel_ulong_t)&ad4632_24_chip_info },
{ }
};
MODULE_DEVICE_TABLE(spi, ad4030_id_table);
static const struct of_device_id ad4030_of_match[] = {
{ .compatible = "adi,ad4030-24", .data = &ad4030_24_chip_info },
{ .compatible = "adi,ad4630-16", .data = &ad4630_16_chip_info },
{ .compatible = "adi,ad4630-24", .data = &ad4630_24_chip_info },
{ .compatible = "adi,ad4632-16", .data = &ad4632_16_chip_info },
{ .compatible = "adi,ad4632-24", .data = &ad4632_24_chip_info },
{ }
};
MODULE_DEVICE_TABLE(of, ad4030_of_match);
static struct spi_driver ad4030_driver = {
.driver = {
.name = "ad4030",
.of_match_table = ad4030_of_match,
},
.probe = ad4030_probe,
.id_table = ad4030_id_table,
};
module_spi_driver(ad4030_driver);
MODULE_AUTHOR("Esteban Blanc <eblanc@baylibre.com>");
MODULE_DESCRIPTION("Analog Devices AD4630 ADC family driver");
MODULE_LICENSE("GPL");