linux/drivers/gpu/drm/i915/gt/intel_gt_pm.c

435 lines
10 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: MIT
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/string_helpers.h>
#include <linux/suspend.h>
#include "display/intel_display_power.h"
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_params.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_gt.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_mcr.h"
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
#include "intel_gt_pm.h"
#include "intel_gt_print.h"
#include "intel_gt_requests.h"
#include "intel_llc.h"
#include "intel_rc6.h"
#include "intel_rps.h"
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
#include "intel_wakeref.h"
#include "pxp/intel_pxp_pm.h"
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
#define I915_GT_SUSPEND_IDLE_TIMEOUT (HZ / 2)
static void user_forcewake(struct intel_gt *gt, bool suspend)
{
int count = atomic_read(&gt->user_wakeref);
intel_wakeref_t wakeref;
/* Inside suspend/resume so single threaded, no races to worry about. */
if (likely(!count))
return;
wakeref = intel_gt_pm_get(gt);
if (suspend) {
GEM_BUG_ON(count > atomic_read(&gt->wakeref.count));
atomic_sub(count, &gt->wakeref.count);
} else {
atomic_add(count, &gt->wakeref.count);
}
intel_gt_pm_put(gt, wakeref);
}
static void runtime_begin(struct intel_gt *gt)
{
local_irq_disable();
write_seqcount_begin(&gt->stats.lock);
gt->stats.start = ktime_get();
gt->stats.active = true;
write_seqcount_end(&gt->stats.lock);
local_irq_enable();
}
static void runtime_end(struct intel_gt *gt)
{
local_irq_disable();
write_seqcount_begin(&gt->stats.lock);
gt->stats.active = false;
gt->stats.total =
ktime_add(gt->stats.total,
ktime_sub(ktime_get(), gt->stats.start));
write_seqcount_end(&gt->stats.lock);
local_irq_enable();
}
drm/i915: Defer final intel_wakeref_put to process context As we need to acquire a mutex to serialise the final intel_wakeref_put, we need to ensure that we are in process context at that time. However, we want to allow operation on the intel_wakeref from inside timer and other hardirq context, which means that need to defer that final put to a workqueue. Inside the final wakeref puts, we are safe to operate in any context, as we are simply marking up the HW and state tracking for the potential sleep. It's only the serialisation with the potential sleeping getting that requires careful wait avoidance. This allows us to retain the immediate processing as before (we only need to sleep over the same races as the current mutex_lock). v2: Add a selftest to ensure we exercise the code while lockdep watches. v3: That test was extremely loud and complained about many things! v4: Not a whale! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111295 References: https://bugs.freedesktop.org/show_bug.cgi?id=111245 References: https://bugs.freedesktop.org/show_bug.cgi?id=111256 Fixes: 18398904ca9e ("drm/i915: Only recover active engines") Fixes: 51fbd8de87dc ("drm/i915/pmu: Atomically acquire the gt_pm wakeref") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190808202758.10453-1-chris@chris-wilson.co.uk
2019-08-08 21:27:58 +01:00
static int __gt_unpark(struct intel_wakeref *wf)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref);
struct drm_i915_private *i915 = gt->i915;
struct intel_display *display = i915->display;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
GT_TRACE(gt, "\n");
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
/*
* It seems that the DMC likes to transition between the DC states a lot
* when there are no connected displays (no active power domains) during
* command submission.
*
* This activity has negative impact on the performance of the chip with
* huge latencies observed in the interrupt handler and elsewhere.
*
* Work around it by grabbing a GT IRQ power domain whilst there is any
* GT activity, preventing any DC state transitions.
*/
gt->awake = intel_display_power_get(display, POWER_DOMAIN_GT_IRQ);
GEM_BUG_ON(!gt->awake);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
intel_rc6_unpark(&gt->rc6);
intel_rps_unpark(&gt->rps);
i915_pmu_gt_unparked(gt);
drm/i915/pmu: Connect engine busyness stats from GuC to pmu With GuC handling scheduling, i915 is not aware of the time that a context is scheduled in and out of the engine. Since i915 pmu relies on this info to provide engine busyness to the user, GuC shares this info with i915 for all engines using shared memory. For each engine, this info contains: - total busyness: total time that the context was running (total) - id: id of the running context (id) - start timestamp: timestamp when the context started running (start) At the time (now) of sampling the engine busyness, if the id is valid (!= ~0), and start is non-zero, then the context is considered to be active and the engine busyness is calculated using the below equation engine busyness = total + (now - start) All times are obtained from the gt clock base. For inactive contexts, engine busyness is just equal to the total. The start and total values provided by GuC are 32 bits and wrap around in a few minutes. Since perf pmu provides busyness as 64 bit monotonically increasing values, there is a need for this implementation to account for overflows and extend the time to 64 bits before returning busyness to the user. In order to do that, a worker runs periodically at frequency = 1/8th the time it takes for the timestamp to wrap. As an example, that would be once in 27 seconds for a gt clock frequency of 19.2 MHz. Note: There might be an over-accounting of busyness due to the fact that GuC may be updating the total and start values while kmd is reading them. (i.e kmd may read the updated total and the stale start). In such a case, user may see higher busyness value followed by smaller ones which would eventually catch up to the higher value. v2: (Tvrtko) - Include details in commit message - Move intel engine busyness function into execlist code - Use union inside engine->stats - Use natural type for ping delay jiffies - Drop active_work condition checks - Use for_each_engine if iterating all engines - Drop seq locking, use spinlock at GuC level to update engine stats - Document worker specific details v3: (Tvrtko/Umesh) - Demarcate GuC and execlist stat objects with comments - Document known over-accounting issue in commit - Provide a consistent view of GuC state - Add hooks to gt park/unpark for GuC busyness - Stop/start worker in gt park/unpark path - Drop inline - Move spinlock and worker inits to GuC initialization - Drop helpers that are called only once v4: (Tvrtko/Matt/Umesh) - Drop addressed opens from commit message - Get runtime pm in ping, remove from the park path - Use cancel_delayed_work_sync in disable_submission path - Update stats during reset prepare - Skip ping if reset in progress - Explicitly name execlists and GuC stats objects - Since disable_submission is called from many places, move resetting stats to intel_guc_submission_reset_prepare v5: (Tvrtko) - Add a trylock helper that does not sleep and synchronize PMU event callbacks and worker with gt reset v6: (CI BAT failures) - DUTs using execlist submission failed to boot since __gt_unpark is called during i915 load. This ends up calling the GuC busyness unpark hook and results in kick-starting an uninitialized worker. Let park/unpark hooks check if GuC submission has been initialized. - drop cant_sleep() from trylock helper since rcu_read_lock takes care of that. v7: (CI) Fix igt@i915_selftest@live@gt_engines - For GuC mode of submission the engine busyness is derived from gt time domain. Use gt time elapsed as reference in the selftest. - Increase busyness calculation to 10ms duration to ensure batch runs longer and falls within the busyness tolerances in selftest. v8: - Use ktime_get in selftest as before - intel_reset_trylock_no_wait results in a lockdep splat that is not trivial to fix since the PMU callback runs in irq context and the reset paths are tightly knit into the driver. The test that uncovers this is igt@perf_pmu@faulting-read. Drop intel_reset_trylock_no_wait, instead use the reset_count to synchronize with gt reset during pmu callback. For the ping, continue to use intel_reset_trylock since ping is not run in irq context. - GuC PM timestamp does not tick when GuC is idle. This can potentially result in wrong busyness values when a context is active on the engine, but GuC is idle. Use the RING TIMESTAMP as GPU timestamp to process the GuC busyness stats. This works since both GuC timestamp and RING timestamp are synced with the same clock. - The busyness stats may get updated after the batch starts running. This delay causes the busyness reported for 100us duration to fall below 95% in the selftest. The only option at this time is to wait for GuC busyness to change from idle to active before we sample busyness over a 100us period. Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Umesh Nerlige Ramappa <umesh.nerlige.ramappa@intel.com> Acked-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Matthew Brost <matthew.brost@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211027004821.66097-2-umesh.nerlige.ramappa@intel.com
2021-10-26 17:48:21 -07:00
intel_guc_busyness_unpark(gt);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
intel_gt_unpark_requests(gt);
runtime_begin(gt);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
return 0;
}
drm/i915: Defer final intel_wakeref_put to process context As we need to acquire a mutex to serialise the final intel_wakeref_put, we need to ensure that we are in process context at that time. However, we want to allow operation on the intel_wakeref from inside timer and other hardirq context, which means that need to defer that final put to a workqueue. Inside the final wakeref puts, we are safe to operate in any context, as we are simply marking up the HW and state tracking for the potential sleep. It's only the serialisation with the potential sleeping getting that requires careful wait avoidance. This allows us to retain the immediate processing as before (we only need to sleep over the same races as the current mutex_lock). v2: Add a selftest to ensure we exercise the code while lockdep watches. v3: That test was extremely loud and complained about many things! v4: Not a whale! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111295 References: https://bugs.freedesktop.org/show_bug.cgi?id=111245 References: https://bugs.freedesktop.org/show_bug.cgi?id=111256 Fixes: 18398904ca9e ("drm/i915: Only recover active engines") Fixes: 51fbd8de87dc ("drm/i915/pmu: Atomically acquire the gt_pm wakeref") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190808202758.10453-1-chris@chris-wilson.co.uk
2019-08-08 21:27:58 +01:00
static int __gt_park(struct intel_wakeref *wf)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
struct intel_gt *gt = container_of(wf, typeof(*gt), wakeref);
intel_wakeref_t wakeref = fetch_and_zero(&gt->awake);
struct drm_i915_private *i915 = gt->i915;
struct intel_display *display = i915->display;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
GT_TRACE(gt, "\n");
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
runtime_end(gt);
intel_gt_park_requests(gt);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
drm/i915/pmu: Connect engine busyness stats from GuC to pmu With GuC handling scheduling, i915 is not aware of the time that a context is scheduled in and out of the engine. Since i915 pmu relies on this info to provide engine busyness to the user, GuC shares this info with i915 for all engines using shared memory. For each engine, this info contains: - total busyness: total time that the context was running (total) - id: id of the running context (id) - start timestamp: timestamp when the context started running (start) At the time (now) of sampling the engine busyness, if the id is valid (!= ~0), and start is non-zero, then the context is considered to be active and the engine busyness is calculated using the below equation engine busyness = total + (now - start) All times are obtained from the gt clock base. For inactive contexts, engine busyness is just equal to the total. The start and total values provided by GuC are 32 bits and wrap around in a few minutes. Since perf pmu provides busyness as 64 bit monotonically increasing values, there is a need for this implementation to account for overflows and extend the time to 64 bits before returning busyness to the user. In order to do that, a worker runs periodically at frequency = 1/8th the time it takes for the timestamp to wrap. As an example, that would be once in 27 seconds for a gt clock frequency of 19.2 MHz. Note: There might be an over-accounting of busyness due to the fact that GuC may be updating the total and start values while kmd is reading them. (i.e kmd may read the updated total and the stale start). In such a case, user may see higher busyness value followed by smaller ones which would eventually catch up to the higher value. v2: (Tvrtko) - Include details in commit message - Move intel engine busyness function into execlist code - Use union inside engine->stats - Use natural type for ping delay jiffies - Drop active_work condition checks - Use for_each_engine if iterating all engines - Drop seq locking, use spinlock at GuC level to update engine stats - Document worker specific details v3: (Tvrtko/Umesh) - Demarcate GuC and execlist stat objects with comments - Document known over-accounting issue in commit - Provide a consistent view of GuC state - Add hooks to gt park/unpark for GuC busyness - Stop/start worker in gt park/unpark path - Drop inline - Move spinlock and worker inits to GuC initialization - Drop helpers that are called only once v4: (Tvrtko/Matt/Umesh) - Drop addressed opens from commit message - Get runtime pm in ping, remove from the park path - Use cancel_delayed_work_sync in disable_submission path - Update stats during reset prepare - Skip ping if reset in progress - Explicitly name execlists and GuC stats objects - Since disable_submission is called from many places, move resetting stats to intel_guc_submission_reset_prepare v5: (Tvrtko) - Add a trylock helper that does not sleep and synchronize PMU event callbacks and worker with gt reset v6: (CI BAT failures) - DUTs using execlist submission failed to boot since __gt_unpark is called during i915 load. This ends up calling the GuC busyness unpark hook and results in kick-starting an uninitialized worker. Let park/unpark hooks check if GuC submission has been initialized. - drop cant_sleep() from trylock helper since rcu_read_lock takes care of that. v7: (CI) Fix igt@i915_selftest@live@gt_engines - For GuC mode of submission the engine busyness is derived from gt time domain. Use gt time elapsed as reference in the selftest. - Increase busyness calculation to 10ms duration to ensure batch runs longer and falls within the busyness tolerances in selftest. v8: - Use ktime_get in selftest as before - intel_reset_trylock_no_wait results in a lockdep splat that is not trivial to fix since the PMU callback runs in irq context and the reset paths are tightly knit into the driver. The test that uncovers this is igt@perf_pmu@faulting-read. Drop intel_reset_trylock_no_wait, instead use the reset_count to synchronize with gt reset during pmu callback. For the ping, continue to use intel_reset_trylock since ping is not run in irq context. - GuC PM timestamp does not tick when GuC is idle. This can potentially result in wrong busyness values when a context is active on the engine, but GuC is idle. Use the RING TIMESTAMP as GPU timestamp to process the GuC busyness stats. This works since both GuC timestamp and RING timestamp are synced with the same clock. - The busyness stats may get updated after the batch starts running. This delay causes the busyness reported for 100us duration to fall below 95% in the selftest. The only option at this time is to wait for GuC busyness to change from idle to active before we sample busyness over a 100us period. Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Umesh Nerlige Ramappa <umesh.nerlige.ramappa@intel.com> Acked-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Matthew Brost <matthew.brost@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211027004821.66097-2-umesh.nerlige.ramappa@intel.com
2021-10-26 17:48:21 -07:00
intel_guc_busyness_park(gt);
i915_vma_parked(gt);
i915_pmu_gt_parked(gt);
intel_rps_park(&gt->rps);
intel_rc6_park(&gt->rc6);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
drm/i915: Defer final intel_wakeref_put to process context As we need to acquire a mutex to serialise the final intel_wakeref_put, we need to ensure that we are in process context at that time. However, we want to allow operation on the intel_wakeref from inside timer and other hardirq context, which means that need to defer that final put to a workqueue. Inside the final wakeref puts, we are safe to operate in any context, as we are simply marking up the HW and state tracking for the potential sleep. It's only the serialisation with the potential sleeping getting that requires careful wait avoidance. This allows us to retain the immediate processing as before (we only need to sleep over the same races as the current mutex_lock). v2: Add a selftest to ensure we exercise the code while lockdep watches. v3: That test was extremely loud and complained about many things! v4: Not a whale! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111295 References: https://bugs.freedesktop.org/show_bug.cgi?id=111245 References: https://bugs.freedesktop.org/show_bug.cgi?id=111256 Fixes: 18398904ca9e ("drm/i915: Only recover active engines") Fixes: 51fbd8de87dc ("drm/i915/pmu: Atomically acquire the gt_pm wakeref") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190808202758.10453-1-chris@chris-wilson.co.uk
2019-08-08 21:27:58 +01:00
/* Everything switched off, flush any residual interrupt just in case */
intel_synchronize_irq(i915);
/* Defer dropping the display power well for 100ms, it's slow! */
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
GEM_BUG_ON(!wakeref);
intel_display_power_put_async(display, POWER_DOMAIN_GT_IRQ, wakeref);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
return 0;
}
drm/i915: Defer final intel_wakeref_put to process context As we need to acquire a mutex to serialise the final intel_wakeref_put, we need to ensure that we are in process context at that time. However, we want to allow operation on the intel_wakeref from inside timer and other hardirq context, which means that need to defer that final put to a workqueue. Inside the final wakeref puts, we are safe to operate in any context, as we are simply marking up the HW and state tracking for the potential sleep. It's only the serialisation with the potential sleeping getting that requires careful wait avoidance. This allows us to retain the immediate processing as before (we only need to sleep over the same races as the current mutex_lock). v2: Add a selftest to ensure we exercise the code while lockdep watches. v3: That test was extremely loud and complained about many things! v4: Not a whale! Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111295 References: https://bugs.freedesktop.org/show_bug.cgi?id=111245 References: https://bugs.freedesktop.org/show_bug.cgi?id=111256 Fixes: 18398904ca9e ("drm/i915: Only recover active engines") Fixes: 51fbd8de87dc ("drm/i915/pmu: Atomically acquire the gt_pm wakeref") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190808202758.10453-1-chris@chris-wilson.co.uk
2019-08-08 21:27:58 +01:00
static const struct intel_wakeref_ops wf_ops = {
.get = __gt_unpark,
.put = __gt_park,
};
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
void intel_gt_pm_init_early(struct intel_gt *gt)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
/*
* We access the runtime_pm structure via gt->i915 here rather than
* gt->uncore as we do elsewhere in the file because gt->uncore is not
* yet initialized for all tiles at this point in the driver startup.
* runtime_pm is per-device rather than per-tile, so this is still the
* correct structure.
*/
intel_wakeref_init(&gt->wakeref, gt->i915, &wf_ops, "GT");
seqcount_mutex_init(&gt->stats.lock, &gt->wakeref.mutex);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
}
void intel_gt_pm_init(struct intel_gt *gt)
{
/*
* Enabling power-management should be "self-healing". If we cannot
* enable a feature, simply leave it disabled with a notice to the
* user.
*/
intel_rc6_init(&gt->rc6);
intel_rps_init(&gt->rps);
}
static bool reset_engines(struct intel_gt *gt)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
if (intel_gt_gpu_reset_clobbers_display(gt))
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
return false;
return intel_gt_reset_all_engines(gt) == 0;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
}
static void gt_sanitize(struct intel_gt *gt, bool force)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
intel_wakeref_t wakeref;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
GT_TRACE(gt, "force:%s\n", str_yes_no(force));
/* Use a raw wakeref to avoid calling intel_display_power_get early */
wakeref = intel_runtime_pm_get(gt->uncore->rpm);
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
intel_gt_check_clock_frequency(gt);
/*
* As we have just resumed the machine and woken the device up from
* deep PCI sleep (presumably D3_cold), assume the HW has been reset
* back to defaults, recovering from whatever wedged state we left it
* in and so worth trying to use the device once more.
*/
if (intel_gt_is_wedged(gt))
intel_gt_unset_wedged(gt);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
/* For GuC mode, ensure submission is disabled before stopping ring */
intel_uc_reset_prepare(&gt->uc);
for_each_engine(engine, gt, id) {
if (engine->reset.prepare)
engine->reset.prepare(engine);
drm/i915/gt: Suspend tasklets before resume sanitization It is possible for a residual tasklet to be pending execution as we resume (whether that's some prior test kicking off the tasklet, or if we are in a suspend/resume stress test). As such, we do not want that tasklet to execute in the middle of our sanitization, such that it sees the poisoned state. For example, <4>[ 449.386553] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <4>[ 449.386555] CPU: 1 PID: 5115 Comm: i915_selftest Tainted: G U W 5.7.0-rc4-CI-CI_DRM_8472+ #1 <4>[ 449.386556] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake U DDR4 SODIMM PD RVP TLC, BIOS ICLSFWR1.R00.3183.A00.1905020411 05/02/2019 <4>[ 449.386585] RIP: 0010:process_csb+0x6bf/0x830 [i915] <4>[ 449.386588] Code: 00 48 c7 c2 10 bc 4c a0 48 c7 c7 d4 75 34 a0 e8 87 0e e6 e0 bf 01 00 00 00 e8 9d e0 e5 e0 31 f6 bf 09 00 00 00 e8 e1 ba d6 e0 <0f> 0b 8b 87 10 05 00 00 85 c0 0f 85 5f f9 ff ff 48 c7 c1 70 a5 4f <4>[ 449.386591] RSP: 0018:ffffc90000170ea0 EFLAGS: 00010297 <4>[ 449.386594] RAX: 0000000080000101 RBX: 0000000000000000 RCX: 0000000000000000 <4>[ 449.386596] RDX: ffff88849d5bc040 RSI: 0000000000000000 RDI: 0000000000000009 <4>[ 449.386598] RBP: ffffc90000170f00 R08: 0000000000000000 R09: 0000000000000000 <4>[ 449.386600] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88843ccea018 <4>[ 449.386602] R13: ffff88843ccea658 R14: ffff88843ccea640 R15: ffff88843ccea000 <4>[ 449.386605] FS: 00007f826a813300(0000) GS:ffff88849fe80000(0000) knlGS:0000000000000000 <4>[ 449.386607] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 449.386609] CR2: 0000560366b94280 CR3: 000000048ba02002 CR4: 0000000000760ee0 <4>[ 449.386611] PKRU: 55555554 <4>[ 449.386613] Call Trace: <4>[ 449.386616] <IRQ> <4>[ 449.386646] ? execlists_submission_tasklet+0xcf/0x140 [i915] <4>[ 449.386674] execlists_submission_tasklet+0x2f/0x140 [i915] <4>[ 449.386679] tasklet_action_common.isra.16+0x6c/0x1c0 <4>[ 449.386684] __do_softirq+0xdf/0x49e <4>[ 449.386687] irq_exit+0xba/0xc0 <4>[ 449.386690] smp_apic_timer_interrupt+0xb7/0x280 <4>[ 449.386693] apic_timer_interrupt+0xf/0x20 <4>[ 449.386695] </IRQ> <4>[ 449.386698] RIP: 0010:_raw_spin_unlock_irqrestore+0x49/0x60 <4>[ 449.386701] Code: c7 02 75 1f 53 9d e8 26 ab 75 ff bf 01 00 00 00 e8 7c a3 69 ff 65 8b 05 7d 9b 5c 7e 85 c0 74 0c 5b 5d c3 e8 09 aa 75 ff 53 9d <eb> df e8 ca 39 5b ff 5b 5d c3 0f 1f 00 66 2e 0f 1f 84 00 00 00 00 <4>[ 449.386703] RSP: 0018:ffffc90000a6b950 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 <4>[ 449.386706] RAX: 0000000080000001 RBX: 0000000000000202 RCX: 0000000000000000 <4>[ 449.386708] RDX: ffff88849d5bc040 RSI: ffff88849d5bc900 RDI: ffffffff82386f12 <4>[ 449.386710] RBP: ffff88847d400f00 R08: ffff88849d5bc900 R09: 0000000000000000 <4>[ 449.386712] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000ffff0b0b <4>[ 449.386714] R13: 000000000000000c R14: ffff88847d40bf70 R15: ffff88847d40cef8 <4>[ 449.386742] reset_csb_pointers+0x59/0x140 [i915] <4>[ 449.386769] execlists_sanitize+0x3e/0x60 [i915] <4>[ 449.386797] gt_sanitize+0xd6/0x260 [i915] As part of the reset preparation, engine->reset.prepare() prevents the tasklet from running, so pull the sanitization inside the critical section for reset. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/1812 Fixes: 23122a4d992b ("drm/i915/gt: Scrub execlists state on resume") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200513122826.27484-1-chris@chris-wilson.co.uk
2020-05-13 13:28:26 +01:00
if (engine->sanitize)
engine->sanitize(engine);
}
drm/i915/gt: Suspend tasklets before resume sanitization It is possible for a residual tasklet to be pending execution as we resume (whether that's some prior test kicking off the tasklet, or if we are in a suspend/resume stress test). As such, we do not want that tasklet to execute in the middle of our sanitization, such that it sees the poisoned state. For example, <4>[ 449.386553] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI <4>[ 449.386555] CPU: 1 PID: 5115 Comm: i915_selftest Tainted: G U W 5.7.0-rc4-CI-CI_DRM_8472+ #1 <4>[ 449.386556] Hardware name: Intel Corporation Ice Lake Client Platform/IceLake U DDR4 SODIMM PD RVP TLC, BIOS ICLSFWR1.R00.3183.A00.1905020411 05/02/2019 <4>[ 449.386585] RIP: 0010:process_csb+0x6bf/0x830 [i915] <4>[ 449.386588] Code: 00 48 c7 c2 10 bc 4c a0 48 c7 c7 d4 75 34 a0 e8 87 0e e6 e0 bf 01 00 00 00 e8 9d e0 e5 e0 31 f6 bf 09 00 00 00 e8 e1 ba d6 e0 <0f> 0b 8b 87 10 05 00 00 85 c0 0f 85 5f f9 ff ff 48 c7 c1 70 a5 4f <4>[ 449.386591] RSP: 0018:ffffc90000170ea0 EFLAGS: 00010297 <4>[ 449.386594] RAX: 0000000080000101 RBX: 0000000000000000 RCX: 0000000000000000 <4>[ 449.386596] RDX: ffff88849d5bc040 RSI: 0000000000000000 RDI: 0000000000000009 <4>[ 449.386598] RBP: ffffc90000170f00 R08: 0000000000000000 R09: 0000000000000000 <4>[ 449.386600] R10: 0000000000000000 R11: 0000000000000000 R12: ffff88843ccea018 <4>[ 449.386602] R13: ffff88843ccea658 R14: ffff88843ccea640 R15: ffff88843ccea000 <4>[ 449.386605] FS: 00007f826a813300(0000) GS:ffff88849fe80000(0000) knlGS:0000000000000000 <4>[ 449.386607] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 449.386609] CR2: 0000560366b94280 CR3: 000000048ba02002 CR4: 0000000000760ee0 <4>[ 449.386611] PKRU: 55555554 <4>[ 449.386613] Call Trace: <4>[ 449.386616] <IRQ> <4>[ 449.386646] ? execlists_submission_tasklet+0xcf/0x140 [i915] <4>[ 449.386674] execlists_submission_tasklet+0x2f/0x140 [i915] <4>[ 449.386679] tasklet_action_common.isra.16+0x6c/0x1c0 <4>[ 449.386684] __do_softirq+0xdf/0x49e <4>[ 449.386687] irq_exit+0xba/0xc0 <4>[ 449.386690] smp_apic_timer_interrupt+0xb7/0x280 <4>[ 449.386693] apic_timer_interrupt+0xf/0x20 <4>[ 449.386695] </IRQ> <4>[ 449.386698] RIP: 0010:_raw_spin_unlock_irqrestore+0x49/0x60 <4>[ 449.386701] Code: c7 02 75 1f 53 9d e8 26 ab 75 ff bf 01 00 00 00 e8 7c a3 69 ff 65 8b 05 7d 9b 5c 7e 85 c0 74 0c 5b 5d c3 e8 09 aa 75 ff 53 9d <eb> df e8 ca 39 5b ff 5b 5d c3 0f 1f 00 66 2e 0f 1f 84 00 00 00 00 <4>[ 449.386703] RSP: 0018:ffffc90000a6b950 EFLAGS: 00000202 ORIG_RAX: ffffffffffffff13 <4>[ 449.386706] RAX: 0000000080000001 RBX: 0000000000000202 RCX: 0000000000000000 <4>[ 449.386708] RDX: ffff88849d5bc040 RSI: ffff88849d5bc900 RDI: ffffffff82386f12 <4>[ 449.386710] RBP: ffff88847d400f00 R08: ffff88849d5bc900 R09: 0000000000000000 <4>[ 449.386712] R10: 0000000000000000 R11: 0000000000000000 R12: 00000000ffff0b0b <4>[ 449.386714] R13: 000000000000000c R14: ffff88847d40bf70 R15: ffff88847d40cef8 <4>[ 449.386742] reset_csb_pointers+0x59/0x140 [i915] <4>[ 449.386769] execlists_sanitize+0x3e/0x60 [i915] <4>[ 449.386797] gt_sanitize+0xd6/0x260 [i915] As part of the reset preparation, engine->reset.prepare() prevents the tasklet from running, so pull the sanitization inside the critical section for reset. Closes: https://gitlab.freedesktop.org/drm/intel/-/issues/1812 Fixes: 23122a4d992b ("drm/i915/gt: Scrub execlists state on resume") Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200513122826.27484-1-chris@chris-wilson.co.uk
2020-05-13 13:28:26 +01:00
if (reset_engines(gt) || force) {
for_each_engine(engine, gt, id)
__intel_engine_reset(engine, false);
}
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
intel_uc_reset(&gt->uc, false);
for_each_engine(engine, gt, id)
if (engine->reset.finish)
engine->reset.finish(engine);
intel_rps_sanitize(&gt->rps);
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
intel_runtime_pm_put(gt->uncore->rpm, wakeref);
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
}
void intel_gt_pm_fini(struct intel_gt *gt)
{
intel_rc6_fini(&gt->rc6);
}
void intel_gt_resume_early(struct intel_gt *gt)
{
/*
* Sanitize steer semaphores during driver resume. This is necessary
* to address observed cases of steer semaphores being
* held after a suspend operation. Confirmation from the hardware team
* assures the safety of this operation, as no lock acquisitions
* by other agents occur during driver load/resume process.
*/
intel_gt_mcr_lock_sanitize(gt);
intel_uncore_resume_early(gt->uncore);
intel_gt_check_and_clear_faults(gt);
}
int intel_gt_resume(struct intel_gt *gt)
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
intel_wakeref_t wakeref;
int err;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
err = intel_gt_has_unrecoverable_error(gt);
if (err)
return err;
GT_TRACE(gt, "\n");
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
/*
* After resume, we may need to poke into the pinned kernel
* contexts to paper over any damage caused by the sudden suspend.
* Only the kernel contexts should remain pinned over suspend,
* allowing us to fixup the user contexts on their first pin.
*/
gt_sanitize(gt, true);
wakeref = intel_gt_pm_get(gt);
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
intel_rc6_sanitize(&gt->rc6);
if (intel_gt_is_wedged(gt)) {
err = -EIO;
goto out_fw;
}
/* Only when the HW is re-initialised, can we replay the requests */
err = intel_gt_init_hw(gt);
if (err) {
gt_probe_error(gt, "Failed to initialize GPU, declaring it wedged!\n");
goto err_wedged;
}
intel_uc_reset_finish(&gt->uc);
intel_rps_enable(&gt->rps);
intel_llc_enable(&gt->llc);
for_each_engine(engine, gt, id) {
intel_engine_pm_get(engine);
engine->serial++; /* kernel context lost */
err = intel_engine_resume(engine);
intel_engine_pm_put(engine);
if (err) {
gt_err(gt, "Failed to restart %s (%d)\n",
engine->name, err);
goto err_wedged;
}
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
}
intel_rc6_enable(&gt->rc6);
intel_uc_resume(&gt->uc);
user_forcewake(gt, false);
out_fw:
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
intel_gt_pm_put(gt, wakeref);
intel_gt_bind_context_set_ready(gt);
return err;
err_wedged:
intel_gt_set_wedged(gt);
goto out_fw;
drm/i915: Invert the GEM wakeref hierarchy In the current scheme, on submitting a request we take a single global GEM wakeref, which trickles down to wake up all GT power domains. This is undesirable as we would like to be able to localise our power management to the available power domains and to remove the global GEM operations from the heart of the driver. (The intent there is to push global GEM decisions to the boundary as used by the GEM user interface.) Now during request construction, each request is responsible via its logical context to acquire a wakeref on each power domain it intends to utilize. Currently, each request takes a wakeref on the engine(s) and the engines themselves take a chipset wakeref. This gives us a transition on each engine which we can extend if we want to insert more powermangement control (such as soft rc6). The global GEM operations that currently require a struct_mutex are reduced to listening to pm events from the chipset GT wakeref. As we reduce the struct_mutex requirement, these listeners should evaporate. Perhaps the biggest immediate change is that this removes the struct_mutex requirement around GT power management, allowing us greater flexibility in request construction. Another important knock-on effect, is that by tracking engine usage, we can insert a switch back to the kernel context on that engine immediately, avoiding any extra delay or inserting global synchronisation barriers. This makes tracking when an engine and its associated contexts are idle much easier -- important for when we forgo our assumed execution ordering and need idle barriers to unpin used contexts. In the process, it means we remove a large chunk of code whose only purpose was to switch back to the kernel context. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
2019-04-24 21:07:17 +01:00
}
static void wait_for_suspend(struct intel_gt *gt)
{
if (!intel_gt_pm_is_awake(gt))
return;
if (intel_gt_wait_for_idle(gt, I915_GT_SUSPEND_IDLE_TIMEOUT) == -ETIME) {
/*
* Forcibly cancel outstanding work and leave
* the gpu quiet.
*/
intel_gt_set_wedged(gt);
intel_gt_retire_requests(gt);
}
intel_gt_pm_wait_for_idle(gt);
}
void intel_gt_suspend_prepare(struct intel_gt *gt)
{
intel_gt_bind_context_set_unready(gt);
user_forcewake(gt, true);
wait_for_suspend(gt);
}
static suspend_state_t pm_suspend_target(void)
{
#if IS_ENABLED(CONFIG_SUSPEND) && IS_ENABLED(CONFIG_PM_SLEEP)
return pm_suspend_target_state;
#else
return PM_SUSPEND_TO_IDLE;
#endif
}
void intel_gt_suspend_late(struct intel_gt *gt)
{
intel_wakeref_t wakeref;
/* We expect to be idle already; but also want to be independent */
wait_for_suspend(gt);
if (is_mock_gt(gt))
return;
GEM_BUG_ON(gt->awake);
drm/i915 Implement LMEM backup and restore for suspend / resume Just evict unpinned objects to system. For pinned LMEM objects, make a backup system object and blit the contents to that. Backup is performed in three steps, 1: Opportunistically evict evictable objects using the gpu blitter. 2: After gt idle, evict evictable objects using the gpu blitter. This will be modified in an upcoming patch to backup pinned objects that are not used by the blitter itself. 3: Backup remaining pinned objects using memcpy. Also move uC suspend to after 2) to make sure we have a functional GuC during 2) if using GuC submission. v2: - Major refactor to make sure gem_exec_suspend@hang-SX subtests work, and suspend / resume works with a slightly modified GuC submission enabling patch series. v3: - Fix a potential use-after-free (Matthew Auld) - Use i915_gem_object_create_shmem() instead of i915_gem_object_create_region (Matthew Auld) - Minor simplifications (Matthew Auld) - Fix up kerneldoc for i195_ttm_restore_region(). - Final lmem_suspend() call moved to i915_gem_backup_suspend from i915_gem_suspend_late, since the latter gets called at driver unload and we don't unnecessarily want to run it at that time. v4: - Interface change of ttm- & lmem suspend / resume functions to use flags rather than bools. (Matthew Auld) - Completely drop the i915_gem_backup_suspend change (Matthew Auld) Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20210922062527.865433-5-thomas.hellstrom@linux.intel.com
2021-09-22 08:25:22 +02:00
intel_uc_suspend(&gt->uc);
/*
* On disabling the device, we want to turn off HW access to memory
* that we no longer own.
*
* However, not all suspend-states disable the device. S0 (s2idle)
* is effectively runtime-suspend, the device is left powered on
* but needs to be put into a low power state. We need to keep
* powermanagement enabled, but we also retain system state and so
* it remains safe to keep on using our allocated memory.
*/
if (pm_suspend_target() == PM_SUSPEND_TO_IDLE)
return;
with_intel_runtime_pm(gt->uncore->rpm, wakeref) {
intel_rps_disable(&gt->rps);
intel_rc6_disable(&gt->rc6);
intel_llc_disable(&gt->llc);
}
gt_sanitize(gt, false);
GT_TRACE(gt, "\n");
}
void intel_gt_runtime_suspend(struct intel_gt *gt)
{
intel_gt_bind_context_set_unready(gt);
intel_uc_runtime_suspend(&gt->uc);
GT_TRACE(gt, "\n");
}
int intel_gt_runtime_resume(struct intel_gt *gt)
{
int ret;
GT_TRACE(gt, "\n");
intel_gt_init_swizzling(gt);
intel_ggtt_restore_fences(gt->ggtt);
ret = intel_uc_runtime_resume(&gt->uc);
if (ret)
return ret;
intel_gt_bind_context_set_ready(gt);
return 0;
}
static ktime_t __intel_gt_get_awake_time(const struct intel_gt *gt)
{
ktime_t total = gt->stats.total;
if (gt->stats.active)
total = ktime_add(total,
ktime_sub(ktime_get(), gt->stats.start));
return total;
}
ktime_t intel_gt_get_awake_time(const struct intel_gt *gt)
{
unsigned int seq;
ktime_t total;
do {
seq = read_seqcount_begin(&gt->stats.lock);
total = __intel_gt_get_awake_time(gt);
} while (read_seqcount_retry(&gt->stats.lock, seq));
return total;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_gt_pm.c"
#endif