2019-09-20 17:29:22 +05:30
|
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
/*
|
|
|
|
* Copyright © 2019 Intel Corporation
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2025-04-17 12:10:37 +03:00
|
|
|
#include <drm/drm_print.h>
|
2024-09-30 20:04:06 +03:00
|
|
|
#include <drm/drm_vblank.h>
|
|
|
|
|
2025-04-17 12:10:37 +03:00
|
|
|
#include "i915_utils.h"
|
2023-06-06 22:15:02 +03:00
|
|
|
#include "intel_crtc.h"
|
2021-04-30 17:39:44 +03:00
|
|
|
#include "intel_de.h"
|
2025-06-06 13:22:56 +03:00
|
|
|
#include "intel_display_regs.h"
|
2025-03-20 17:03:58 +02:00
|
|
|
#include "intel_display_rpm.h"
|
2019-09-20 17:29:22 +05:30
|
|
|
#include "intel_display_types.h"
|
2022-09-08 19:57:02 +03:00
|
|
|
#include "intel_dsb.h"
|
2023-11-10 08:55:18 +05:30
|
|
|
#include "intel_dsb_buffer.h"
|
2023-03-16 15:29:36 +02:00
|
|
|
#include "intel_dsb_regs.h"
|
2023-06-06 22:15:02 +03:00
|
|
|
#include "intel_vblank.h"
|
|
|
|
#include "intel_vrr.h"
|
|
|
|
#include "skl_watermark.h"
|
2022-09-08 19:57:02 +03:00
|
|
|
|
2023-11-10 08:55:18 +05:30
|
|
|
#define CACHELINE_BYTES 64
|
2022-09-08 19:57:02 +03:00
|
|
|
|
|
|
|
struct intel_dsb {
|
2024-05-31 14:40:58 +03:00
|
|
|
enum intel_dsb_id id;
|
2022-11-23 17:26:34 +02:00
|
|
|
|
2023-11-10 08:55:18 +05:30
|
|
|
struct intel_dsb_buffer dsb_buf;
|
2022-11-23 17:26:34 +02:00
|
|
|
struct intel_crtc *crtc;
|
2022-09-08 19:57:02 +03:00
|
|
|
|
|
|
|
/*
|
2022-12-16 02:38:07 +02:00
|
|
|
* maximum number of dwords the buffer will hold.
|
2022-09-08 19:57:02 +03:00
|
|
|
*/
|
2022-12-16 02:38:07 +02:00
|
|
|
unsigned int size;
|
2022-09-08 19:57:02 +03:00
|
|
|
|
|
|
|
/*
|
2022-12-16 02:38:07 +02:00
|
|
|
* free_pos will point the first free dword and
|
|
|
|
* help in calculating tail of command buffer.
|
|
|
|
*/
|
|
|
|
unsigned int free_pos;
|
|
|
|
|
|
|
|
/*
|
2024-09-30 20:04:03 +03:00
|
|
|
* Previously emitted DSB instruction. Used to
|
|
|
|
* identify/adjust the instruction for indexed
|
|
|
|
* register writes.
|
|
|
|
*/
|
|
|
|
u32 ins[2];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start of the previously emitted DSB instruction.
|
|
|
|
* Used to adjust the instruction for indexed
|
|
|
|
* register writes.
|
2022-09-08 19:57:02 +03:00
|
|
|
*/
|
2022-12-16 02:38:07 +02:00
|
|
|
unsigned int ins_start_offset;
|
2023-06-06 22:15:02 +03:00
|
|
|
|
2024-06-24 22:10:26 +03:00
|
|
|
u32 chicken;
|
2024-06-24 22:10:22 +03:00
|
|
|
int hw_dewake_scanline;
|
2022-09-08 19:57:02 +03:00
|
|
|
};
|
2019-09-20 17:29:22 +05:30
|
|
|
|
2019-09-20 17:29:30 +05:30
|
|
|
/**
|
|
|
|
* DOC: DSB
|
|
|
|
*
|
|
|
|
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
|
|
|
|
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
|
|
|
|
* engine that can be programmed to download the DSB from memory.
|
|
|
|
* It allows driver to batch submit display HW programming. This helps to
|
|
|
|
* reduce loading time and CPU activity, thereby making the context switch
|
|
|
|
* faster. DSB Support added from Gen12 Intel graphics based platform.
|
|
|
|
*
|
|
|
|
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
|
|
|
|
* registers.
|
|
|
|
*
|
|
|
|
* DSB HW can support only register writes (both indexed and direct MMIO
|
|
|
|
* writes). There are no registers reads possible with DSB HW engine.
|
|
|
|
*/
|
|
|
|
|
2019-09-23 10:09:23 +03:00
|
|
|
/* DSB opcodes. */
|
|
|
|
#define DSB_OPCODE_SHIFT 24
|
2022-12-16 02:38:08 +02:00
|
|
|
#define DSB_OPCODE_NOOP 0x0
|
2019-09-23 10:09:23 +03:00
|
|
|
#define DSB_OPCODE_MMIO_WRITE 0x1
|
2023-06-06 22:14:50 +03:00
|
|
|
#define DSB_BYTE_EN 0xf
|
|
|
|
#define DSB_BYTE_EN_SHIFT 20
|
|
|
|
#define DSB_REG_VALUE_MASK 0xfffff
|
2022-12-16 02:38:08 +02:00
|
|
|
#define DSB_OPCODE_WAIT_USEC 0x2
|
2023-06-06 22:14:50 +03:00
|
|
|
#define DSB_OPCODE_WAIT_SCANLINE 0x3
|
2022-12-16 02:38:08 +02:00
|
|
|
#define DSB_OPCODE_WAIT_VBLANKS 0x4
|
|
|
|
#define DSB_OPCODE_WAIT_DSL_IN 0x5
|
|
|
|
#define DSB_OPCODE_WAIT_DSL_OUT 0x6
|
2023-06-06 22:14:50 +03:00
|
|
|
#define DSB_SCANLINE_UPPER_SHIFT 20
|
|
|
|
#define DSB_SCANLINE_LOWER_SHIFT 0
|
2022-12-16 02:38:08 +02:00
|
|
|
#define DSB_OPCODE_INTERRUPT 0x7
|
2019-09-20 17:29:24 +05:30
|
|
|
#define DSB_OPCODE_INDEXED_WRITE 0x9
|
2023-06-06 22:14:50 +03:00
|
|
|
/* see DSB_REG_VALUE_MASK */
|
2022-12-16 02:38:08 +02:00
|
|
|
#define DSB_OPCODE_POLL 0xA
|
2023-06-06 22:14:50 +03:00
|
|
|
/* see DSB_REG_VALUE_MASK */
|
2025-05-23 11:50:34 +05:30
|
|
|
#define DSB_OPCODE_GOSUB 0xC /* ptl+ */
|
|
|
|
#define DSB_GOSUB_HEAD_SHIFT 26
|
|
|
|
#define DSB_GOSUB_TAIL_SHIFT 0
|
|
|
|
#define DSB_GOSUB_CONVERT_ADDR(x) ((x) >> 6)
|
2019-09-23 10:09:23 +03:00
|
|
|
|
2024-06-24 22:10:25 +03:00
|
|
|
static bool pre_commit_is_vrr_active(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
2024-06-24 22:10:23 +03:00
|
|
|
{
|
2024-06-24 22:10:25 +03:00
|
|
|
const struct intel_crtc_state *old_crtc_state =
|
|
|
|
intel_atomic_get_old_crtc_state(state, crtc);
|
|
|
|
const struct intel_crtc_state *new_crtc_state =
|
|
|
|
intel_atomic_get_new_crtc_state(state, crtc);
|
|
|
|
|
|
|
|
/* VRR will be enabled afterwards, if necessary */
|
|
|
|
if (intel_crtc_needs_modeset(new_crtc_state))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* VRR will have been disabled during intel_pre_plane_update() */
|
|
|
|
return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc);
|
|
|
|
}
|
|
|
|
|
2024-12-10 23:10:01 +02:00
|
|
|
static int dsb_vblank_delay(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
2024-09-30 20:04:07 +03:00
|
|
|
{
|
2024-12-10 23:10:01 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
|
|
|
|
|
|
|
if (pre_commit_is_vrr_active(state, crtc))
|
2025-02-08 00:31:54 +02:00
|
|
|
/*
|
|
|
|
* When the push is sent during vblank it will trigger
|
|
|
|
* on the next scanline, hence we have up to one extra
|
|
|
|
* scanline until the delayed vblank occurs after
|
|
|
|
* TRANS_PUSH has been written.
|
|
|
|
*/
|
|
|
|
return intel_vrr_vblank_delay(crtc_state) + 1;
|
2024-12-10 23:10:01 +02:00
|
|
|
else
|
|
|
|
return intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
|
2024-09-30 20:04:07 +03:00
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:25 +03:00
|
|
|
static int dsb_vtotal(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
|
|
|
{
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2024-06-24 22:10:25 +03:00
|
|
|
|
|
|
|
if (pre_commit_is_vrr_active(state, crtc))
|
2024-12-10 23:09:53 +02:00
|
|
|
return intel_vrr_vmax_vtotal(crtc_state);
|
2024-06-24 22:10:25 +03:00
|
|
|
else
|
|
|
|
return intel_mode_vtotal(&crtc_state->hw.adjusted_mode);
|
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:29 +03:00
|
|
|
static int dsb_dewake_scanline_start(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
2024-06-24 22:10:25 +03:00
|
|
|
{
|
2025-04-08 16:38:37 +03:00
|
|
|
struct intel_display *display = to_intel_display(state);
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2025-04-08 16:38:37 +03:00
|
|
|
unsigned int latency = skl_watermark_max_latency(display, 0);
|
2024-06-24 22:10:23 +03:00
|
|
|
|
2024-06-24 22:10:24 +03:00
|
|
|
return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) -
|
|
|
|
intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency);
|
2024-06-24 22:10:23 +03:00
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:29 +03:00
|
|
|
static int dsb_dewake_scanline_end(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
|
|
|
{
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2024-06-24 22:10:29 +03:00
|
|
|
|
|
|
|
return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode);
|
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:25 +03:00
|
|
|
static int dsb_scanline_to_hw(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc, int scanline)
|
|
|
|
{
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2024-06-24 22:10:25 +03:00
|
|
|
int vtotal = dsb_vtotal(state, crtc);
|
|
|
|
|
|
|
|
return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal;
|
|
|
|
}
|
|
|
|
|
2025-02-13 08:48:00 +02:00
|
|
|
/*
|
|
|
|
* Bspec suggests that we should always set DSB_SKIP_WAITS_EN. We have approach
|
|
|
|
* different from what is explained in Bspec on how flip is considered being
|
|
|
|
* complete. We are waiting for vblank in DSB and generate interrupt when it
|
|
|
|
* happens and this interrupt is considered as indication of completion -> we
|
|
|
|
* definitely do not want to skip vblank wait. We also have concern what comes
|
|
|
|
* to skipping vblank evasion. I.e. arming registers are latched before we have
|
|
|
|
* managed writing them. Due to these reasons we are not setting
|
|
|
|
* DSB_SKIP_WAITS_EN.
|
|
|
|
*/
|
2024-06-24 22:10:26 +03:00
|
|
|
static u32 dsb_chicken(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc)
|
2024-06-24 22:10:23 +03:00
|
|
|
{
|
2024-06-24 22:10:26 +03:00
|
|
|
if (pre_commit_is_vrr_active(state, crtc))
|
2025-02-13 08:48:00 +02:00
|
|
|
return DSB_CTRL_WAIT_SAFE_WINDOW |
|
2024-06-24 22:10:23 +03:00
|
|
|
DSB_CTRL_NO_WAIT_VBLANK |
|
|
|
|
DSB_INST_WAIT_SAFE_WINDOW |
|
|
|
|
DSB_INST_NO_WAIT_VBLANK;
|
|
|
|
else
|
2025-02-13 08:48:00 +02:00
|
|
|
return 0;
|
2024-06-24 22:10:23 +03:00
|
|
|
}
|
|
|
|
|
2022-12-16 02:38:02 +02:00
|
|
|
static bool assert_dsb_has_room(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-06-11 16:33:40 +03:00
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
2022-12-16 02:38:02 +02:00
|
|
|
|
|
|
|
/* each instruction is 2 dwords */
|
2024-06-11 16:33:40 +03:00
|
|
|
return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2,
|
2023-01-18 18:30:29 +02:00
|
|
|
"[CRTC:%d:%s] DSB %d buffer overflow\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb->id);
|
2022-12-16 02:38:02 +02:00
|
|
|
}
|
|
|
|
|
2025-05-23 11:50:32 +05:30
|
|
|
static bool assert_dsb_tail_is_aligned(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
|
|
|
|
|
|
|
return !drm_WARN_ON(display->drm,
|
|
|
|
!IS_ALIGNED(dsb->free_pos * 4, CACHELINE_BYTES));
|
|
|
|
}
|
|
|
|
|
2023-06-06 22:14:48 +03:00
|
|
|
static void intel_dsb_dump(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-06-11 16:33:40 +03:00
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
2023-06-06 22:14:48 +03:00
|
|
|
int i;
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n",
|
2023-06-06 22:14:48 +03:00
|
|
|
crtc->base.base.id, crtc->base.name, dsb->id);
|
|
|
|
for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4)
|
2024-06-11 16:33:40 +03:00
|
|
|
drm_dbg_kms(display->drm,
|
2023-11-10 08:55:18 +05:30
|
|
|
" 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4,
|
|
|
|
intel_dsb_buffer_read(&dsb->dsb_buf, i),
|
|
|
|
intel_dsb_buffer_read(&dsb->dsb_buf, i + 1),
|
|
|
|
intel_dsb_buffer_read(&dsb->dsb_buf, i + 2),
|
|
|
|
intel_dsb_buffer_read(&dsb->dsb_buf, i + 3));
|
2024-06-11 16:33:40 +03:00
|
|
|
drm_dbg_kms(display->drm, "}\n");
|
2023-06-06 22:14:48 +03:00
|
|
|
}
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
static bool is_dsb_busy(struct intel_display *display, enum pipe pipe,
|
2024-05-31 14:40:58 +03:00
|
|
|
enum intel_dsb_id dsb_id)
|
2019-09-20 17:29:25 +05:30
|
|
|
{
|
2024-06-11 16:33:40 +03:00
|
|
|
return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY;
|
2019-09-20 17:29:25 +05:30
|
|
|
}
|
|
|
|
|
2025-06-12 17:50:14 +03:00
|
|
|
unsigned int intel_dsb_size(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
return dsb->free_pos * 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int intel_dsb_head(struct intel_dsb *dsb)
|
2025-05-23 11:50:33 +05:30
|
|
|
{
|
|
|
|
return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned int intel_dsb_tail(struct intel_dsb *dsb)
|
|
|
|
{
|
2025-06-12 17:50:14 +03:00
|
|
|
return intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + intel_dsb_size(dsb);
|
2025-05-23 11:50:33 +05:30
|
|
|
}
|
|
|
|
|
2025-05-23 11:50:31 +05:30
|
|
|
static void intel_dsb_ins_align(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Every instruction should be 8 byte aligned.
|
|
|
|
*
|
|
|
|
* The only way to get unaligned free_pos is via
|
|
|
|
* intel_dsb_reg_write_indexed() which already
|
|
|
|
* makes sure the next dword is zeroed, so no need
|
|
|
|
* to clear it here.
|
|
|
|
*/
|
|
|
|
dsb->free_pos = ALIGN(dsb->free_pos, 2);
|
|
|
|
}
|
|
|
|
|
2022-12-16 02:38:03 +02:00
|
|
|
static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw)
|
|
|
|
{
|
|
|
|
if (!assert_dsb_has_room(dsb))
|
|
|
|
return;
|
|
|
|
|
2025-05-23 11:50:31 +05:30
|
|
|
intel_dsb_ins_align(dsb);
|
2022-12-16 02:38:03 +02:00
|
|
|
|
|
|
|
dsb->ins_start_offset = dsb->free_pos;
|
2024-09-30 20:04:03 +03:00
|
|
|
dsb->ins[0] = ldw;
|
|
|
|
dsb->ins[1] = udw;
|
2022-12-16 02:38:03 +02:00
|
|
|
|
2024-09-30 20:04:03 +03:00
|
|
|
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]);
|
|
|
|
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]);
|
2022-12-16 02:38:03 +02:00
|
|
|
}
|
|
|
|
|
2022-12-16 02:38:04 +02:00
|
|
|
static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb,
|
|
|
|
u32 opcode, i915_reg_t reg)
|
|
|
|
{
|
|
|
|
u32 prev_opcode, prev_reg;
|
|
|
|
|
2023-06-06 22:14:51 +03:00
|
|
|
/*
|
|
|
|
* Nothing emitted yet? Must check before looking
|
|
|
|
* at the actual data since i915_gem_object_create_internal()
|
|
|
|
* does *not* give you zeroed memory!
|
|
|
|
*/
|
|
|
|
if (dsb->free_pos == 0)
|
|
|
|
return false;
|
|
|
|
|
2024-09-30 20:04:03 +03:00
|
|
|
prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK;
|
|
|
|
prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK;
|
2022-12-16 02:38:04 +02:00
|
|
|
|
|
|
|
return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg)
|
|
|
|
{
|
2023-06-06 22:14:52 +03:00
|
|
|
return intel_dsb_prev_ins_is_write(dsb,
|
|
|
|
DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT,
|
|
|
|
reg);
|
2022-12-16 02:38:04 +02:00
|
|
|
}
|
|
|
|
|
2019-09-20 17:29:30 +05:30
|
|
|
/**
|
2024-11-20 18:41:22 +02:00
|
|
|
* intel_dsb_reg_write_indexed() - Emit indexed register write to the DSB context
|
2022-11-23 17:26:34 +02:00
|
|
|
* @dsb: DSB context
|
2019-09-20 17:29:30 +05:30
|
|
|
* @reg: register address.
|
|
|
|
* @val: value.
|
|
|
|
*
|
|
|
|
* This function is used for writing register-value pair in command
|
2022-12-16 02:38:05 +02:00
|
|
|
* buffer of DSB.
|
2024-11-20 18:41:20 +02:00
|
|
|
*
|
|
|
|
* Note that indexed writes are slower than normal MMIO writes
|
|
|
|
* for a small number (less than 5 or so) of writes to the same
|
|
|
|
* register.
|
2019-09-20 17:29:30 +05:30
|
|
|
*/
|
2024-11-20 18:41:20 +02:00
|
|
|
void intel_dsb_reg_write_indexed(struct intel_dsb *dsb,
|
|
|
|
i915_reg_t reg, u32 val)
|
2019-09-20 17:29:24 +05:30
|
|
|
{
|
|
|
|
/*
|
|
|
|
* For example the buffer will look like below for 3 dwords for auto
|
|
|
|
* increment register:
|
|
|
|
* +--------------------------------------------------------+
|
|
|
|
* | size = 3 | offset &| value1 | value2 | value3 | zero |
|
|
|
|
* | | opcode | | | | |
|
|
|
|
* +--------------------------------------------------------+
|
|
|
|
* + + + + + + +
|
|
|
|
* 0 4 8 12 16 20 24
|
|
|
|
* Byte
|
|
|
|
*
|
|
|
|
* As every instruction is 8 byte aligned the index of dsb instruction
|
|
|
|
* will start always from even number while dealing with u32 array. If
|
|
|
|
* we are writing odd no of dwords, Zeros will be added in the end for
|
|
|
|
* padding.
|
|
|
|
*/
|
2024-11-20 18:41:22 +02:00
|
|
|
if (!intel_dsb_prev_ins_is_indexed_write(dsb, reg))
|
|
|
|
intel_dsb_emit(dsb, 0, /* count */
|
|
|
|
(DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) |
|
2022-12-16 02:38:05 +02:00
|
|
|
i915_mmio_reg_offset(reg));
|
2024-11-20 18:41:22 +02:00
|
|
|
|
|
|
|
if (!assert_dsb_has_room(dsb))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Update the count */
|
|
|
|
dsb->ins[0]++;
|
|
|
|
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0,
|
|
|
|
dsb->ins[0]);
|
|
|
|
|
|
|
|
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val);
|
|
|
|
/* if number of data words is odd, then the last dword should be 0.*/
|
|
|
|
if (dsb->free_pos & 0x1)
|
|
|
|
intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0);
|
2019-09-20 17:29:22 +05:30
|
|
|
}
|
2019-09-20 17:29:27 +05:30
|
|
|
|
2024-11-20 18:41:20 +02:00
|
|
|
void intel_dsb_reg_write(struct intel_dsb *dsb,
|
|
|
|
i915_reg_t reg, u32 val)
|
|
|
|
{
|
|
|
|
intel_dsb_emit(dsb, val,
|
|
|
|
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
|
|
|
|
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
|
|
|
|
i915_mmio_reg_offset(reg));
|
|
|
|
}
|
|
|
|
|
2023-06-06 22:14:54 +03:00
|
|
|
static u32 intel_dsb_mask_to_byte_en(u32 mask)
|
|
|
|
{
|
|
|
|
return (!!(mask & 0xff000000) << 3 |
|
|
|
|
!!(mask & 0x00ff0000) << 2 |
|
|
|
|
!!(mask & 0x0000ff00) << 1 |
|
|
|
|
!!(mask & 0x000000ff) << 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note: mask implemented via byte enables! */
|
|
|
|
void intel_dsb_reg_write_masked(struct intel_dsb *dsb,
|
|
|
|
i915_reg_t reg, u32 mask, u32 val)
|
|
|
|
{
|
|
|
|
intel_dsb_emit(dsb, val,
|
|
|
|
(DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
|
|
|
|
(intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) |
|
|
|
|
i915_mmio_reg_offset(reg));
|
|
|
|
}
|
|
|
|
|
2023-06-06 22:14:53 +03:00
|
|
|
void intel_dsb_noop(struct intel_dsb *dsb, int count)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < count; i++)
|
|
|
|
intel_dsb_emit(dsb, 0,
|
|
|
|
DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT);
|
|
|
|
}
|
|
|
|
|
2023-06-06 22:14:55 +03:00
|
|
|
void intel_dsb_nonpost_start(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
|
|
|
|
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
|
|
|
|
DSB_NON_POSTED, DSB_NON_POSTED);
|
|
|
|
intel_dsb_noop(dsb, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_nonpost_end(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
|
|
|
|
intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id),
|
|
|
|
DSB_NON_POSTED, 0);
|
|
|
|
intel_dsb_noop(dsb, 4);
|
|
|
|
}
|
|
|
|
|
2024-09-30 20:04:06 +03:00
|
|
|
void intel_dsb_interrupt(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
intel_dsb_emit(dsb, 0,
|
|
|
|
DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT);
|
|
|
|
}
|
|
|
|
|
2024-09-30 20:04:08 +03:00
|
|
|
void intel_dsb_wait_usec(struct intel_dsb *dsb, int count)
|
|
|
|
{
|
2025-02-08 00:31:52 +02:00
|
|
|
/* +1 to make sure we never wait less time than asked for */
|
|
|
|
intel_dsb_emit(dsb, count + 1,
|
2024-09-30 20:04:08 +03:00
|
|
|
DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT);
|
|
|
|
}
|
|
|
|
|
2024-09-30 20:04:09 +03:00
|
|
|
void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count)
|
|
|
|
{
|
|
|
|
intel_dsb_emit(dsb, count,
|
|
|
|
DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT);
|
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:27 +03:00
|
|
|
static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb,
|
|
|
|
u32 opcode, int lower, int upper)
|
|
|
|
{
|
|
|
|
u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) |
|
|
|
|
((u64)lower << DSB_SCANLINE_LOWER_SHIFT);
|
|
|
|
|
|
|
|
intel_dsb_emit(dsb, lower_32_bits(window),
|
|
|
|
(opcode << DSB_OPCODE_SHIFT) |
|
|
|
|
upper_32_bits(window));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void intel_dsb_wait_dsl(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
|
|
|
int lower_in, int upper_in,
|
|
|
|
int lower_out, int upper_out)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
|
|
|
|
lower_in = dsb_scanline_to_hw(state, crtc, lower_in);
|
|
|
|
upper_in = dsb_scanline_to_hw(state, crtc, upper_in);
|
|
|
|
|
|
|
|
lower_out = dsb_scanline_to_hw(state, crtc, lower_out);
|
|
|
|
upper_out = dsb_scanline_to_hw(state, crtc, upper_out);
|
|
|
|
|
|
|
|
if (upper_in >= lower_in)
|
|
|
|
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN,
|
|
|
|
lower_in, upper_in);
|
|
|
|
else if (upper_out >= lower_out)
|
|
|
|
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT,
|
|
|
|
lower_out, upper_out);
|
|
|
|
else
|
|
|
|
drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */
|
|
|
|
}
|
|
|
|
|
|
|
|
static void assert_dsl_ok(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
|
|
|
int start, int end)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
int vtotal = dsb_vtotal(state, crtc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Waiting for the entire frame doesn't make sense,
|
|
|
|
* (IN==don't wait, OUT=wait forever).
|
|
|
|
*/
|
|
|
|
drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1,
|
|
|
|
"[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb->id,
|
|
|
|
start, end, vtotal);
|
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_wait_scanline_in(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
|
|
|
int start, int end)
|
|
|
|
{
|
|
|
|
assert_dsl_ok(state, dsb, start, end);
|
|
|
|
|
|
|
|
intel_dsb_wait_dsl(state, dsb,
|
|
|
|
start, end,
|
|
|
|
end + 1, start - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_wait_scanline_out(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
|
|
|
int start, int end)
|
|
|
|
{
|
|
|
|
assert_dsl_ok(state, dsb, start, end);
|
|
|
|
|
|
|
|
intel_dsb_wait_dsl(state, dsb,
|
|
|
|
end + 1, start - 1,
|
|
|
|
start, end);
|
|
|
|
}
|
|
|
|
|
2025-02-08 00:31:56 +02:00
|
|
|
void intel_dsb_poll(struct intel_dsb *dsb,
|
|
|
|
i915_reg_t reg, u32 mask, u32 val,
|
|
|
|
int wait_us, int count)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_POLLMASK(pipe, dsb->id), mask);
|
|
|
|
intel_dsb_reg_write(dsb, DSB_POLLFUNC(pipe, dsb->id),
|
|
|
|
DSB_POLL_ENABLE |
|
|
|
|
DSB_POLL_WAIT(wait_us) | DSB_POLL_COUNT(count));
|
|
|
|
|
|
|
|
intel_dsb_noop(dsb, 5);
|
|
|
|
|
|
|
|
intel_dsb_emit(dsb, val,
|
|
|
|
(DSB_OPCODE_POLL << DSB_OPCODE_SHIFT) |
|
|
|
|
i915_mmio_reg_offset(reg));
|
|
|
|
}
|
|
|
|
|
2023-01-18 18:30:31 +02:00
|
|
|
static void intel_dsb_align_tail(struct intel_dsb *dsb)
|
2022-12-16 02:38:06 +02:00
|
|
|
{
|
|
|
|
u32 aligned_tail, tail;
|
|
|
|
|
2025-06-12 17:50:13 +03:00
|
|
|
intel_dsb_ins_align(dsb);
|
|
|
|
|
2022-12-16 02:38:06 +02:00
|
|
|
tail = dsb->free_pos * 4;
|
|
|
|
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
|
|
|
|
|
|
|
|
if (aligned_tail > tail)
|
2023-11-10 08:55:18 +05:30
|
|
|
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
|
|
|
|
aligned_tail - tail);
|
2022-12-16 02:38:06 +02:00
|
|
|
|
|
|
|
dsb->free_pos = aligned_tail / 4;
|
2023-01-18 18:30:31 +02:00
|
|
|
}
|
2022-12-16 02:38:06 +02:00
|
|
|
|
2025-05-23 11:50:34 +05:30
|
|
|
static void intel_dsb_gosub_align(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
u32 aligned_tail, tail;
|
|
|
|
|
|
|
|
intel_dsb_ins_align(dsb);
|
|
|
|
|
|
|
|
tail = dsb->free_pos * 4;
|
|
|
|
aligned_tail = ALIGN(tail, CACHELINE_BYTES);
|
|
|
|
|
|
|
|
/*
|
2025-06-12 17:50:18 +03:00
|
|
|
* Wa_16024917128
|
|
|
|
* "Ensure GOSUB is not placed in cacheline QW slot 6 or 7 (numbered 0-7)"
|
2025-05-23 11:50:34 +05:30
|
|
|
*/
|
|
|
|
if (aligned_tail - tail <= 2 * 8)
|
|
|
|
intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0,
|
|
|
|
aligned_tail - tail);
|
|
|
|
|
|
|
|
dsb->free_pos = aligned_tail / 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_gosub(struct intel_dsb *dsb,
|
|
|
|
struct intel_dsb *sub_dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
|
|
|
unsigned int head, tail;
|
|
|
|
u64 head_tail;
|
|
|
|
|
|
|
|
if (drm_WARN_ON(display->drm, dsb->id != sub_dsb->id))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!assert_dsb_tail_is_aligned(sub_dsb))
|
|
|
|
return;
|
|
|
|
|
|
|
|
intel_dsb_gosub_align(dsb);
|
|
|
|
|
|
|
|
head = intel_dsb_head(sub_dsb);
|
|
|
|
tail = intel_dsb_tail(sub_dsb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The GOSUB instruction has the following memory layout.
|
|
|
|
*
|
|
|
|
* +------------------------------------------------------------+
|
|
|
|
* | Opcode | Rsvd | Head Ptr | Tail Ptr |
|
|
|
|
* | 0x0c | | | |
|
|
|
|
* +------------------------------------------------------------+
|
|
|
|
* |<- 8bits->|<- 4bits ->|<-- 26bits -->|<-- 26bits -->|
|
|
|
|
*
|
|
|
|
* We have only 26 bits each to represent the head and tail
|
|
|
|
* pointers even though the addresses itself are of 32 bit. However, this
|
|
|
|
* is not a problem because the addresses are 64 bit aligned and therefore
|
|
|
|
* the last 6 bits are always Zero's. Therefore, we right shift the address
|
|
|
|
* by 6 before embedding it into the GOSUB instruction.
|
|
|
|
*/
|
|
|
|
|
|
|
|
head_tail = ((u64)(DSB_GOSUB_CONVERT_ADDR(head)) << DSB_GOSUB_HEAD_SHIFT) |
|
|
|
|
((u64)(DSB_GOSUB_CONVERT_ADDR(tail)) << DSB_GOSUB_TAIL_SHIFT);
|
|
|
|
|
|
|
|
intel_dsb_emit(dsb, lower_32_bits(head_tail),
|
|
|
|
(DSB_OPCODE_GOSUB << DSB_OPCODE_SHIFT) |
|
|
|
|
upper_32_bits(head_tail));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* "NOTE: the instructions within the cacheline
|
|
|
|
* FOLLOWING the GOSUB instruction must be NOPs."
|
|
|
|
*/
|
|
|
|
intel_dsb_align_tail(dsb);
|
|
|
|
}
|
|
|
|
|
2025-05-23 11:50:35 +05:30
|
|
|
void intel_dsb_gosub_finish(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
intel_dsb_align_tail(dsb);
|
|
|
|
|
|
|
|
/*
|
2025-06-12 17:50:18 +03:00
|
|
|
* Wa_16024917128
|
|
|
|
* "Ensure that all subroutines called by GOSUB end with a cacheline of NOPs"
|
2025-05-23 11:50:35 +05:30
|
|
|
*/
|
|
|
|
intel_dsb_noop(dsb, 8);
|
|
|
|
|
|
|
|
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
|
|
|
|
}
|
|
|
|
|
2023-01-18 18:30:31 +02:00
|
|
|
void intel_dsb_finish(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
intel_dsb_align_tail(dsb);
|
2023-10-09 16:22:02 +03:00
|
|
|
|
2023-11-10 08:55:18 +05:30
|
|
|
intel_dsb_buffer_flush_map(&dsb->dsb_buf);
|
2022-12-16 02:38:06 +02:00
|
|
|
}
|
|
|
|
|
2024-06-25 16:58:52 +03:00
|
|
|
static u32 dsb_error_int_status(struct intel_display *display)
|
|
|
|
{
|
|
|
|
u32 errors;
|
|
|
|
|
|
|
|
errors = DSB_GTT_FAULT_INT_STATUS |
|
|
|
|
DSB_RSPTIMEOUT_INT_STATUS |
|
|
|
|
DSB_POLL_ERR_INT_STATUS;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* All the non-existing status bits operate as
|
|
|
|
* normal r/w bits, so any attempt to clear them
|
|
|
|
* will just end up setting them. Never do that so
|
|
|
|
* we won't mistake them for actual error interrupts.
|
|
|
|
*/
|
|
|
|
if (DISPLAY_VER(display) >= 14)
|
|
|
|
errors |= DSB_ATS_FAULT_INT_STATUS;
|
|
|
|
|
2025-05-23 11:50:36 +05:30
|
|
|
if (DISPLAY_VER(display) >= 30)
|
|
|
|
errors |= DSB_GOSUB_INT_STATUS;
|
|
|
|
|
2024-06-25 16:58:52 +03:00
|
|
|
return errors;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 dsb_error_int_en(struct intel_display *display)
|
|
|
|
{
|
|
|
|
u32 errors;
|
|
|
|
|
|
|
|
errors = DSB_GTT_FAULT_INT_EN |
|
|
|
|
DSB_RSPTIMEOUT_INT_EN |
|
|
|
|
DSB_POLL_ERR_INT_EN;
|
|
|
|
|
|
|
|
if (DISPLAY_VER(display) >= 14)
|
|
|
|
errors |= DSB_ATS_FAULT_INT_EN;
|
|
|
|
|
2025-06-12 17:50:18 +03:00
|
|
|
/*
|
|
|
|
* Wa_16024917128
|
|
|
|
* "Disable nested GOSUB interrupt (DSB_INTERRUPT bit 21)"
|
|
|
|
*/
|
|
|
|
if (0 && DISPLAY_VER(display) >= 30)
|
2025-05-23 11:50:36 +05:30
|
|
|
errors |= DSB_GOSUB_INT_EN;
|
|
|
|
|
2024-06-25 16:58:52 +03:00
|
|
|
return errors;
|
|
|
|
}
|
|
|
|
|
2025-06-12 17:50:15 +03:00
|
|
|
/*
|
|
|
|
* FIXME calibrate these sensibly, ideally compute based on
|
|
|
|
* the number of regisetrs to be written. But that requires
|
|
|
|
* measuring the actual DSB execution speed on each platform
|
|
|
|
* (and the speed also depends on CDCLK and memory clock)...
|
|
|
|
*/
|
|
|
|
static int intel_dsb_noarm_exec_time_us(void)
|
|
|
|
{
|
|
|
|
return 80;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int intel_dsb_arm_exec_time_us(void)
|
|
|
|
{
|
|
|
|
return 20;
|
|
|
|
}
|
|
|
|
|
|
|
|
int intel_dsb_exec_time_us(void)
|
|
|
|
{
|
|
|
|
return intel_dsb_noarm_exec_time_us() +
|
|
|
|
intel_dsb_arm_exec_time_us();
|
|
|
|
}
|
|
|
|
|
2024-09-30 20:04:07 +03:00
|
|
|
void intel_dsb_vblank_evade(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2025-06-12 17:50:15 +03:00
|
|
|
int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode,
|
|
|
|
intel_dsb_arm_exec_time_us());
|
2024-09-30 20:04:07 +03:00
|
|
|
int start, end;
|
|
|
|
|
2025-02-13 08:48:01 +02:00
|
|
|
/*
|
|
|
|
* PIPEDSL is reading as 0 when in SRDENT(PSR1) or DEEP_SLEEP(PSR2). On
|
|
|
|
* wake-up scanline counting starts from vblank_start - 1. We don't know
|
|
|
|
* if wake-up is already ongoing when evasion starts. In worst case
|
|
|
|
* PIPEDSL could start reading valid value right after checking the
|
|
|
|
* scanline. In this scenario we wouldn't have enough time to write all
|
|
|
|
* registers. To tackle this evade scanline 0 as well. As a drawback we
|
|
|
|
* have 1 frame delay in flip when waking up.
|
|
|
|
*/
|
|
|
|
if (crtc_state->has_psr)
|
|
|
|
intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, 0, 0);
|
|
|
|
|
2024-09-30 20:04:07 +03:00
|
|
|
if (pre_commit_is_vrr_active(state, crtc)) {
|
2024-12-10 23:10:01 +02:00
|
|
|
int vblank_delay = intel_vrr_vblank_delay(crtc_state);
|
|
|
|
|
2024-09-30 20:04:07 +03:00
|
|
|
end = intel_vrr_vmin_vblank_start(crtc_state);
|
|
|
|
start = end - vblank_delay - latency;
|
|
|
|
intel_dsb_wait_scanline_out(state, dsb, start, end);
|
|
|
|
|
|
|
|
end = intel_vrr_vmax_vblank_start(crtc_state);
|
|
|
|
start = end - vblank_delay - latency;
|
|
|
|
intel_dsb_wait_scanline_out(state, dsb, start, end);
|
|
|
|
} else {
|
2024-12-10 23:10:01 +02:00
|
|
|
int vblank_delay = intel_mode_vblank_delay(&crtc_state->hw.adjusted_mode);
|
|
|
|
|
2024-09-30 20:04:07 +03:00
|
|
|
end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode);
|
|
|
|
start = end - vblank_delay - latency;
|
|
|
|
intel_dsb_wait_scanline_out(state, dsb, start, end);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:28 +03:00
|
|
|
static void _intel_dsb_chain(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
|
|
|
struct intel_dsb *chained_dsb,
|
|
|
|
u32 ctrl)
|
|
|
|
{
|
|
|
|
struct intel_display *display = to_intel_display(state->base.dev);
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
|
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
|
|
|
|
if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id))
|
|
|
|
return;
|
|
|
|
|
2025-05-23 11:50:32 +05:30
|
|
|
if (!assert_dsb_tail_is_aligned(chained_dsb))
|
2024-06-24 22:10:28 +03:00
|
|
|
return;
|
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id),
|
|
|
|
ctrl | DSB_ENABLE);
|
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id),
|
|
|
|
dsb_chicken(state, crtc));
|
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id),
|
|
|
|
dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
|
2024-09-30 20:04:06 +03:00
|
|
|
dsb_error_int_en(display) | DSB_PROG_INT_EN);
|
2024-06-24 22:10:28 +03:00
|
|
|
|
2024-06-24 22:10:29 +03:00
|
|
|
if (ctrl & DSB_WAIT_FOR_VBLANK) {
|
|
|
|
int dewake_scanline = dsb_dewake_scanline_start(state, crtc);
|
|
|
|
int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline);
|
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id),
|
|
|
|
DSB_ENABLE_DEWAKE |
|
|
|
|
DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline));
|
2025-06-12 17:50:17 +03:00
|
|
|
} else {
|
|
|
|
intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), 0);
|
2024-06-24 22:10:29 +03:00
|
|
|
}
|
|
|
|
|
2024-06-24 22:10:28 +03:00
|
|
|
intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id),
|
2025-05-23 11:50:33 +05:30
|
|
|
intel_dsb_head(chained_dsb));
|
2024-06-24 22:10:28 +03:00
|
|
|
|
|
|
|
intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id),
|
2025-05-23 11:50:33 +05:30
|
|
|
intel_dsb_tail(chained_dsb));
|
2024-06-24 22:10:29 +03:00
|
|
|
|
|
|
|
if (ctrl & DSB_WAIT_FOR_VBLANK) {
|
|
|
|
/*
|
|
|
|
* Keep DEwake alive via the first DSB, in
|
|
|
|
* case we're already past dewake_scanline,
|
|
|
|
* and thus DSB_ENABLE_DEWAKE on the second
|
|
|
|
* DSB won't do its job.
|
|
|
|
*/
|
|
|
|
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id),
|
|
|
|
DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE);
|
|
|
|
|
|
|
|
intel_dsb_wait_scanline_out(state, dsb,
|
|
|
|
dsb_dewake_scanline_start(state, crtc),
|
|
|
|
dsb_dewake_scanline_end(state, crtc));
|
2025-06-12 17:50:17 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* DSB_FORCE_DEWAKE remains active even after DSB is
|
|
|
|
* disabled, so make sure to clear it.
|
|
|
|
*/
|
|
|
|
intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id),
|
|
|
|
DSB_FORCE_DEWAKE, 0);
|
2024-06-24 22:10:29 +03:00
|
|
|
}
|
2024-06-24 22:10:28 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_chain(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb,
|
2024-06-24 22:10:29 +03:00
|
|
|
struct intel_dsb *chained_dsb,
|
|
|
|
bool wait_for_vblank)
|
2024-06-24 22:10:28 +03:00
|
|
|
{
|
|
|
|
_intel_dsb_chain(state, dsb, chained_dsb,
|
2024-06-24 22:10:29 +03:00
|
|
|
wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0);
|
2024-06-24 22:10:28 +03:00
|
|
|
}
|
|
|
|
|
2024-09-30 20:04:11 +03:00
|
|
|
void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state,
|
|
|
|
struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-12-10 23:09:59 +02:00
|
|
|
const struct intel_crtc_state *crtc_state =
|
|
|
|
intel_pre_commit_crtc_state(state, crtc);
|
2024-09-30 20:04:11 +03:00
|
|
|
int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode,
|
2025-02-08 00:31:52 +02:00
|
|
|
dsb_vblank_delay(state, crtc));
|
2024-09-30 20:04:11 +03:00
|
|
|
|
|
|
|
intel_dsb_wait_usec(dsb, usecs);
|
|
|
|
}
|
|
|
|
|
2025-06-12 17:50:16 +03:00
|
|
|
/**
|
|
|
|
* intel_dsb_commit() - Trigger workload execution of DSB.
|
|
|
|
* @dsb: DSB context
|
|
|
|
*
|
|
|
|
* This function is used to do actual write to hardware using DSB.
|
|
|
|
*/
|
|
|
|
void intel_dsb_commit(struct intel_dsb *dsb)
|
2019-09-20 17:29:27 +05:30
|
|
|
{
|
2022-11-23 17:26:34 +02:00
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-06-11 16:33:40 +03:00
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
2019-09-20 17:29:27 +05:30
|
|
|
enum pipe pipe = crtc->pipe;
|
|
|
|
|
2025-05-23 11:50:32 +05:30
|
|
|
if (!assert_dsb_tail_is_aligned(dsb))
|
2019-09-20 17:29:27 +05:30
|
|
|
return;
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
if (is_dsb_busy(display, pipe, dsb->id)) {
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n",
|
2023-01-18 18:30:29 +02:00
|
|
|
crtc->base.base.id, crtc->base.name, dsb->id);
|
2023-01-18 18:30:30 +02:00
|
|
|
return;
|
2019-09-20 17:29:27 +05:30
|
|
|
}
|
2022-12-16 02:37:59 +02:00
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
|
2025-06-12 17:50:16 +03:00
|
|
|
DSB_ENABLE);
|
2023-06-06 22:15:02 +03:00
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id),
|
2024-06-24 22:10:26 +03:00
|
|
|
dsb->chicken);
|
2024-03-06 06:08:05 +02:00
|
|
|
|
2024-06-25 16:58:52 +03:00
|
|
|
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
|
|
|
|
dsb_error_int_status(display) | DSB_PROG_INT_STATUS |
|
2024-09-30 20:04:06 +03:00
|
|
|
dsb_error_int_en(display) | DSB_PROG_INT_EN);
|
2024-06-25 16:58:52 +03:00
|
|
|
|
2025-06-12 17:50:17 +03:00
|
|
|
intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), 0);
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id),
|
2025-05-23 11:50:33 +05:30
|
|
|
intel_dsb_head(dsb));
|
2023-06-06 22:15:02 +03:00
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id),
|
2025-05-23 11:50:33 +05:30
|
|
|
intel_dsb_tail(dsb));
|
2023-01-18 18:30:30 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void intel_dsb_wait(struct intel_dsb *dsb)
|
|
|
|
{
|
|
|
|
struct intel_crtc *crtc = dsb->crtc;
|
2024-06-11 16:33:40 +03:00
|
|
|
struct intel_display *display = to_intel_display(crtc->base.dev);
|
2023-01-18 18:30:30 +02:00
|
|
|
enum pipe pipe = crtc->pipe;
|
2022-12-16 02:37:59 +02:00
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) {
|
2023-11-10 08:55:18 +05:30
|
|
|
u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf);
|
2023-06-06 22:14:48 +03:00
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id),
|
2023-06-06 22:14:48 +03:00
|
|
|
DSB_ENABLE | DSB_HALT);
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
drm_err(display->drm,
|
2023-06-06 22:14:48 +03:00
|
|
|
"[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb->id,
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset,
|
|
|
|
intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset,
|
|
|
|
intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset);
|
2023-06-06 22:14:48 +03:00
|
|
|
|
|
|
|
intel_dsb_dump(dsb);
|
|
|
|
}
|
2019-09-20 17:29:27 +05:30
|
|
|
|
2023-01-18 18:30:30 +02:00
|
|
|
/* Attempt to reset it */
|
2019-09-20 17:29:27 +05:30
|
|
|
dsb->free_pos = 0;
|
|
|
|
dsb->ins_start_offset = 0;
|
2024-09-30 20:04:03 +03:00
|
|
|
dsb->ins[0] = 0;
|
|
|
|
dsb->ins[1] = 0;
|
|
|
|
|
2024-06-11 16:33:40 +03:00
|
|
|
intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0);
|
2024-06-25 16:58:52 +03:00
|
|
|
|
|
|
|
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id),
|
|
|
|
dsb_error_int_status(display) | DSB_PROG_INT_STATUS);
|
2020-05-20 18:37:37 +05:30
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
|
2024-06-11 16:33:39 +03:00
|
|
|
* @state: the atomic state
|
|
|
|
* @crtc: the CRTC
|
2024-05-31 14:41:00 +03:00
|
|
|
* @dsb_id: the DSB engine to use
|
2022-12-16 02:38:07 +02:00
|
|
|
* @max_cmds: number of commands we need to fit into command buffer
|
2020-05-20 18:37:37 +05:30
|
|
|
*
|
|
|
|
* This function prepare the command buffer which is used to store dsb
|
|
|
|
* instructions with data.
|
2022-11-23 17:26:34 +02:00
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* DSB context, NULL on failure
|
2020-05-20 18:37:37 +05:30
|
|
|
*/
|
2024-06-11 16:33:39 +03:00
|
|
|
struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state,
|
|
|
|
struct intel_crtc *crtc,
|
2024-05-31 14:41:00 +03:00
|
|
|
enum intel_dsb_id dsb_id,
|
2022-12-16 02:38:07 +02:00
|
|
|
unsigned int max_cmds)
|
2020-05-20 18:37:37 +05:30
|
|
|
{
|
2025-03-20 17:03:58 +02:00
|
|
|
struct intel_display *display = to_intel_display(state);
|
|
|
|
struct ref_tracker *wakeref;
|
2022-12-16 02:38:07 +02:00
|
|
|
struct intel_dsb *dsb;
|
|
|
|
unsigned int size;
|
2020-05-20 18:37:37 +05:30
|
|
|
|
2025-03-20 17:03:58 +02:00
|
|
|
if (!HAS_DSB(display))
|
2022-11-23 17:26:34 +02:00
|
|
|
return NULL;
|
2020-05-20 18:37:37 +05:30
|
|
|
|
2025-03-20 17:03:58 +02:00
|
|
|
if (!display->params.enable_dsb)
|
2024-06-11 16:33:41 +03:00
|
|
|
return NULL;
|
|
|
|
|
2022-12-16 02:38:07 +02:00
|
|
|
dsb = kzalloc(sizeof(*dsb), GFP_KERNEL);
|
2022-11-23 17:26:34 +02:00
|
|
|
if (!dsb)
|
|
|
|
goto out;
|
2020-05-20 18:37:37 +05:30
|
|
|
|
2025-03-20 17:03:58 +02:00
|
|
|
wakeref = intel_display_rpm_get(display);
|
2020-05-20 18:37:37 +05:30
|
|
|
|
2022-12-16 02:38:07 +02:00
|
|
|
/* ~1 qword per instruction, full cachelines */
|
|
|
|
size = ALIGN(max_cmds * 8, CACHELINE_BYTES);
|
|
|
|
|
2023-11-10 08:55:18 +05:30
|
|
|
if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size))
|
2022-11-23 17:26:34 +02:00
|
|
|
goto out_put_rpm;
|
2020-05-20 18:37:37 +05:30
|
|
|
|
2025-03-20 17:03:58 +02:00
|
|
|
intel_display_rpm_put(display, wakeref);
|
2022-11-23 17:26:34 +02:00
|
|
|
|
2024-05-31 14:41:00 +03:00
|
|
|
dsb->id = dsb_id;
|
2022-11-23 17:26:34 +02:00
|
|
|
dsb->crtc = crtc;
|
2022-12-16 02:38:07 +02:00
|
|
|
dsb->size = size / 4; /* in dwords */
|
2024-06-24 22:10:22 +03:00
|
|
|
|
2024-06-24 22:10:26 +03:00
|
|
|
dsb->chicken = dsb_chicken(state, crtc);
|
2024-06-24 22:10:22 +03:00
|
|
|
dsb->hw_dewake_scanline =
|
2024-06-24 22:10:29 +03:00
|
|
|
dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc));
|
2022-03-25 21:41:40 +05:30
|
|
|
|
2022-11-23 17:26:34 +02:00
|
|
|
return dsb;
|
|
|
|
|
|
|
|
out_put_rpm:
|
2025-03-20 17:03:58 +02:00
|
|
|
intel_display_rpm_put(display, wakeref);
|
2022-11-23 17:26:34 +02:00
|
|
|
kfree(dsb);
|
|
|
|
out:
|
2025-03-20 17:03:58 +02:00
|
|
|
drm_info_once(display->drm,
|
2023-01-18 18:30:29 +02:00
|
|
|
"[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n",
|
2024-05-31 14:41:00 +03:00
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
2022-11-23 17:26:34 +02:00
|
|
|
|
|
|
|
return NULL;
|
2020-05-20 18:37:37 +05:30
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_dsb_cleanup() - To cleanup DSB context.
|
2022-11-23 17:26:34 +02:00
|
|
|
* @dsb: DSB context
|
2020-05-20 18:37:37 +05:30
|
|
|
*
|
|
|
|
* This function cleanup the DSB context by unpinning and releasing
|
|
|
|
* the VMA object associated with it.
|
|
|
|
*/
|
2022-11-23 17:26:34 +02:00
|
|
|
void intel_dsb_cleanup(struct intel_dsb *dsb)
|
2020-05-20 18:37:37 +05:30
|
|
|
{
|
2023-11-10 08:55:18 +05:30
|
|
|
intel_dsb_buffer_cleanup(&dsb->dsb_buf);
|
2022-11-23 17:26:34 +02:00
|
|
|
kfree(dsb);
|
2019-09-20 17:29:27 +05:30
|
|
|
}
|
2024-06-25 16:58:52 +03:00
|
|
|
|
|
|
|
void intel_dsb_irq_handler(struct intel_display *display,
|
|
|
|
enum pipe pipe, enum intel_dsb_id dsb_id)
|
|
|
|
{
|
2024-09-04 16:06:32 +03:00
|
|
|
struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe);
|
2024-06-25 16:58:52 +03:00
|
|
|
u32 tmp, errors;
|
|
|
|
|
|
|
|
tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id));
|
|
|
|
intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp);
|
|
|
|
|
2024-09-30 20:04:06 +03:00
|
|
|
if (tmp & DSB_PROG_INT_STATUS) {
|
|
|
|
spin_lock(&display->drm->event_lock);
|
|
|
|
|
|
|
|
if (crtc->dsb_event) {
|
|
|
|
/*
|
2025-01-20 13:45:16 +05:30
|
|
|
* Update vblank counter/timestamp in case it
|
2024-09-30 20:04:06 +03:00
|
|
|
* hasn't been done yet for this frame.
|
|
|
|
*/
|
|
|
|
drm_crtc_accurate_vblank_count(&crtc->base);
|
|
|
|
|
|
|
|
drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event);
|
|
|
|
crtc->dsb_event = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_unlock(&display->drm->event_lock);
|
|
|
|
}
|
|
|
|
|
2024-06-25 16:58:52 +03:00
|
|
|
errors = tmp & dsb_error_int_status(display);
|
2025-02-08 00:31:59 +02:00
|
|
|
if (errors & DSB_ATS_FAULT_INT_STATUS)
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d ATS fault\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
|
|
|
if (errors & DSB_GTT_FAULT_INT_STATUS)
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d GTT fault\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
|
|
|
if (errors & DSB_RSPTIMEOUT_INT_STATUS)
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d response timeout\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
|
|
|
if (errors & DSB_POLL_ERR_INT_STATUS)
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d poll error\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
2025-05-23 11:50:36 +05:30
|
|
|
if (errors & DSB_GOSUB_INT_STATUS)
|
|
|
|
drm_err(display->drm, "[CRTC:%d:%s] DSB %d GOSUB programming error\n",
|
|
|
|
crtc->base.base.id, crtc->base.name, dsb_id);
|
2024-06-25 16:58:52 +03:00
|
|
|
}
|