linux/arch/x86/include/asm/vmxfeatures.h

94 lines
6.4 KiB
C
Raw Permalink Normal View History

x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_VMXFEATURES_H
#define _ASM_X86_VMXFEATURES_H
/*
* Defines VMX CPU feature bits
*/
#define NVMXINTS 5 /* N 32-bit words worth of info */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/*
* Note: If the comment begins with a quoted string, that string is used
* in /proc/cpuinfo instead of the macro name. Otherwise, this feature bit
* is not displayed in /proc/cpuinfo at all.
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
*/
/* Pin-Based VM-Execution Controls, EPT/VPID, APIC and VM-Functions, word 0 */
#define VMX_FEATURE_INTR_EXITING ( 0*32+ 0) /* VM-Exit on vectored interrupts */
#define VMX_FEATURE_NMI_EXITING ( 0*32+ 3) /* VM-Exit on NMIs */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_VIRTUAL_NMIS ( 0*32+ 5) /* "vnmi" NMI virtualization */
#define VMX_FEATURE_PREEMPTION_TIMER ( 0*32+ 6) /* "preemption_timer" VMX Preemption Timer */
#define VMX_FEATURE_POSTED_INTR ( 0*32+ 7) /* "posted_intr" Posted Interrupts */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* EPT/VPID features, scattered to bits 16-23 */
#define VMX_FEATURE_INVVPID ( 0*32+ 16) /* "invvpid" INVVPID is supported */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_EPT_EXECUTE_ONLY ( 0*32+ 17) /* "ept_x_only" EPT entries can be execute only */
#define VMX_FEATURE_EPT_AD ( 0*32+ 18) /* "ept_ad" EPT Accessed/Dirty bits */
#define VMX_FEATURE_EPT_1GB ( 0*32+ 19) /* "ept_1gb" 1GB EPT pages */
#define VMX_FEATURE_EPT_5LEVEL ( 0*32+ 20) /* "ept_5level" 5-level EPT paging */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* Aggregated APIC features 24-27 */
#define VMX_FEATURE_FLEXPRIORITY ( 0*32+ 24) /* "flexpriority" TPR shadow + virt APIC */
#define VMX_FEATURE_APICV ( 0*32+ 25) /* "apicv" TPR shadow + APIC reg virt + virt intr delivery + posted interrupts */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* VM-Functions, shifted to bits 28-31 */
#define VMX_FEATURE_EPTP_SWITCHING ( 0*32+ 28) /* "eptp_switching" EPTP switching (in guest) */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* Primary Processor-Based VM-Execution Controls, word 1 */
#define VMX_FEATURE_INTR_WINDOW_EXITING ( 1*32+ 2) /* VM-Exit if INTRs are unblocked in guest */
#define VMX_FEATURE_USE_TSC_OFFSETTING ( 1*32+ 3) /* "tsc_offset" Offset hardware TSC when read in guest */
#define VMX_FEATURE_HLT_EXITING ( 1*32+ 7) /* VM-Exit on HLT */
#define VMX_FEATURE_INVLPG_EXITING ( 1*32+ 9) /* VM-Exit on INVLPG */
#define VMX_FEATURE_MWAIT_EXITING ( 1*32+ 10) /* VM-Exit on MWAIT */
#define VMX_FEATURE_RDPMC_EXITING ( 1*32+ 11) /* VM-Exit on RDPMC */
#define VMX_FEATURE_RDTSC_EXITING ( 1*32+ 12) /* VM-Exit on RDTSC */
#define VMX_FEATURE_CR3_LOAD_EXITING ( 1*32+ 15) /* VM-Exit on writes to CR3 */
#define VMX_FEATURE_CR3_STORE_EXITING ( 1*32+ 16) /* VM-Exit on reads from CR3 */
#define VMX_FEATURE_TERTIARY_CONTROLS ( 1*32+ 17) /* Enable Tertiary VM-Execution Controls */
#define VMX_FEATURE_CR8_LOAD_EXITING ( 1*32+ 19) /* VM-Exit on writes to CR8 */
#define VMX_FEATURE_CR8_STORE_EXITING ( 1*32+ 20) /* VM-Exit on reads from CR8 */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_VIRTUAL_TPR ( 1*32+ 21) /* "vtpr" TPR virtualization, a.k.a. TPR shadow */
#define VMX_FEATURE_NMI_WINDOW_EXITING ( 1*32+ 22) /* VM-Exit if NMIs are unblocked in guest */
#define VMX_FEATURE_MOV_DR_EXITING ( 1*32+ 23) /* VM-Exit on accesses to debug registers */
#define VMX_FEATURE_UNCOND_IO_EXITING ( 1*32+ 24) /* VM-Exit on *all* IN{S} and OUT{S}*/
#define VMX_FEATURE_USE_IO_BITMAPS ( 1*32+ 25) /* VM-Exit based on I/O port */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_MONITOR_TRAP_FLAG ( 1*32+ 27) /* "mtf" VMX single-step VM-Exits */
#define VMX_FEATURE_USE_MSR_BITMAPS ( 1*32+ 28) /* VM-Exit based on MSR index */
#define VMX_FEATURE_MONITOR_EXITING ( 1*32+ 29) /* VM-Exit on MONITOR (MWAIT's accomplice) */
#define VMX_FEATURE_PAUSE_EXITING ( 1*32+ 30) /* VM-Exit on PAUSE (unconditionally) */
#define VMX_FEATURE_SEC_CONTROLS ( 1*32+ 31) /* Enable Secondary VM-Execution Controls */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
/* Secondary Processor-Based VM-Execution Controls, word 2 */
#define VMX_FEATURE_VIRT_APIC_ACCESSES ( 2*32+ 0) /* "vapic" Virtualize memory mapped APIC accesses */
#define VMX_FEATURE_EPT ( 2*32+ 1) /* "ept" Extended Page Tables, a.k.a. Two-Dimensional Paging */
#define VMX_FEATURE_DESC_EXITING ( 2*32+ 2) /* VM-Exit on {S,L}*DT instructions */
#define VMX_FEATURE_RDTSCP ( 2*32+ 3) /* Enable RDTSCP in guest */
#define VMX_FEATURE_VIRTUAL_X2APIC ( 2*32+ 4) /* Virtualize X2APIC for the guest */
#define VMX_FEATURE_VPID ( 2*32+ 5) /* "vpid" Virtual Processor ID (TLB ASID modifier) */
#define VMX_FEATURE_WBINVD_EXITING ( 2*32+ 6) /* VM-Exit on WBINVD */
#define VMX_FEATURE_UNRESTRICTED_GUEST ( 2*32+ 7) /* "unrestricted_guest" Allow Big Real Mode and other "invalid" states */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_APIC_REGISTER_VIRT ( 2*32+ 8) /* "vapic_reg" Hardware emulation of reads to the virtual-APIC */
#define VMX_FEATURE_VIRT_INTR_DELIVERY ( 2*32+ 9) /* "vid" Evaluation and delivery of pending virtual interrupts */
#define VMX_FEATURE_PAUSE_LOOP_EXITING ( 2*32+ 10) /* "ple" Conditionally VM-Exit on PAUSE at CPL0 */
#define VMX_FEATURE_RDRAND_EXITING ( 2*32+ 11) /* VM-Exit on RDRAND*/
#define VMX_FEATURE_INVPCID ( 2*32+ 12) /* Enable INVPCID in guest */
#define VMX_FEATURE_VMFUNC ( 2*32+ 13) /* Enable VM-Functions (leaf dependent) */
#define VMX_FEATURE_SHADOW_VMCS ( 2*32+ 14) /* "shadow_vmcs" VMREAD/VMWRITE in guest can access shadow VMCS */
#define VMX_FEATURE_ENCLS_EXITING ( 2*32+ 15) /* VM-Exit on ENCLS (leaf dependent) */
#define VMX_FEATURE_RDSEED_EXITING ( 2*32+ 16) /* VM-Exit on RDSEED */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_PAGE_MOD_LOGGING ( 2*32+ 17) /* "pml" Log dirty pages into buffer */
- Flip the logic to add feature names to /proc/cpuinfo to having to explicitly specify the flag if there's a valid reason to show it in /proc/cpuinfo - Switch a bunch of Intel x86 model checking code to the new CPU model defines - Fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmaVZ+EACgkQEsHwGGHe VUqTgA//aJez6C5SmuqIofqgimr+8JGNThf4vFB3O9tN0ony3IR8IRieF+sOZFXE WVyN7KOhPs2XvNzVAaJpzWUcg/E2bXzVrOKfx3uFiyNiBttKLVot7Hl640wqWGoG eTViTpQ6IALY7lEI6vFNXz+4Ja5PWmHxWdBkvP9ehSvqNxHivTWL4HQ11pcCWQEA i+V37PbOHsnH7ZprJtaV0ihtjFblk9/R4qoZuT3SObhG0QDJK4Q7yYUelxXMUUgD Yo3nXluQl6Vc5dD2ULYkTlhzMxoZUMURty897vYSsZz49ZXsS6fsvd+BheSQVOv1 hzaqqFYijdIpPI1zwgAPM+e6S/EAafpNVcEkjhHGZIJehwXm3teoSlX5tK2NPGoe PLYrwPWAzagdS3dWvrvBYT3Bu7pygieDSyPFfVP2XQsElHsWhYvBtxeH/uUwm+v4 xjtXaJUj9eznChPaDZhCl8ioh9szUKHsh2NJ5ND7qpxPCFpz1Xj9ZmbIYTjHEgjG IT8dFfykKdyh5htJWw/P8LbexpEMTmu/LDrDXt+tFsDLBKIkeLiP3h8+yDR+vJ7K OGBjY2ciSi9Wy9ynunCOCNHNBdia1qc3AJWSg/2YP4NW+RzRLe6cIs+Ih4s1N5lx ADvw+TA9CAKo1KASyOVYAxq7h4xlsyH6jbCC3ZW3P/a+Bs8smqM= =SEED -----END PGP SIGNATURE----- Merge tag 'x86_cpu_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu model updates from Borislav Petkov: - Flip the logic to add feature names to /proc/cpuinfo to having to explicitly specify the flag if there's a valid reason to show it in /proc/cpuinfo - Switch a bunch of Intel x86 model checking code to the new CPU model defines - Fixes and cleanups * tag 'x86_cpu_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu/intel: Drop stray FAM6 check with new Intel CPU model defines x86/cpufeatures: Flip the /proc/cpuinfo appearance logic x86/CPU/AMD: Always inline amd_clear_divider() x86/mce/inject: Add missing MODULE_DESCRIPTION() line perf/x86/rapl: Switch to new Intel CPU model defines x86/boot: Switch to new Intel CPU model defines x86/cpu: Switch to new Intel CPU model defines perf/x86/intel: Switch to new Intel CPU model defines x86/virt/tdx: Switch to new Intel CPU model defines x86/PCI: Switch to new Intel CPU model defines x86/cpu/intel: Switch to new Intel CPU model defines x86/platform/intel-mid: Switch to new Intel CPU model defines x86/pconfig: Remove unused MKTME pconfig code x86/cpu: Remove useless work in detect_tme_early()
2024-07-15 20:25:16 -07:00
#define VMX_FEATURE_EPT_VIOLATION_VE ( 2*32+ 18) /* "ept_violation_ve" Conditionally reflect EPT violations as #VE exceptions */
#define VMX_FEATURE_PT_CONCEAL_VMX ( 2*32+ 19) /* Suppress VMX indicators in Processor Trace */
#define VMX_FEATURE_XSAVES ( 2*32+ 20) /* Enable XSAVES and XRSTORS in guest */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#define VMX_FEATURE_MODE_BASED_EPT_EXEC ( 2*32+ 22) /* "ept_mode_based_exec" Enable separate EPT EXEC bits for supervisor vs. user */
#define VMX_FEATURE_PT_USE_GPA ( 2*32+ 24) /* Processor Trace logs GPAs */
#define VMX_FEATURE_TSC_SCALING ( 2*32+ 25) /* "tsc_scaling" Scale hardware TSC when read in guest */
#define VMX_FEATURE_USR_WAIT_PAUSE ( 2*32+ 26) /* "usr_wait_pause" Enable TPAUSE, UMONITOR, UMWAIT in guest */
#define VMX_FEATURE_ENCLV_EXITING ( 2*32+ 28) /* VM-Exit on ENCLV (leaf dependent) */
#define VMX_FEATURE_BUS_LOCK_DETECTION ( 2*32+ 30) /* VM-Exit when bus lock caused */
#define VMX_FEATURE_NOTIFY_VM_EXITING ( 2*32+ 31) /* "notify_vm_exiting" VM-Exit when no event windows after notify window */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
KVM: VMX: enable IPI virtualization With IPI virtualization enabled, the processor emulates writes to APIC registers that would send IPIs. The processor sets the bit corresponding to the vector in target vCPU's PIR and may send a notification (IPI) specified by NDST and NV fields in target vCPU's Posted-Interrupt Descriptor (PID). It is similar to what IOMMU engine does when dealing with posted interrupt from devices. A PID-pointer table is used by the processor to locate the PID of a vCPU with the vCPU's APIC ID. The table size depends on maximum APIC ID assigned for current VM session from userspace. Allocating memory for PID-pointer table is deferred to vCPU creation, because irqchip mode and VM-scope maximum APIC ID is settled at that point. KVM can skip PID-pointer table allocation if !irqchip_in_kernel(). Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its notification vector to wakeup vector. This can ensure that when an IPI for blocked vCPUs arrives, VMM can get control and wake up blocked vCPUs. And if a VCPU is preempted, its posted interrupt notification is suppressed. Note that IPI virtualization can only virualize physical-addressing, flat mode, unicast IPIs. Sending other IPIs would still cause a trap-like APIC-write VM-exit and need to be handled by VMM. Signed-off-by: Chao Gao <chao.gao@intel.com> Signed-off-by: Zeng Guang <guang.zeng@intel.com> Message-Id: <20220419154510.11938-1-guang.zeng@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-19 23:45:10 +08:00
/* Tertiary Processor-Based VM-Execution Controls, word 3 */
#define VMX_FEATURE_IPI_VIRT ( 3*32+ 4) /* "ipi_virt" Enable IPI virtualization */
x86/vmx: Introduce VMX_FEATURES_* Add a VMX-specific variant of X86_FEATURE_* flags, which will eventually supplant the synthetic VMX flags defined in cpufeatures word 8. Use the Intel-defined layouts for the major VMX execution controls so that their word entries can be directly populated from their respective MSRs, and so that the VMX_FEATURE_* flags can be used to define the existing bit definitions in asm/vmx.h, i.e. force developers to define a VMX_FEATURE flag when adding support for a new hardware feature. The majority of Intel's (and compatible CPU's) VMX capabilities are enumerated via MSRs and not CPUID, i.e. querying /proc/cpuinfo doesn't naturally provide any insight into the virtualization capabilities of VMX enabled CPUs. Commit e38e05a85828d ("x86: extended "flags" to show virtualization HW feature in /proc/cpuinfo") attempted to address the issue by synthesizing select VMX features into a Linux-defined word in cpufeatures. Lack of reporting of VMX capabilities via /proc/cpuinfo is problematic because there is no sane way for a user to query the capabilities of their platform, e.g. when trying to find a platform to test a feature or debug an issue that has a hardware dependency. Lack of reporting is especially problematic when the user isn't familiar with VMX, e.g. the format of the MSRs is non-standard, existence of some MSRs is reported by bits in other MSRs, several "features" from KVM's point of view are enumerated as 3+ distinct features by hardware, etc... The synthetic cpufeatures approach has several flaws: - The set of synthesized VMX flags has become extremely stale with respect to the full set of VMX features, e.g. only one new flag (EPT A/D) has been added in the the decade since the introduction of the synthetic VMX features. Failure to keep the VMX flags up to date is likely due to the lack of a mechanism that forces developers to consider whether or not a new feature is worth reporting. - The synthetic flags may incorrectly be misinterpreted as affecting kernel behavior, i.e. KVM, the kernel's sole consumer of VMX, completely ignores the synthetic flags. - New CPU vendors that support VMX have duplicated the hideous code that propagates VMX features from MSRs to cpufeatures. Bringing the synthetic VMX flags up to date would exacerbate the copy+paste trainwreck. Define separate VMX_FEATURE flags to set the stage for enumerating VMX capabilities outside of the cpu_has() framework, and for adding functional usage of VMX_FEATURE_* to help ensure the features reported via /proc/cpuinfo is up to date with respect to kernel recognition of VMX capabilities. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20191221044513.21680-10-sean.j.christopherson@intel.com
2019-12-20 20:45:03 -08:00
#endif /* _ASM_X86_VMXFEATURES_H */