linux/arch/x86/boot/startup/efi-mixed.S

254 lines
6 KiB
ArmAsm
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
/*
* Copyright (C) 2014, 2015 Intel Corporation; author Matt Fleming
*
* Early support for invoking 32-bit EFI services from a 64-bit kernel.
*
* Because this thunking occurs before ExitBootServices() we have to
* restore the firmware's 32-bit GDT and IDT before we make EFI service
* calls.
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
*
* On the plus side, we don't have to worry about mangling 64-bit
* addresses into 32-bits because we're executing with an identity
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
* mapped pagetable and haven't transitioned to 64-bit virtual addresses
* yet.
*/
#include <linux/linkage.h>
#include <asm/desc_defs.h>
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
#include <asm/msr.h>
#include <asm/page_types.h>
#include <asm/pgtable_types.h>
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
#include <asm/processor-flags.h>
#include <asm/segment.h>
.text
.code32
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
SYM_FUNC_START(efi32_stub_entry)
call 1f
1: popl %ecx
/* Clear BSS */
xorl %eax, %eax
leal (_bss - 1b)(%ecx), %edi
leal (_ebss - 1b)(%ecx), %ecx
subl %edi, %ecx
shrl $2, %ecx
cld
rep stosl
add $0x4, %esp /* Discard return address */
movl 8(%esp), %ebx /* struct boot_params pointer */
jmp efi32_startup
SYM_FUNC_END(efi32_stub_entry)
#endif
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
/*
* Called using a far call from __efi64_thunk() below, using the x86_64 SysV
* ABI (except for R8/R9 which are inaccessible to 32-bit code - EAX/EBX are
* used instead). EBP+16 points to the arguments passed via the stack.
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
*
* The first argument (EDI) is a pointer to the boot service or protocol, to
* which the remaining arguments are passed, each truncated to 32 bits.
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
*/
SYM_FUNC_START_LOCAL(efi_enter32)
/*
* Convert x86-64 SysV ABI params to i386 ABI
*/
pushl 32(%ebp) /* Up to 3 args passed via the stack */
pushl 24(%ebp)
pushl 16(%ebp)
pushl %ebx /* R9 */
pushl %eax /* R8 */
pushl %ecx
pushl %edx
pushl %esi
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
/* Disable long mode via EFER */
movl $MSR_EFER, %ecx
rdmsr
btrl $_EFER_LME, %eax
wrmsr
call *%edi
/* We must preserve return value */
movl %eax, %edi
call efi32_enable_long_mode
addl $32, %esp
movl %edi, %eax
lret
SYM_FUNC_END(efi_enter32)
.code64
SYM_FUNC_START(__efi64_thunk)
push %rbp
movl %esp, %ebp
push %rbx
/* Move args #5 and #6 into 32-bit accessible registers */
movl %r8d, %eax
movl %r9d, %ebx
lcalll *efi32_call(%rip)
pop %rbx
pop %rbp
RET
SYM_FUNC_END(__efi64_thunk)
.code32
SYM_FUNC_START_LOCAL(efi32_enable_long_mode)
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
movl %cr4, %eax
btsl $(X86_CR4_PAE_BIT), %eax
movl %eax, %cr4
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
/* Disable interrupts - the firmware's IDT does not work in long mode */
cli
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
/* Enable paging */
movl %cr0, %eax
btsl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
ret
SYM_FUNC_END(efi32_enable_long_mode)
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
/*
* This is the common EFI stub entry point for mixed mode. It sets up the GDT
* and page tables needed for 64-bit execution, after which it calls the
* common 64-bit EFI entrypoint efi_stub_entry().
*
* Arguments: 0(%esp) image handle
* 4(%esp) EFI system table pointer
* %ebx struct boot_params pointer (or NULL)
*
* Since this is the point of no return for ordinary execution, no registers
* are considered live except for the function parameters. [Note that the EFI
* stub may still exit and return to the firmware using the Exit() EFI boot
* service.]
*/
SYM_FUNC_START_LOCAL(efi32_startup)
movl %esp, %ebp
subl $8, %esp
sgdtl (%esp) /* Save GDT descriptor to the stack */
movl 2(%esp), %esi /* Existing GDT pointer */
movzwl (%esp), %ecx /* Existing GDT limit */
inc %ecx /* Existing GDT size */
andl $~7, %ecx /* Ensure size is multiple of 8 */
subl %ecx, %esp /* Allocate new GDT */
andl $~15, %esp /* Realign the stack */
movl %esp, %edi /* New GDT address */
leal 7(%ecx), %eax /* New GDT limit */
pushw %cx /* Push 64-bit CS (for LJMP below) */
pushl %edi /* Push new GDT address */
pushw %ax /* Push new GDT limit */
/* Copy GDT to the stack and add a 64-bit code segment at the end */
movl $GDT_ENTRY(DESC_CODE64, 0, 0xfffff) & 0xffffffff, (%edi,%ecx)
movl $GDT_ENTRY(DESC_CODE64, 0, 0xfffff) >> 32, 4(%edi,%ecx)
shrl $2, %ecx
cld
rep movsl /* Copy the firmware GDT */
lgdtl (%esp) /* Switch to the new GDT */
x86/efistub: Add missing boot_params for mixed mode compat entry The pure EFI stub entry point does not take a struct boot_params from the boot loader, but creates it from scratch, and populates only the fields that still have meaning in this context (command line, initrd base and size, etc) The original mixed mode implementation used the EFI handover protocol instead, where the boot loader (i.e., GRUB) populates a boot_params struct and passes it to a special Linux specific EFI entry point that takes the boot_params pointer as its third argument. When the new mixed mode implementation was introduced, using a special 32-bit PE entrypoint in the 64-bit kernel, it adopted the pure approach, and relied on the EFI stub to create the struct boot_params. This is preferred because it makes the bootloader side much easier to implement, as it does not need any x86-specific knowledge on how struct boot_params and struct setup_header are put together. This mixed mode implementation was adopted by systemd-boot version 252 and later. When commit e2ab9eab324c ("x86/boot/compressed: Move 32-bit entrypoint code into .text section") refactored this code and moved it out of head_64.S, the fact that ESI was populated with the address of the base of the image was overlooked, and to simplify the code flow, ESI is now zeroed and stored to memory unconditionally in shared code, so that the NULL-ness of that variable can still be used later to determine which mixed mode boot protocol is in use. With ESI pointing to the base of the image, it can serve as a struct boot_params pointer for startup_32(), which only accesses the init_data and kernel_alignment fields (and the scratch field as a temporary stack). Zeroing ESI means that those accesses produce garbage now, even though things appear to work if the first page of memory happens to be zeroed, and the region right before LOAD_PHYSICAL_ADDR (== 16 MiB) happens to be free. The solution is to pass a special, temporary struct boot_params to startup_32() via ESI, one that is sufficient for getting it to create the page tables correctly and is discarded right after. This involves setting a minimal alignment of 4k, only to get the statically allocated page tables line up correctly, and setting init_size to the executable image size (_end - startup_32). This ensures that the page tables are covered by the static footprint of the PE image. Given that EFI boot no longer calls the decompressor and no longer pads the image to permit the decompressor to execute in place, the same temporary struct boot_params should be used in the EFI handover protocol based mixed mode implementation as well, to prevent the page tables from being placed outside of allocated memory. Fixes: e2ab9eab324c ("x86/boot/compressed: Move 32-bit entrypoint code into .text section") Cc: <stable@kernel.org> # v6.1+ Closes: https://lore.kernel.org/all/20240321150510.GI8211@craftyguy.net/ Reported-by: Clayton Craft <clayton@craftyguy.net> Tested-by: Clayton Craft <clayton@craftyguy.net> Tested-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-03-24 17:10:53 +01:00
call 1f
1: pop %edi
/* Record mixed mode entry */
movb $0x0, (efi_is64 - 1b)(%edi)
/* Set up indirect far call to re-enter 32-bit mode */
leal (efi32_call - 1b)(%edi), %eax
addl %eax, (%eax)
movw %cs, 4(%eax)
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
/* Set up 1:1 mapping */
leal (pte - 1b)(%edi), %eax
movl $_PAGE_PRESENT | _PAGE_RW | _PAGE_PSE, %ecx
leal (_PAGE_PRESENT | _PAGE_RW)(%eax), %edx
2: movl %ecx, (%eax)
addl $8, %eax
addl $PMD_SIZE, %ecx
jnc 2b
movl $PAGE_SIZE, %ecx
.irpc l, 0123
movl %edx, \l * 8(%eax)
addl %ecx, %edx
.endr
addl %ecx, %eax
movl %edx, (%eax)
movl %eax, %cr3
call efi32_enable_long_mode
/* Set up far jump to 64-bit mode (CS is already on the stack) */
leal (efi_stub_entry - 1b)(%edi), %eax
movl %eax, 2(%esp)
movl 0(%ebp), %edi
movl 4(%ebp), %esi
movl %ebx, %edx
ljmpl *2(%esp)
SYM_FUNC_END(efi32_startup)
/*
* efi_status_t efi32_pe_entry(efi_handle_t image_handle,
* efi_system_table_32_t *sys_table)
*/
SYM_FUNC_START(efi32_pe_entry)
pushl %ebx // save callee-save registers
/* Check whether the CPU supports long mode */
movl $0x80000001, %eax // assume extended info support
cpuid
btl $29, %edx // check long mode bit
jnc 1f
leal 8(%esp), %esp // preserve stack alignment
xor %ebx, %ebx // no struct boot_params pointer
jmp efi32_startup // only ESP and EBX remain live
1: movl $0x80000003, %eax // EFI_UNSUPPORTED
popl %ebx
RET
SYM_FUNC_END(efi32_pe_entry)
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
.org efi32_stub_entry + 0x200
.code64
SYM_FUNC_START_NOALIGN(efi64_stub_entry)
jmp efi_handover_entry
SYM_FUNC_END(efi64_stub_entry)
#endif
x86/efi: Avoid triple faults during EFI mixed mode calls Andy pointed out that if an NMI or MCE is received while we're in the middle of an EFI mixed mode call a triple fault will occur. This can happen, for example, when issuing an EFI mixed mode call while running perf. The reason for the triple fault is that we execute the mixed mode call in 32-bit mode with paging disabled but with 64-bit kernel IDT handlers installed throughout the call. At Andy's suggestion, stop playing the games we currently do at runtime, such as disabling paging and installing a 32-bit GDT for __KERNEL_CS. We can simply switch to the __KERNEL32_CS descriptor before invoking firmware services, and run in compatibility mode. This way, if an NMI/MCE does occur the kernel IDT handler will execute correctly, since it'll jump to __KERNEL_CS automatically. However, this change is only possible post-ExitBootServices(). Before then the firmware "owns" the machine and expects for its 32-bit IDT handlers to be left intact to service interrupts, etc. So, we now need to distinguish between early boot and runtime invocations of EFI services. During early boot, we need to restore the GDT that the firmware expects to be present. We can only jump to the __KERNEL32_CS code segment for mixed mode calls after ExitBootServices() has been invoked. A liberal sprinkling of comments in the thunking code should make the differences in early and late environments more apparent. Reported-by: Andy Lutomirski <luto@amacapital.net> Tested-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-13 15:25:00 +00:00
.data
.balign 8
SYM_DATA_START_LOCAL(efi32_call)
.long efi_enter32 - .
.word 0x0
SYM_DATA_END(efi32_call)
SYM_DATA(efi_is64, .byte 1)
.bss
.balign PAGE_SIZE
SYM_DATA_LOCAL(pte, .fill 6 * PAGE_SIZE, 1, 0)