linux/arch/s390/include/asm/ftrace.h

167 lines
4.3 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_S390_FTRACE_H
#define _ASM_S390_FTRACE_H
s390/ftrace,kprobes: allow to patch first instruction If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-15 12:17:38 +02:00
#define ARCH_SUPPORTS_FTRACE_OPS 1
#define MCOUNT_INSN_SIZE 6
#ifndef __ASSEMBLER__
s390/ftrace: Avoid calling unwinder in ftrace_return_address() ftrace_return_address() is called extremely often from performance-critical code paths when debugging features like CONFIG_TRACE_IRQFLAGS are enabled. For example, with debug_defconfig, ftrace selftests on my LPAR currently execute ftrace_return_address() as follows: ftrace_return_address(0) - 0 times (common code uses __builtin_return_address(0) instead) ftrace_return_address(1) - 2,986,805,401 times (with this patch applied) ftrace_return_address(2) - 140 times ftrace_return_address(>2) - 0 times The use of __builtin_return_address(n) was replaced by return_address() with an unwinder call by commit cae74ba8c295 ("s390/ftrace: Use unwinder instead of __builtin_return_address()") because __builtin_return_address(n) simply walks the stack backchain and doesn't check for reaching the stack top. For shallow stacks with fewer than "n" frames, this results in reads at low addresses and random memory accesses. While calling the fully functional unwinder "works", it is very slow for this purpose. Moreover, potentially following stack switches and walking past IRQ context is simply wrong thing to do for ftrace_return_address(). Reimplement return_address() to essentially be __builtin_return_address(n) with checks for reaching the stack top. Since the ftrace_return_address(n) argument is always a constant, keep the implementation in the header, allowing both GCC and Clang to unroll the loop and optimize it to the bare minimum. Fixes: cae74ba8c295 ("s390/ftrace: Use unwinder instead of __builtin_return_address()") Cc: stable@vger.kernel.org Reported-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-24 02:14:04 +02:00
#include <asm/stacktrace.h>
s390/ftrace: Avoid calling unwinder in ftrace_return_address() ftrace_return_address() is called extremely often from performance-critical code paths when debugging features like CONFIG_TRACE_IRQFLAGS are enabled. For example, with debug_defconfig, ftrace selftests on my LPAR currently execute ftrace_return_address() as follows: ftrace_return_address(0) - 0 times (common code uses __builtin_return_address(0) instead) ftrace_return_address(1) - 2,986,805,401 times (with this patch applied) ftrace_return_address(2) - 140 times ftrace_return_address(>2) - 0 times The use of __builtin_return_address(n) was replaced by return_address() with an unwinder call by commit cae74ba8c295 ("s390/ftrace: Use unwinder instead of __builtin_return_address()") because __builtin_return_address(n) simply walks the stack backchain and doesn't check for reaching the stack top. For shallow stacks with fewer than "n" frames, this results in reads at low addresses and random memory accesses. While calling the fully functional unwinder "works", it is very slow for this purpose. Moreover, potentially following stack switches and walking past IRQ context is simply wrong thing to do for ftrace_return_address(). Reimplement return_address() to essentially be __builtin_return_address(n) with checks for reaching the stack top. Since the ftrace_return_address(n) argument is always a constant, keep the implementation in the header, allowing both GCC and Clang to unroll the loop and optimize it to the bare minimum. Fixes: cae74ba8c295 ("s390/ftrace: Use unwinder instead of __builtin_return_address()") Cc: stable@vger.kernel.org Reported-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
2024-08-24 02:14:04 +02:00
static __always_inline unsigned long return_address(unsigned int n)
{
struct stack_frame *sf;
if (!n)
return (unsigned long)__builtin_return_address(0);
sf = (struct stack_frame *)current_frame_address();
do {
sf = (struct stack_frame *)sf->back_chain;
if (!sf)
return 0;
} while (--n);
return sf->gprs[8];
}
#define ftrace_return_address(n) return_address(n)
s390/ftrace,kprobes: allow to patch first instruction If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-15 12:17:38 +02:00
void ftrace_caller(void);
s390/ftrace: fix ftrace_update_ftrace_func implementation s390 enforces DYNAMIC_FTRACE if FUNCTION_TRACER is selected. At the same time implementation of ftrace_caller is not compliant with HAVE_DYNAMIC_FTRACE since it doesn't provide implementation of ftrace_update_ftrace_func() and calls ftrace_trace_function() directly. The subtle difference is that during ftrace code patching ftrace replaces function tracer via ftrace_update_ftrace_func() and activates it back afterwards. Unexpected direct calls to ftrace_trace_function() during ftrace code patching leads to nullptr-dereferences when tracing is activated for one of functions which are used during code patching. Those function currently are: copy_from_kernel_nofault() copy_from_kernel_nofault_allowed() preempt_count_sub() [with debug_defconfig] preempt_count_add() [with debug_defconfig] Corresponding KASAN report: BUG: KASAN: nullptr-dereference in function_trace_call+0x316/0x3b0 Read of size 4 at addr 0000000000001e08 by task migration/0/15 CPU: 0 PID: 15 Comm: migration/0 Tainted: G B 5.13.0-41423-g08316af3644d Hardware name: IBM 3906 M04 704 (LPAR) Stopper: multi_cpu_stop+0x0/0x3e0 <- stop_machine_cpuslocked+0x1e4/0x218 Call Trace: [<0000000001f77caa>] show_stack+0x16a/0x1d0 [<0000000001f8de42>] dump_stack+0x15a/0x1b0 [<0000000001f81d56>] print_address_description.constprop.0+0x66/0x2e0 [<000000000082b0ca>] kasan_report+0x152/0x1c0 [<00000000004cfd8e>] function_trace_call+0x316/0x3b0 [<0000000001fb7082>] ftrace_caller+0x7a/0x7e [<00000000006bb3e6>] copy_from_kernel_nofault_allowed+0x6/0x10 [<00000000006bb42e>] copy_from_kernel_nofault+0x3e/0xd0 [<000000000014605c>] ftrace_make_call+0xb4/0x1f8 [<000000000047a1b4>] ftrace_replace_code+0x134/0x1d8 [<000000000047a6e0>] ftrace_modify_all_code+0x120/0x1d0 [<000000000047a7ec>] __ftrace_modify_code+0x5c/0x78 [<000000000042395c>] multi_cpu_stop+0x224/0x3e0 [<0000000000423212>] cpu_stopper_thread+0x33a/0x5a0 [<0000000000243ff2>] smpboot_thread_fn+0x302/0x708 [<00000000002329ea>] kthread+0x342/0x408 [<00000000001066b2>] __ret_from_fork+0x92/0xf0 [<0000000001fb57fa>] ret_from_fork+0xa/0x30 The buggy address belongs to the page: page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1 flags: 0x1ffff00000001000(reserved|node=0|zone=0|lastcpupid=0x1ffff) raw: 1ffff00000001000 0000040000000048 0000040000000048 0000000000000000 raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: 0000000000001d00: f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 0000000000001d80: f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 >0000000000001e00: f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 ^ 0000000000001e80: f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 0000000000001f00: f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 f7 ================================================================== To fix that introduce ftrace_func callback to be called from ftrace_caller and update it in ftrace_update_ftrace_func(). Fixes: 4cc9bed034d1 ("[S390] cleanup ftrace backend functions") Cc: stable@vger.kernel.org Reviewed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-06-25 23:50:07 +02:00
extern void *ftrace_func;
struct dyn_arch_ftrace { };
#define MCOUNT_ADDR 0
s390/ftrace,kprobes: allow to patch first instruction If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-15 12:17:38 +02:00
#define FTRACE_ADDR ((unsigned long)ftrace_caller)
s390/ftrace,kprobes: allow to patch first instruction If the function tracer is enabled, allow to set kprobes on the first instruction of a function (which is the function trace caller): If no kprobe is set handling of enabling and disabling function tracing of a function simply patches the first instruction. Either it is a nop (right now it's an unconditional branch, which skips the mcount block), or it's a branch to the ftrace_caller() function. If a kprobe is being placed on a function tracer calling instruction we encode if we actually have a nop or branch in the remaining bytes after the breakpoint instruction (illegal opcode). This is possible, since the size of the instruction used for the nop and branch is six bytes, while the size of the breakpoint is only two bytes. Therefore the first two bytes contain the illegal opcode and the last four bytes contain either "0" for nop or "1" for branch. The kprobes code will then execute/simulate the correct instruction. Instruction patching for kprobes and function tracer is always done with stop_machine(). Therefore we don't have any races where an instruction is patched concurrently on a different cpu. Besides that also the program check handler which executes the function trace caller instruction won't be executed concurrently to any stop_machine() execution. This allows to keep full fault based kprobes handling which generates correct pt_regs contents automatically. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2014-10-15 12:17:38 +02:00
#define KPROBE_ON_FTRACE_NOP 0
#define KPROBE_ON_FTRACE_CALL 1
struct module;
struct dyn_ftrace;
struct ftrace_ops;
s390/ftrace: implement hotpatching s390 allows hotpatching the mask of a conditional jump instruction. Make use of this feature in order to avoid the expensive stop_machine() call. The new trampolines are split in 3 stages: - A first stage is a 6-byte relative conditional long branch located at each function's entry point. Its offset always points to the second stage for the corresponding function, and its mask is either all 0s (ftrace off) or all 1s (ftrace on). The code for flipping the mask is borrowed from ftrace_{enable,disable}_ftrace_graph_caller. After flipping, ftrace_arch_code_modify_post_process() syncs with all the other CPUs by sending SIGPs. - Second stages for vmlinux are stored in a separate part of the .text section reserved by the linker script, and in dynamically allocated memory for modules. This prevents the icache pollution. The total size of second stages is about 1.5% of that of the kernel image. Putting second stages in the .bss section is possible and decreases the size of the non-compressed vmlinux, but splits the kernel 1:1 mapping, which is a bad tradeoff. Each second stage contains a call to the third stage, a pointer to the part of the intercepted function right after the first stage, and a pointer to an interceptor function (e.g. ftrace_caller). Second stages are 8-byte aligned for the future direct calls implementation. - There are only two copies of the third stage: in the .text section for vmlinux and in dynamically allocated memory for modules. It can be an expoline, which is relatively large, so inlining it into each second stage is prohibitively expensive. As a result of this organization, phoronix-test-suite with ftrace off does not show any performance degradation. Suggested-by: Sven Schnelle <svens@linux.ibm.com> Suggested-by: Vasily Gorbik <gor@linux.ibm.com> Co-developed-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/r/20210728212546.128248-3-iii@linux.ibm.com Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-07-28 23:25:46 +02:00
bool ftrace_need_init_nop(void);
#define ftrace_need_init_nop ftrace_need_init_nop
int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec);
#define ftrace_init_nop ftrace_init_nop
static inline unsigned long ftrace_call_adjust(unsigned long addr)
{
return addr;
}
#define ftrace_get_symaddr(fentry_ip) ((unsigned long)(fentry_ip))
ftrace: Consolidate ftrace_regs accessor functions for archs using pt_regs Most architectures use pt_regs within ftrace_regs making a lot of the accessor functions just calls to the pt_regs internally. Instead of duplication this effort, use a HAVE_ARCH_FTRACE_REGS for architectures that have their own ftrace_regs that is not based on pt_regs and will define all the accessor functions, and for the architectures that just use pt_regs, it will leave it undefined, and the default accessor functions will be used. Note, this will also make it easier to add new accessor functions to ftrace_regs as it will mean having to touch less architectures. Cc: <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241010202114.2289f6fd@gandalf.local.home Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # powerpc Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-10 20:21:14 -04:00
#include <linux/ftrace_regs.h>
static __always_inline struct pt_regs *arch_ftrace_get_regs(struct ftrace_regs *fregs)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
struct pt_regs *regs = &arch_ftrace_regs(fregs)->regs;
if (test_pt_regs_flag(regs, PIF_FTRACE_FULL_REGS))
return regs;
return NULL;
}
static __always_inline void
ftrace_regs_set_instruction_pointer(struct ftrace_regs *fregs,
unsigned long ip)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
arch_ftrace_regs(fregs)->regs.psw.addr = ip;
}
fgraph: Replace fgraph_ret_regs with ftrace_regs Use ftrace_regs instead of fgraph_ret_regs for tracing return value on function_graph tracer because of simplifying the callback interface. The CONFIG_HAVE_FUNCTION_GRAPH_RETVAL is also replaced by CONFIG_HAVE_FUNCTION_GRAPH_FREGS. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/173518991508.391279.16635322774382197642.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:11:55 +09:00
#undef ftrace_regs_get_frame_pointer
static __always_inline unsigned long
ftrace_regs_get_frame_pointer(struct ftrace_regs *fregs)
{
return ftrace_regs_get_stack_pointer(fregs);
}
tracing: Add ftrace_fill_perf_regs() for perf event Add ftrace_fill_perf_regs() which should be compatible with the perf_fetch_caller_regs(). In other words, the pt_regs returned from the ftrace_fill_perf_regs() must satisfy 'user_mode(regs) == false' and can be used for stack tracing. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lore.kernel.org/173518997908.391279.15910334347345106424.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:12:59 +09:00
fprobe: Rewrite fprobe on function-graph tracer Rewrite fprobe implementation on function-graph tracer. Major API changes are: - 'nr_maxactive' field is deprecated. - This depends on CONFIG_DYNAMIC_FTRACE_WITH_ARGS or !CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS, and CONFIG_HAVE_FUNCTION_GRAPH_FREGS. So currently works only on x86_64. - Currently the entry size is limited in 15 * sizeof(long). - If there is too many fprobe exit handler set on the same function, it will fail to probe. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/173519003970.391279.14406792285453830996.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:13:59 +09:00
static __always_inline unsigned long
ftrace_regs_get_return_address(const struct ftrace_regs *fregs)
{
return arch_ftrace_regs(fregs)->regs.gprs[14];
}
tracing: Add ftrace_fill_perf_regs() for perf event Add ftrace_fill_perf_regs() which should be compatible with the perf_fetch_caller_regs(). In other words, the pt_regs returned from the ftrace_fill_perf_regs() must satisfy 'user_mode(regs) == false' and can be used for stack tracing. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lore.kernel.org/173518997908.391279.15910334347345106424.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:12:59 +09:00
#define arch_ftrace_fill_perf_regs(fregs, _regs) do { \
(_regs)->psw.mask = 0; \
(_regs)->psw.addr = arch_ftrace_regs(fregs)->regs.psw.addr; \
(_regs)->gprs[15] = arch_ftrace_regs(fregs)->regs.gprs[15]; \
} while (0)
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
/*
* When an ftrace registered caller is tracing a function that is
* also set by a register_ftrace_direct() call, it needs to be
* differentiated in the ftrace_caller trampoline. To do this,
* place the direct caller in the ORIG_GPR2 part of pt_regs. This
* tells the ftrace_caller that there's a direct caller.
*/
static inline void arch_ftrace_set_direct_caller(struct ftrace_regs *fregs, unsigned long addr)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
struct pt_regs *regs = &arch_ftrace_regs(fregs)->regs;
regs->orig_gpr2 = addr;
}
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
/*
* Even though the system call numbers are identical for s390/s390x a
* different system call table is used for compat tasks. This may lead
* to e.g. incorrect or missing trace event sysfs files.
* Therefore simply do not trace compat system calls at all.
* See kernel/trace/trace_syscalls.c.
*/
#define ARCH_TRACE_IGNORE_COMPAT_SYSCALLS
static inline bool arch_trace_is_compat_syscall(struct pt_regs *regs)
{
return is_compat_task();
}
#define ARCH_HAS_SYSCALL_MATCH_SYM_NAME
static inline bool arch_syscall_match_sym_name(const char *sym,
const char *name)
{
/*
* Skip __s390_ and __s390x_ prefix - due to compat wrappers
* and aliasing some symbols of 64 bit system call functions
* may get the __s390_ prefix instead of the __s390x_ prefix.
*/
return !strcmp(sym + 7, name) || !strcmp(sym + 8, name);
}
void ftrace_graph_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs);
#define ftrace_graph_func ftrace_graph_func
#endif /* __ASSEMBLER__ */
#ifdef CONFIG_FUNCTION_TRACER
#define FTRACE_NOP_INSN .word 0xc004, 0x0000, 0x0000 /* brcl 0,0 */
#ifndef CC_USING_HOTPATCH
#define FTRACE_GEN_MCOUNT_RECORD(name) \
.section __mcount_loc, "a", @progbits; \
.quad name; \
.previous;
#else /* !CC_USING_HOTPATCH */
#define FTRACE_GEN_MCOUNT_RECORD(name)
#endif /* !CC_USING_HOTPATCH */
#define FTRACE_GEN_NOP_ASM(name) \
FTRACE_GEN_MCOUNT_RECORD(name) \
FTRACE_NOP_INSN
#else /* CONFIG_FUNCTION_TRACER */
#define FTRACE_GEN_NOP_ASM(name)
#endif /* CONFIG_FUNCTION_TRACER */
#endif /* _ASM_S390_FTRACE_H */