linux/arch/powerpc/platforms/44x/warp.c

331 lines
7 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PIKA Warp(tm) board specific routines
*
* Copyright (c) 2008-2009 PIKA Technologies
* Sean MacLennan <smaclennan@pikatech.com>
*/
#include <linux/err.h>
#include <linux/init.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/kthread.h>
#include <linux/leds.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/gpio/consumer.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/export.h>
#include <asm/machdep.h>
#include <asm/udbg.h>
#include <asm/time.h>
#include <asm/uic.h>
#include <asm/ppc4xx.h>
#include <asm/dma.h>
static const struct of_device_id warp_of_bus[] __initconst = {
{ .compatible = "ibm,plb4", },
{ .compatible = "ibm,opb", },
{ .compatible = "ibm,ebc", },
{},
};
static int __init warp_device_probe(void)
{
of_platform_bus_probe(NULL, warp_of_bus, NULL);
return 0;
}
machine_device_initcall(warp, warp_device_probe);
define_machine(warp) {
.name = "Warp",
.compatible = "pika,warp",
.progress = udbg_progress,
.init_IRQ = uic_init_tree,
.get_irq = uic_get_irq,
.restart = ppc4xx_reset_system,
};
static int __init warp_post_info(void)
{
struct device_node *np;
void __iomem *fpga;
u32 post1, post2;
/* Sighhhh... POST information is in the sd area. */
np = of_find_compatible_node(NULL, NULL, "pika,fpga-sd");
if (np == NULL)
return -ENOENT;
fpga = of_iomap(np, 0);
of_node_put(np);
if (fpga == NULL)
return -ENOENT;
post1 = in_be32(fpga + 0x40);
post2 = in_be32(fpga + 0x44);
iounmap(fpga);
if (post1 || post2)
printk(KERN_INFO "Warp POST %08x %08x\n", post1, post2);
else
printk(KERN_INFO "Warp POST OK\n");
return 0;
}
#ifdef CONFIG_SENSORS_AD7414
static void __iomem *dtm_fpga;
#define WARP_GREEN_LED 0
#define WARP_RED_LED 1
static struct gpio_led warp_gpio_led_pins[] = {
[WARP_GREEN_LED] = {
.name = "green",
.default_state = LEDS_DEFSTATE_KEEP,
.gpiod = NULL, /* to be filled by pika_setup_leds() */
},
[WARP_RED_LED] = {
.name = "red",
.default_state = LEDS_DEFSTATE_KEEP,
.gpiod = NULL, /* to be filled by pika_setup_leds() */
},
};
static struct gpio_led_platform_data warp_gpio_led_data = {
.leds = warp_gpio_led_pins,
.num_leds = ARRAY_SIZE(warp_gpio_led_pins),
};
static struct platform_device warp_gpio_leds = {
.name = "leds-gpio",
.id = -1,
.dev = {
.platform_data = &warp_gpio_led_data,
},
};
static irqreturn_t temp_isr(int irq, void *context)
{
int value = 1;
local_irq_disable();
gpiod_set_value(warp_gpio_led_pins[WARP_GREEN_LED].gpiod, 0);
printk(KERN_EMERG "\n\nCritical Temperature Shutdown\n\n");
while (1) {
if (dtm_fpga) {
unsigned reset = in_be32(dtm_fpga + 0x14);
out_be32(dtm_fpga + 0x14, reset);
}
gpiod_set_value(warp_gpio_led_pins[WARP_RED_LED].gpiod, value);
value ^= 1;
mdelay(500);
}
/* Not reached */
return IRQ_HANDLED;
}
/*
* Because green and red power LEDs are normally driven by leds-gpio driver,
* but in case of critical temperature shutdown we want to drive them
* ourselves, we acquire both and then create leds-gpio platform device
* ourselves, instead of doing it through device tree. This way we can still
* keep access to the gpios and use them when needed.
*/
static int pika_setup_leds(void)
{
struct device_node *np, *child;
struct gpio_desc *gpio;
struct gpio_led *led;
int led_count = 0;
int error;
int i;
np = of_find_compatible_node(NULL, NULL, "warp-power-leds");
if (!np) {
printk(KERN_ERR __FILE__ ": Unable to find leds\n");
return -ENOENT;
}
for_each_child_of_node(np, child) {
for (i = 0; i < ARRAY_SIZE(warp_gpio_led_pins); i++) {
led = &warp_gpio_led_pins[i];
if (!of_node_name_eq(child, led->name))
continue;
if (led->gpiod) {
printk(KERN_ERR __FILE__ ": %s led has already been defined\n",
led->name);
continue;
}
gpio = fwnode_gpiod_get_index(of_fwnode_handle(child),
NULL, 0, GPIOD_ASIS,
led->name);
error = PTR_ERR_OR_ZERO(gpio);
if (error) {
printk(KERN_ERR __FILE__ ": Failed to get %s led gpio: %d\n",
led->name, error);
of_node_put(child);
goto err_cleanup_pins;
}
led->gpiod = gpio;
led_count++;
}
}
of_node_put(np);
/* Skip device registration if no leds have been defined */
if (led_count) {
error = platform_device_register(&warp_gpio_leds);
if (error) {
printk(KERN_ERR __FILE__ ": Unable to add leds-gpio: %d\n",
error);
goto err_cleanup_pins;
}
}
return 0;
err_cleanup_pins:
for (i = 0; i < ARRAY_SIZE(warp_gpio_led_pins); i++) {
led = &warp_gpio_led_pins[i];
gpiod_put(led->gpiod);
led->gpiod = NULL;
}
return error;
}
static void pika_setup_critical_temp(struct device_node *np,
struct i2c_client *client)
{
int irq, rc;
/* Do this before enabling critical temp interrupt since we
* may immediately interrupt.
*/
pika_setup_leds();
/* These registers are in 1 degree increments. */
i2c_smbus_write_byte_data(client, 2, 65); /* Thigh */
i2c_smbus_write_byte_data(client, 3, 0); /* Tlow */
irq = irq_of_parse_and_map(np, 0);
if (!irq) {
printk(KERN_ERR __FILE__ ": Unable to get ad7414 irq\n");
return;
}
rc = request_irq(irq, temp_isr, 0, "ad7414", NULL);
if (rc) {
printk(KERN_ERR __FILE__
": Unable to request ad7414 irq %d = %d\n", irq, rc);
return;
}
}
static inline void pika_dtm_check_fan(void __iomem *fpga)
{
static int fan_state;
u32 fan = in_be32(fpga + 0x34) & (1 << 14);
if (fan_state != fan) {
fan_state = fan;
if (fan)
printk(KERN_WARNING "Fan rotation error detected."
" Please check hardware.\n");
}
}
static int pika_dtm_thread(void __iomem *fpga)
{
struct device_node *np;
struct i2c_client *client;
np = of_find_compatible_node(NULL, NULL, "adi,ad7414");
if (np == NULL)
return -ENOENT;
client = of_find_i2c_device_by_node(np);
if (client == NULL) {
of_node_put(np);
return -ENOENT;
}
pika_setup_critical_temp(np, client);
of_node_put(np);
printk(KERN_INFO "Warp DTM thread running.\n");
while (!kthread_should_stop()) {
int val;
val = i2c_smbus_read_word_data(client, 0);
if (val < 0)
dev_dbg(&client->dev, "DTM read temp failed.\n");
else {
s16 temp = swab16(val);
out_be32(fpga + 0x20, temp);
}
pika_dtm_check_fan(fpga);
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(HZ);
}
return 0;
}
static int __init pika_dtm_start(void)
{
struct task_struct *dtm_thread;
struct device_node *np;
np = of_find_compatible_node(NULL, NULL, "pika,fpga");
if (np == NULL)
return -ENOENT;
dtm_fpga = of_iomap(np, 0);
of_node_put(np);
if (dtm_fpga == NULL)
return -ENOENT;
/* Must get post info before thread starts. */
warp_post_info();
dtm_thread = kthread_run(pika_dtm_thread, dtm_fpga, "pika-dtm");
if (IS_ERR(dtm_thread)) {
iounmap(dtm_fpga);
return PTR_ERR(dtm_thread);
}
return 0;
}
machine_late_initcall(warp, pika_dtm_start);
#else /* !CONFIG_SENSORS_AD7414 */
machine_late_initcall(warp, warp_post_info);
#endif