linux/arch/powerpc/include/asm/vdso/gettimeofday.h

147 lines
3.9 KiB
C
Raw Permalink Normal View History

powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_VDSO_GETTIMEOFDAY_H
#define _ASM_POWERPC_VDSO_GETTIMEOFDAY_H
#ifndef __ASSEMBLY__
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
#include <asm/vdso/timebase.h>
#include <asm/barrier.h>
#include <asm/unistd.h>
#include <uapi/linux/time.h>
#define VDSO_HAS_CLOCK_GETRES 1
#define VDSO_HAS_TIME 1
/*
* powerpc specific delta calculation.
*
* This variant removes the masking of the subtraction because the
* clocksource mask of all VDSO capable clocksources on powerpc is U64_MAX
* which would result in a pointless operation. The compiler cannot
* optimize it away as the mask comes from the vdso data and is not compile
* time constant.
*/
#define VDSO_DELTA_NOMASK 1
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
static __always_inline int do_syscall_2(const unsigned long _r0, const unsigned long _r3,
const unsigned long _r4)
{
register long r0 asm("r0") = _r0;
register unsigned long r3 asm("r3") = _r3;
register unsigned long r4 asm("r4") = _r4;
register int ret asm ("r3");
asm volatile(
" sc\n"
" bns+ 1f\n"
" neg %0, %0\n"
"1:\n"
: "=r" (ret), "+r" (r4), "+r" (r0)
: "r" (r3)
: "memory", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "cr0", "ctr");
return ret;
}
static __always_inline
int gettimeofday_fallback(struct __kernel_old_timeval *_tv, struct timezone *_tz)
{
return do_syscall_2(__NR_gettimeofday, (unsigned long)_tv, (unsigned long)_tz);
}
#ifdef __powerpc64__
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
static __always_inline
int clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
{
return do_syscall_2(__NR_clock_gettime, _clkid, (unsigned long)_ts);
}
static __always_inline
int clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
{
return do_syscall_2(__NR_clock_getres, _clkid, (unsigned long)_ts);
}
#else
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
#define BUILD_VDSO32 1
static __always_inline
int clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
{
return do_syscall_2(__NR_clock_gettime64, _clkid, (unsigned long)_ts);
}
static __always_inline
int clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
{
return do_syscall_2(__NR_clock_getres_time64, _clkid, (unsigned long)_ts);
}
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
static __always_inline
int clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
{
return do_syscall_2(__NR_clock_gettime, _clkid, (unsigned long)_ts);
}
static __always_inline
int clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
{
return do_syscall_2(__NR_clock_getres, _clkid, (unsigned long)_ts);
}
#endif
static __always_inline u64 __arch_get_hw_counter(s32 clock_mode,
const struct vdso_time_data *vd)
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
{
return get_tb();
}
static inline bool vdso_clocksource_ok(const struct vdso_clock *vc)
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
{
return true;
}
#define vdso_clocksource_ok vdso_clocksource_ok
#ifndef __powerpc64__
static __always_inline u64 vdso_shift_ns(u64 ns, unsigned long shift)
{
u32 hi = ns >> 32;
u32 lo = ns;
lo >>= shift;
lo |= hi << (32 - shift);
hi >>= shift;
if (likely(hi == 0))
return lo;
return ((u64)hi << 32) | lo;
}
#define vdso_shift_ns vdso_shift_ns
#endif
#ifdef __powerpc64__
int __c_kernel_clock_gettime(clockid_t clock, struct __kernel_timespec *ts,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
int __c_kernel_clock_getres(clockid_t clock_id, struct __kernel_timespec *res,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
#else
int __c_kernel_clock_gettime(clockid_t clock, struct old_timespec32 *ts,
const struct vdso_time_data *vd);
int __c_kernel_clock_gettime64(clockid_t clock, struct __kernel_timespec *ts,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
int __c_kernel_clock_getres(clockid_t clock_id, struct old_timespec32 *res,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
#endif
int __c_kernel_gettimeofday(struct __kernel_old_timeval *tv, struct timezone *tz,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
__kernel_old_time_t __c_kernel_time(__kernel_old_time_t *time,
const struct vdso_time_data *vd);
powerpc/vdso: Prepare for switching VDSO to generic C implementation. Prepare for switching VDSO to generic C implementation in following patch. Here, we: - Prepare the helpers to call the C VDSO functions - Prepare the required callbacks for the C VDSO functions - Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES - Add the C trampolines to the generic C VDSO functions powerpc is a bit special for VDSO as well as system calls in the way that it requires setting CR SO bit which cannot be done in C. Therefore, entry/exit needs to be performed in ASM. Implementing __arch_get_vdso_data() would clobber the link register, requiring the caller to save it. As the ASM calling function already has to set a stack frame and saves the link register before calling the C vdso function, retriving the vdso data pointer there is lighter. Implement __arch_vdso_capable() and always return true. Provide vdso_shift_ns(), as the generic x >> s gives the following bad result: 18: 35 25 ff e0 addic. r9,r5,-32 1c: 41 80 00 10 blt 2c <shift+0x14> 20: 7c 64 4c 30 srw r4,r3,r9 24: 38 60 00 00 li r3,0 ... 2c: 54 69 08 3c rlwinm r9,r3,1,0,30 30: 21 45 00 1f subfic r10,r5,31 34: 7c 84 2c 30 srw r4,r4,r5 38: 7d 29 50 30 slw r9,r9,r10 3c: 7c 63 2c 30 srw r3,r3,r5 40: 7d 24 23 78 or r4,r9,r4 In our case the shift is always <= 32. In addition, the upper 32 bits of the result are likely nul. Lets GCC know it, it also optimises the following calculations. With the patch, we get: 0: 21 25 00 20 subfic r9,r5,32 4: 7c 69 48 30 slw r9,r3,r9 8: 7c 84 2c 30 srw r4,r4,r5 c: 7d 24 23 78 or r4,r9,r4 10: 7c 63 2c 30 srw r3,r3,r5 Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
2020-11-27 00:10:03 +11:00
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_VDSO_GETTIMEOFDAY_H */