2019-06-03 07:44:50 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2012-12-10 16:37:02 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
*
|
|
|
|
* Derived from arch/arm/kvm/guest.c:
|
|
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
|
|
*/
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
#include <linux/bits.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/err.h>
|
2018-09-28 14:39:19 +01:00
|
|
|
#include <linux/nospec.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <linux/module.h>
|
2019-03-15 15:47:04 +00:00
|
|
|
#include <linux/stddef.h>
|
2019-02-14 11:49:36 +00:00
|
|
|
#include <linux/string.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/fs.h>
|
2022-05-02 23:38:45 +00:00
|
|
|
#include <kvm/arm_hypercalls.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
#include <asm/cputype.h>
|
2016-12-24 11:46:01 -08:00
|
|
|
#include <linux/uaccess.h>
|
2018-09-28 14:39:19 +01:00
|
|
|
#include <asm/fpsimd.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
#include <asm/kvm.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
2023-02-09 17:58:07 +00:00
|
|
|
#include <asm/kvm_nested.h>
|
2018-09-28 14:39:19 +01:00
|
|
|
#include <asm/sigcontext.h>
|
2012-12-10 16:37:02 +00:00
|
|
|
|
2015-07-07 17:30:03 +01:00
|
|
|
#include "trace.h"
|
|
|
|
|
2021-06-18 22:27:05 +00:00
|
|
|
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
|
|
|
|
KVM_GENERIC_VM_STATS()
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct kvm_stats_header kvm_vm_stats_header = {
|
|
|
|
.name_size = KVM_STATS_NAME_SIZE,
|
|
|
|
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
|
|
|
|
.id_offset = sizeof(struct kvm_stats_header),
|
|
|
|
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
|
|
|
|
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
|
|
|
|
sizeof(kvm_vm_stats_desc),
|
|
|
|
};
|
|
|
|
|
2021-06-18 22:27:06 +00:00
|
|
|
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
|
|
|
|
KVM_GENERIC_VCPU_STATS(),
|
|
|
|
STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
|
|
|
|
STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
|
|
|
|
STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
|
|
|
|
STATS_DESC_COUNTER(VCPU, mmio_exit_user),
|
|
|
|
STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
|
2021-08-02 19:28:07 +00:00
|
|
|
STATS_DESC_COUNTER(VCPU, signal_exits),
|
2021-06-18 22:27:06 +00:00
|
|
|
STATS_DESC_COUNTER(VCPU, exits)
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct kvm_stats_header kvm_vcpu_stats_header = {
|
|
|
|
.name_size = KVM_STATS_NAME_SIZE,
|
|
|
|
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
|
|
|
|
.id_offset = sizeof(struct kvm_stats_header),
|
|
|
|
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
|
|
|
|
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
|
|
|
|
sizeof(kvm_vcpu_stats_desc),
|
|
|
|
};
|
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
static bool core_reg_offset_is_vreg(u64 off)
|
|
|
|
{
|
|
|
|
return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
|
|
|
|
off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
|
|
|
|
}
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
static u64 core_reg_offset_from_id(u64 id)
|
|
|
|
{
|
|
|
|
return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
|
|
|
|
}
|
|
|
|
|
2019-06-12 13:44:49 +01:00
|
|
|
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
|
2018-09-27 16:53:21 +01:00
|
|
|
{
|
|
|
|
int size;
|
|
|
|
|
|
|
|
switch (off) {
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
|
|
|
|
KVM_REG_ARM_CORE_REG(regs.regs[30]):
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.sp):
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pc):
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pstate):
|
|
|
|
case KVM_REG_ARM_CORE_REG(sp_el1):
|
|
|
|
case KVM_REG_ARM_CORE_REG(elr_el1):
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
|
|
|
|
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
|
|
|
|
size = sizeof(__u64);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
|
|
|
|
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
|
|
|
|
size = sizeof(__uint128_t);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
|
|
|
|
size = sizeof(__u32);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2019-06-12 13:44:49 +01:00
|
|
|
if (!IS_ALIGNED(off, size / sizeof(__u32)))
|
2018-12-11 20:31:08 +00:00
|
|
|
return -EINVAL;
|
2018-09-27 16:53:21 +01:00
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
/*
|
|
|
|
* The KVM_REG_ARM64_SVE regs must be used instead of
|
|
|
|
* KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
|
|
|
|
* SVE-enabled vcpus:
|
|
|
|
*/
|
|
|
|
if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2019-06-12 13:44:49 +01:00
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
2019-06-12 13:44:49 +01:00
|
|
|
{
|
|
|
|
u64 off = core_reg_offset_from_id(reg->id);
|
|
|
|
int size = core_reg_size_from_offset(vcpu, off);
|
|
|
|
|
|
|
|
if (size < 0)
|
2019-06-28 22:40:58 +01:00
|
|
|
return NULL;
|
2019-06-12 13:44:49 +01:00
|
|
|
|
|
|
|
if (KVM_REG_SIZE(reg->id) != size)
|
2019-06-28 22:40:58 +01:00
|
|
|
return NULL;
|
2019-06-12 13:44:49 +01:00
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
switch (off) {
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
|
|
|
|
KVM_REG_ARM_CORE_REG(regs.regs[30]):
|
|
|
|
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
|
|
|
|
off /= 2;
|
|
|
|
return &vcpu->arch.ctxt.regs.regs[off];
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.sp):
|
|
|
|
return &vcpu->arch.ctxt.regs.sp;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pc):
|
|
|
|
return &vcpu->arch.ctxt.regs.pc;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(regs.pstate):
|
|
|
|
return &vcpu->arch.ctxt.regs.pstate;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(sp_el1):
|
2019-06-28 23:05:38 +01:00
|
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
|
2019-06-28 22:40:58 +01:00
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(elr_el1):
|
2019-06-28 23:05:38 +01:00
|
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
|
2019-06-28 22:40:58 +01:00
|
|
|
|
2019-06-28 23:36:42 +01:00
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
|
2019-06-28 23:05:38 +01:00
|
|
|
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
|
2019-06-28 23:36:42 +01:00
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
|
|
|
|
return &vcpu->arch.ctxt.spsr_abt;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
|
|
|
|
return &vcpu->arch.ctxt.spsr_und;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
|
|
|
|
return &vcpu->arch.ctxt.spsr_irq;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
|
|
|
|
return &vcpu->arch.ctxt.spsr_fiq;
|
2019-06-28 22:40:58 +01:00
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
|
|
|
|
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
|
|
|
|
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
|
|
|
|
off /= 4;
|
|
|
|
return &vcpu->arch.ctxt.fp_regs.vregs[off];
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
|
|
|
|
return &vcpu->arch.ctxt.fp_regs.fpsr;
|
|
|
|
|
|
|
|
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
|
|
|
|
return &vcpu->arch.ctxt.fp_regs.fpcr;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return NULL;
|
|
|
|
}
|
2018-09-27 16:53:21 +01:00
|
|
|
}
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Because the kvm_regs structure is a mix of 32, 64 and
|
|
|
|
* 128bit fields, we index it as if it was a 32bit
|
|
|
|
* array. Hence below, nr_regs is the number of entries, and
|
|
|
|
* off the index in the "array".
|
|
|
|
*/
|
|
|
|
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
2019-06-28 22:40:58 +01:00
|
|
|
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
|
|
|
void *addr;
|
2012-12-10 16:37:02 +00:00
|
|
|
u32 off;
|
|
|
|
|
|
|
|
/* Our ID is an index into the kvm_regs struct. */
|
|
|
|
off = core_reg_offset_from_id(reg->id);
|
|
|
|
if (off >= nr_regs ||
|
|
|
|
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
addr = core_reg_addr(vcpu, reg);
|
|
|
|
if (!addr)
|
2018-09-27 16:53:21 +01:00
|
|
|
return -EINVAL;
|
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
|
2012-12-10 16:37:02 +00:00
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
|
2019-06-28 22:40:58 +01:00
|
|
|
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
|
2012-12-10 16:37:02 +00:00
|
|
|
__uint128_t tmp;
|
2019-06-28 22:40:58 +01:00
|
|
|
void *valp = &tmp, *addr;
|
2012-12-10 16:37:02 +00:00
|
|
|
u64 off;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
/* Our ID is an index into the kvm_regs struct. */
|
|
|
|
off = core_reg_offset_from_id(reg->id);
|
|
|
|
if (off >= nr_regs ||
|
|
|
|
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
addr = core_reg_addr(vcpu, reg);
|
|
|
|
if (!addr)
|
2018-09-27 16:53:21 +01:00
|
|
|
return -EINVAL;
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
|
|
|
|
err = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
|
2018-09-27 16:53:22 +01:00
|
|
|
u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
|
2012-12-10 16:37:02 +00:00
|
|
|
switch (mode) {
|
2018-07-05 15:16:53 +01:00
|
|
|
case PSR_AA32_MODE_USR:
|
2022-08-16 19:25:54 +00:00
|
|
|
if (!kvm_supports_32bit_el0())
|
2018-09-27 16:53:22 +01:00
|
|
|
return -EINVAL;
|
|
|
|
break;
|
2018-07-05 15:16:53 +01:00
|
|
|
case PSR_AA32_MODE_FIQ:
|
|
|
|
case PSR_AA32_MODE_IRQ:
|
|
|
|
case PSR_AA32_MODE_SVC:
|
|
|
|
case PSR_AA32_MODE_ABT:
|
|
|
|
case PSR_AA32_MODE_UND:
|
2024-05-24 15:19:55 +01:00
|
|
|
case PSR_AA32_MODE_SYS:
|
2018-09-27 16:53:22 +01:00
|
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
|
|
|
return -EINVAL;
|
|
|
|
break;
|
2023-02-09 17:58:07 +00:00
|
|
|
case PSR_MODE_EL2h:
|
|
|
|
case PSR_MODE_EL2t:
|
|
|
|
if (!vcpu_has_nv(vcpu))
|
|
|
|
return -EINVAL;
|
|
|
|
fallthrough;
|
2012-12-10 16:37:02 +00:00
|
|
|
case PSR_MODE_EL0t:
|
|
|
|
case PSR_MODE_EL1t:
|
|
|
|
case PSR_MODE_EL1h:
|
2018-09-27 16:53:22 +01:00
|
|
|
if (vcpu_el1_is_32bit(vcpu))
|
|
|
|
return -EINVAL;
|
2012-12-10 16:37:02 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
err = -EINVAL;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-28 22:40:58 +01:00
|
|
|
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
|
2020-04-29 11:21:55 +01:00
|
|
|
|
|
|
|
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
|
2020-10-16 18:41:24 +01:00
|
|
|
int i, nr_reg;
|
|
|
|
|
2024-05-24 15:19:54 +01:00
|
|
|
switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
|
2020-10-16 18:41:24 +01:00
|
|
|
/*
|
|
|
|
* Either we are dealing with user mode, and only the
|
|
|
|
* first 15 registers (+ PC) must be narrowed to 32bit.
|
|
|
|
* AArch32 r0-r14 conveniently map to AArch64 x0-x14.
|
|
|
|
*/
|
|
|
|
case PSR_AA32_MODE_USR:
|
|
|
|
case PSR_AA32_MODE_SYS:
|
|
|
|
nr_reg = 15;
|
|
|
|
break;
|
|
|
|
|
|
|
|
/*
|
2022-03-18 11:37:19 +01:00
|
|
|
* Otherwise, this is a privileged mode, and *all* the
|
2020-10-16 18:41:24 +01:00
|
|
|
* registers must be narrowed to 32bit.
|
|
|
|
*/
|
|
|
|
default:
|
|
|
|
nr_reg = 31;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nr_reg; i++)
|
|
|
|
vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
|
2020-04-29 11:21:55 +01:00
|
|
|
|
2020-10-16 18:41:24 +01:00
|
|
|
*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
|
2020-04-29 11:21:55 +01:00
|
|
|
}
|
2012-12-10 16:37:02 +00:00
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
|
|
|
|
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
|
2019-07-03 18:42:50 +01:00
|
|
|
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
|
2019-02-28 18:46:44 +00:00
|
|
|
|
|
|
|
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
unsigned int max_vq, vq;
|
2019-04-11 17:09:59 +01:00
|
|
|
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
|
2019-02-28 18:46:44 +00:00
|
|
|
|
2019-04-11 16:13:39 +01:00
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
|
|
return -ENOENT;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
memset(vqs, 0, sizeof(vqs));
|
|
|
|
|
2021-03-12 14:38:43 +00:00
|
|
|
max_vq = vcpu_sve_max_vq(vcpu);
|
2019-02-28 18:46:44 +00:00
|
|
|
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
|
|
|
|
if (sve_vq_available(vq))
|
|
|
|
vqs[vq_word(vq)] |= vq_mask(vq);
|
|
|
|
|
|
|
|
if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
unsigned int max_vq, vq;
|
2019-04-11 17:09:59 +01:00
|
|
|
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
|
2019-02-28 18:46:44 +00:00
|
|
|
|
2019-04-11 16:13:39 +01:00
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
|
|
return -ENOENT;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
if (kvm_arm_vcpu_sve_finalized(vcpu))
|
|
|
|
return -EPERM; /* too late! */
|
|
|
|
|
|
|
|
if (WARN_ON(vcpu->arch.sve_state))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
max_vq = 0;
|
|
|
|
for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
|
2019-06-10 15:30:03 +05:30
|
|
|
if (vq_present(vqs, vq))
|
2019-02-28 18:46:44 +00:00
|
|
|
max_vq = vq;
|
|
|
|
|
|
|
|
if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2019-04-11 17:23:00 +01:00
|
|
|
/*
|
|
|
|
* Vector lengths supported by the host can't currently be
|
|
|
|
* hidden from the guest individually: instead we can only set a
|
2020-04-01 15:03:10 +01:00
|
|
|
* maximum via ZCR_EL2.LEN. So, make sure the available vector
|
2019-04-11 17:23:00 +01:00
|
|
|
* lengths match the set requested exactly up to the requested
|
|
|
|
* maximum:
|
|
|
|
*/
|
2019-02-28 18:46:44 +00:00
|
|
|
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
|
2019-06-10 15:30:03 +05:30
|
|
|
if (vq_present(vqs, vq) != sve_vq_available(vq))
|
2019-02-28 18:46:44 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Can't run with no vector lengths at all: */
|
|
|
|
if (max_vq < SVE_VQ_MIN)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
|
|
|
|
vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
#define SVE_REG_SLICE_SHIFT 0
|
|
|
|
#define SVE_REG_SLICE_BITS 5
|
|
|
|
#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
|
|
|
|
#define SVE_REG_ID_BITS 5
|
|
|
|
|
|
|
|
#define SVE_REG_SLICE_MASK \
|
|
|
|
GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
|
|
|
|
SVE_REG_SLICE_SHIFT)
|
|
|
|
#define SVE_REG_ID_MASK \
|
|
|
|
GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
|
|
|
|
|
|
|
|
#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
|
|
|
|
|
|
|
|
#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
|
|
|
|
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
|
|
|
|
|
2018-09-28 14:39:20 +01:00
|
|
|
/*
|
2019-04-05 17:31:37 +01:00
|
|
|
* Number of register slices required to cover each whole SVE register.
|
|
|
|
* NOTE: Only the first slice every exists, for now.
|
|
|
|
* If you are tempted to modify this, you must also rework sve_reg_to_region()
|
|
|
|
* to match:
|
2018-09-28 14:39:20 +01:00
|
|
|
*/
|
|
|
|
#define vcpu_sve_slices(vcpu) 1
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
|
|
|
|
struct sve_state_reg_region {
|
|
|
|
unsigned int koffset; /* offset into sve_state in kernel memory */
|
|
|
|
unsigned int klen; /* length in kernel memory */
|
|
|
|
unsigned int upad; /* extra trailing padding in user memory */
|
|
|
|
};
|
|
|
|
|
2019-04-11 16:13:39 +01:00
|
|
|
/*
|
|
|
|
* Validate SVE register ID and get sanitised bounds for user/kernel SVE
|
|
|
|
* register copy
|
|
|
|
*/
|
2018-09-28 14:39:19 +01:00
|
|
|
static int sve_reg_to_region(struct sve_state_reg_region *region,
|
|
|
|
struct kvm_vcpu *vcpu,
|
|
|
|
const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
/* reg ID ranges for Z- registers */
|
|
|
|
const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
|
|
|
|
const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
|
|
|
|
SVE_NUM_SLICES - 1);
|
|
|
|
|
|
|
|
/* reg ID ranges for P- registers and FFR (which are contiguous) */
|
|
|
|
const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
|
|
|
|
const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
|
|
|
|
|
|
|
|
unsigned int vq;
|
|
|
|
unsigned int reg_num;
|
|
|
|
|
|
|
|
unsigned int reqoffset, reqlen; /* User-requested offset and length */
|
2020-04-01 15:03:10 +01:00
|
|
|
unsigned int maxlen; /* Maximum permitted length */
|
2018-09-28 14:39:19 +01:00
|
|
|
|
|
|
|
size_t sve_state_size;
|
|
|
|
|
KVM: arm64/sve: Clean up UAPI register ID definitions
Currently, the SVE register ID macros are not all defined in the
same way, and advertise the fact that FFR maps onto the nonexistent
predicate register P16. This is really just for kernel
convenience, and may lead userspace into bad habits.
Instead, this patch masks the ID macro arguments so that
architecturally invalid register numbers will not be passed through
any more, and uses a literal KVM_REG_ARM64_SVE_FFR_BASE macro to
define KVM_REG_ARM64_SVE_FFR(), similarly to the way the _ZREG()
and _PREG() macros are defined.
Rather than plugging in magic numbers for the number of Z- and P-
registers and the maximum possible number of register slices, this
patch provides definitions for those too. Userspace is going to
need them in any case, and it makes sense for them to come from
<uapi/asm/kvm.h>.
sve_reg_to_region() uses convenience constants that are defined in
a different way, and also makes use of the fact that the FFR IDs
are really contiguous with the P15 IDs, so this patch retains the
existing convenience constants in guest.c, supplemented with a
couple of sanity checks to check for consistency with the UAPI
header.
Fixes: e1c9c98345b3 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-05 17:17:08 +01:00
|
|
|
const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
|
|
|
|
SVE_NUM_SLICES - 1);
|
|
|
|
|
|
|
|
/* Verify that the P-regs and FFR really do have contiguous IDs: */
|
|
|
|
BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
|
|
|
|
|
|
|
|
/* Verify that we match the UAPI header: */
|
|
|
|
BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
|
|
|
|
|
|
|
|
if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
|
2019-04-11 16:13:39 +01:00
|
|
|
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2021-03-12 14:38:43 +00:00
|
|
|
vq = vcpu_sve_max_vq(vcpu);
|
2019-04-11 16:13:39 +01:00
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
|
|
|
|
SVE_SIG_REGS_OFFSET;
|
|
|
|
reqlen = KVM_SVE_ZREG_SIZE;
|
|
|
|
maxlen = SVE_SIG_ZREG_SIZE(vq);
|
|
|
|
} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
|
2019-04-11 16:13:39 +01:00
|
|
|
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2021-03-12 14:38:43 +00:00
|
|
|
vq = vcpu_sve_max_vq(vcpu);
|
2019-04-11 16:13:39 +01:00
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
|
|
|
|
SVE_SIG_REGS_OFFSET;
|
|
|
|
reqlen = KVM_SVE_PREG_SIZE;
|
|
|
|
maxlen = SVE_SIG_PREG_SIZE(vq);
|
|
|
|
} else {
|
2019-04-11 16:13:39 +01:00
|
|
|
return -EINVAL;
|
2018-09-28 14:39:19 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
sve_state_size = vcpu_sve_state_size(vcpu);
|
2019-04-11 16:37:38 +01:00
|
|
|
if (WARN_ON(!sve_state_size))
|
2018-09-28 14:39:19 +01:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
region->koffset = array_index_nospec(reqoffset, sve_state_size);
|
|
|
|
region->klen = min(maxlen, reqlen);
|
|
|
|
region->upad = reqlen - region->klen;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
2019-04-11 16:13:39 +01:00
|
|
|
int ret;
|
2018-09-28 14:39:19 +01:00
|
|
|
struct sve_state_reg_region region;
|
|
|
|
char __user *uptr = (char __user *)reg->addr;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
|
|
|
|
if (reg->id == KVM_REG_ARM64_SVE_VLS)
|
|
|
|
return get_sve_vls(vcpu, reg);
|
|
|
|
|
2019-04-11 16:13:39 +01:00
|
|
|
/* Try to interpret reg ID as an architectural SVE register... */
|
|
|
|
ret = sve_reg_to_region(®ion, vcpu, reg);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2019-02-28 18:46:44 +00:00
|
|
|
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu))
|
|
|
|
return -EPERM;
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
|
|
|
|
region.klen) ||
|
|
|
|
clear_user(uptr + region.klen, region.upad))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
2019-04-11 16:13:39 +01:00
|
|
|
int ret;
|
2018-09-28 14:39:19 +01:00
|
|
|
struct sve_state_reg_region region;
|
|
|
|
const char __user *uptr = (const char __user *)reg->addr;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
|
|
|
|
if (reg->id == KVM_REG_ARM64_SVE_VLS)
|
|
|
|
return set_sve_vls(vcpu, reg);
|
|
|
|
|
2019-04-11 16:13:39 +01:00
|
|
|
/* Try to interpret reg ID as an architectural SVE register... */
|
|
|
|
ret = sve_reg_to_region(®ion, vcpu, reg);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2019-02-28 18:46:44 +00:00
|
|
|
|
|
|
|
if (!kvm_arm_vcpu_sve_finalized(vcpu))
|
|
|
|
return -EPERM;
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
|
|
|
|
region.klen))
|
|
|
|
return -EFAULT;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
|
|
|
|
u64 __user *uindices)
|
2019-03-15 15:47:04 +00:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
|
2019-06-12 13:44:49 +01:00
|
|
|
u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
|
|
|
|
int size = core_reg_size_from_offset(vcpu, i);
|
|
|
|
|
|
|
|
if (size < 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
switch (size) {
|
|
|
|
case sizeof(__u32):
|
|
|
|
reg |= KVM_REG_SIZE_U32;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sizeof(__u64):
|
|
|
|
reg |= KVM_REG_SIZE_U64;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case sizeof(__uint128_t):
|
|
|
|
reg |= KVM_REG_SIZE_U128;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
WARN_ON(1);
|
2018-12-11 20:31:08 +00:00
|
|
|
continue;
|
2019-06-12 13:44:49 +01:00
|
|
|
}
|
2018-12-11 20:31:08 +00:00
|
|
|
|
2019-03-15 15:47:04 +00:00
|
|
|
if (uindices) {
|
2019-06-12 13:44:49 +01:00
|
|
|
if (put_user(reg, uindices))
|
2019-03-15 15:47:04 +00:00
|
|
|
return -EFAULT;
|
|
|
|
uindices++;
|
|
|
|
}
|
|
|
|
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
|
2012-12-10 16:37:02 +00:00
|
|
|
{
|
2018-12-11 20:31:08 +00:00
|
|
|
return copy_core_reg_indices(vcpu, NULL);
|
2012-12-10 16:37:02 +00:00
|
|
|
}
|
|
|
|
|
2023-03-30 18:47:48 +01:00
|
|
|
static const u64 timer_reg_list[] = {
|
|
|
|
KVM_REG_ARM_TIMER_CTL,
|
|
|
|
KVM_REG_ARM_TIMER_CNT,
|
|
|
|
KVM_REG_ARM_TIMER_CVAL,
|
|
|
|
KVM_REG_ARM_PTIMER_CTL,
|
|
|
|
KVM_REG_ARM_PTIMER_CNT,
|
|
|
|
KVM_REG_ARM_PTIMER_CVAL,
|
|
|
|
};
|
2014-07-04 15:54:14 +01:00
|
|
|
|
2023-03-30 18:47:48 +01:00
|
|
|
#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
|
2014-07-04 15:54:14 +01:00
|
|
|
|
|
|
|
static bool is_timer_reg(u64 index)
|
|
|
|
{
|
|
|
|
switch (index) {
|
|
|
|
case KVM_REG_ARM_TIMER_CTL:
|
|
|
|
case KVM_REG_ARM_TIMER_CNT:
|
|
|
|
case KVM_REG_ARM_TIMER_CVAL:
|
2023-03-30 18:47:48 +01:00
|
|
|
case KVM_REG_ARM_PTIMER_CTL:
|
|
|
|
case KVM_REG_ARM_PTIMER_CNT:
|
|
|
|
case KVM_REG_ARM_PTIMER_CVAL:
|
2014-07-04 15:54:14 +01:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
|
|
{
|
2023-03-30 18:47:48 +01:00
|
|
|
for (int i = 0; i < NUM_TIMER_REGS; i++) {
|
|
|
|
if (put_user(timer_reg_list[i], uindices))
|
|
|
|
return -EFAULT;
|
|
|
|
uindices++;
|
|
|
|
}
|
2014-07-04 15:54:14 +01:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
|
|
u64 val;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
|
|
|
|
if (ret != 0)
|
2014-08-26 15:13:23 +01:00
|
|
|
return -EFAULT;
|
2014-07-04 15:54:14 +01:00
|
|
|
|
|
|
|
return kvm_arm_timer_set_reg(vcpu, reg->id, val);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
void __user *uaddr = (void __user *)(long)reg->addr;
|
|
|
|
u64 val;
|
|
|
|
|
|
|
|
val = kvm_arm_timer_get_reg(vcpu, reg->id);
|
2016-02-28 17:32:07 +02:00
|
|
|
return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
|
2014-07-04 15:54:14 +01:00
|
|
|
}
|
|
|
|
|
2018-09-28 14:39:20 +01:00
|
|
|
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
const unsigned int slices = vcpu_sve_slices(vcpu);
|
|
|
|
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
|
|
return 0;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
/* Policed by KVM_GET_REG_LIST: */
|
|
|
|
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
|
|
|
|
|
|
|
|
return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
|
|
|
|
+ 1; /* KVM_REG_ARM64_SVE_VLS */
|
2018-09-28 14:39:20 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
|
|
|
|
u64 __user *uindices)
|
|
|
|
{
|
|
|
|
const unsigned int slices = vcpu_sve_slices(vcpu);
|
|
|
|
u64 reg;
|
|
|
|
unsigned int i, n;
|
|
|
|
int num_regs = 0;
|
|
|
|
|
|
|
|
if (!vcpu_has_sve(vcpu))
|
|
|
|
return 0;
|
|
|
|
|
2019-02-28 18:46:44 +00:00
|
|
|
/* Policed by KVM_GET_REG_LIST: */
|
|
|
|
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enumerate this first, so that userspace can save/restore in
|
|
|
|
* the order reported by KVM_GET_REG_LIST:
|
|
|
|
*/
|
|
|
|
reg = KVM_REG_ARM64_SVE_VLS;
|
|
|
|
if (put_user(reg, uindices++))
|
|
|
|
return -EFAULT;
|
|
|
|
++num_regs;
|
|
|
|
|
2018-09-28 14:39:20 +01:00
|
|
|
for (i = 0; i < slices; i++) {
|
|
|
|
for (n = 0; n < SVE_NUM_ZREGS; n++) {
|
|
|
|
reg = KVM_REG_ARM64_SVE_ZREG(n, i);
|
|
|
|
if (put_user(reg, uindices++))
|
|
|
|
return -EFAULT;
|
|
|
|
num_regs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (n = 0; n < SVE_NUM_PREGS; n++) {
|
|
|
|
reg = KVM_REG_ARM64_SVE_PREG(n, i);
|
|
|
|
if (put_user(reg, uindices++))
|
|
|
|
return -EFAULT;
|
|
|
|
num_regs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg = KVM_REG_ARM64_SVE_FFR(i);
|
|
|
|
if (put_user(reg, uindices++))
|
|
|
|
return -EFAULT;
|
|
|
|
num_regs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return num_regs;
|
|
|
|
}
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
/**
|
|
|
|
* kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
|
2024-01-17 15:07:06 -08:00
|
|
|
* @vcpu: the vCPU pointer
|
2012-12-10 16:37:02 +00:00
|
|
|
*
|
|
|
|
* This is for all registers.
|
|
|
|
*/
|
|
|
|
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2018-09-28 14:39:07 +01:00
|
|
|
unsigned long res = 0;
|
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
res += num_core_regs(vcpu);
|
2018-09-28 14:39:20 +01:00
|
|
|
res += num_sve_regs(vcpu);
|
2018-09-28 14:39:07 +01:00
|
|
|
res += kvm_arm_num_sys_reg_descs(vcpu);
|
|
|
|
res += kvm_arm_get_fw_num_regs(vcpu);
|
|
|
|
res += NUM_TIMER_REGS;
|
|
|
|
|
|
|
|
return res;
|
2012-12-10 16:37:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_arm_copy_reg_indices - get indices of all registers.
|
2024-01-17 15:07:06 -08:00
|
|
|
* @vcpu: the vCPU pointer
|
|
|
|
* @uindices: register list to copy
|
2012-12-10 16:37:02 +00:00
|
|
|
*
|
2016-05-21 13:53:14 +02:00
|
|
|
* We do core registers right here, then we append system regs.
|
2012-12-10 16:37:02 +00:00
|
|
|
*/
|
|
|
|
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
|
|
|
|
{
|
2014-07-04 15:54:14 +01:00
|
|
|
int ret;
|
2012-12-10 16:37:02 +00:00
|
|
|
|
2018-12-11 20:31:08 +00:00
|
|
|
ret = copy_core_reg_indices(vcpu, uindices);
|
2019-04-02 03:28:39 +01:00
|
|
|
if (ret < 0)
|
2019-03-15 15:47:04 +00:00
|
|
|
return ret;
|
|
|
|
uindices += ret;
|
2012-12-10 16:37:02 +00:00
|
|
|
|
2018-09-28 14:39:20 +01:00
|
|
|
ret = copy_sve_reg_indices(vcpu, uindices);
|
2019-04-02 03:28:39 +01:00
|
|
|
if (ret < 0)
|
2018-09-28 14:39:20 +01:00
|
|
|
return ret;
|
|
|
|
uindices += ret;
|
|
|
|
|
2018-01-21 16:42:56 +00:00
|
|
|
ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
|
2019-04-02 03:28:39 +01:00
|
|
|
if (ret < 0)
|
2018-01-21 16:42:56 +00:00
|
|
|
return ret;
|
|
|
|
uindices += kvm_arm_get_fw_num_regs(vcpu);
|
|
|
|
|
2014-07-04 15:54:14 +01:00
|
|
|
ret = copy_timer_indices(vcpu, uindices);
|
2019-04-02 03:28:39 +01:00
|
|
|
if (ret < 0)
|
2014-07-04 15:54:14 +01:00
|
|
|
return ret;
|
|
|
|
uindices += NUM_TIMER_REGS;
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
/* We currently use nothing arch-specific in upper 32 bits */
|
|
|
|
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
|
|
|
|
case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
|
KVM: arm64: Setup a framework for hypercall bitmap firmware registers
KVM regularly introduces new hypercall services to the guests without
any consent from the userspace. This means, the guests can observe
hypercall services in and out as they migrate across various host
kernel versions. This could be a major problem if the guest
discovered a hypercall, started using it, and after getting migrated
to an older kernel realizes that it's no longer available. Depending
on how the guest handles the change, there's a potential chance that
the guest would just panic.
As a result, there's a need for the userspace to elect the services
that it wishes the guest to discover. It can elect these services
based on the kernels spread across its (migration) fleet. To remedy
this, extend the existing firmware pseudo-registers, such as
KVM_REG_ARM_PSCI_VERSION, but by creating a new COPROC register space
for all the hypercall services available.
These firmware registers are categorized based on the service call
owners, but unlike the existing firmware pseudo-registers, they hold
the features supported in the form of a bitmap.
During the VM initialization, the registers are set to upper-limit of
the features supported by the corresponding registers. It's expected
that the VMMs discover the features provided by each register via
GET_ONE_REG, and write back the desired values using SET_ONE_REG.
KVM allows this modification only until the VM has started.
Some of the standard features are not mapped to any bits of the
registers. But since they can recreate the original problem of
making it available without userspace's consent, they need to
be explicitly added to the case-list in
kvm_hvc_call_default_allowed(). Any function-id that's not enabled
via the bitmap, or not listed in kvm_hvc_call_default_allowed, will
be returned as SMCCC_RET_NOT_SUPPORTED to the guest.
Older userspace code can simply ignore the feature and the
hypercall services will be exposed unconditionally to the guests,
thus ensuring backward compatibility.
In this patch, the framework adds the register only for ARM's standard
secure services (owner value 4). Currently, this includes support only
for ARM True Random Number Generator (TRNG) service, with bit-0 of the
register representing mandatory features of v1.0. Other services are
momentarily added in the upcoming patches.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: reduced the scope of some helpers, tidy-up bitmap max values,
dropped error-only fast path]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-3-rananta@google.com
2022-05-02 23:38:46 +00:00
|
|
|
case KVM_REG_ARM_FW:
|
|
|
|
case KVM_REG_ARM_FW_FEAT_BMAP:
|
|
|
|
return kvm_arm_get_fw_reg(vcpu, reg);
|
2018-09-28 14:39:19 +01:00
|
|
|
case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
|
|
|
|
}
|
2018-01-21 16:42:56 +00:00
|
|
|
|
2014-07-04 15:54:14 +01:00
|
|
|
if (is_timer_reg(reg->id))
|
|
|
|
return get_timer_reg(vcpu, reg);
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
return kvm_arm_sys_reg_get_reg(vcpu, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
|
|
|
|
{
|
|
|
|
/* We currently use nothing arch-specific in upper 32 bits */
|
|
|
|
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2018-09-28 14:39:19 +01:00
|
|
|
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
|
|
|
|
case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
|
KVM: arm64: Setup a framework for hypercall bitmap firmware registers
KVM regularly introduces new hypercall services to the guests without
any consent from the userspace. This means, the guests can observe
hypercall services in and out as they migrate across various host
kernel versions. This could be a major problem if the guest
discovered a hypercall, started using it, and after getting migrated
to an older kernel realizes that it's no longer available. Depending
on how the guest handles the change, there's a potential chance that
the guest would just panic.
As a result, there's a need for the userspace to elect the services
that it wishes the guest to discover. It can elect these services
based on the kernels spread across its (migration) fleet. To remedy
this, extend the existing firmware pseudo-registers, such as
KVM_REG_ARM_PSCI_VERSION, but by creating a new COPROC register space
for all the hypercall services available.
These firmware registers are categorized based on the service call
owners, but unlike the existing firmware pseudo-registers, they hold
the features supported in the form of a bitmap.
During the VM initialization, the registers are set to upper-limit of
the features supported by the corresponding registers. It's expected
that the VMMs discover the features provided by each register via
GET_ONE_REG, and write back the desired values using SET_ONE_REG.
KVM allows this modification only until the VM has started.
Some of the standard features are not mapped to any bits of the
registers. But since they can recreate the original problem of
making it available without userspace's consent, they need to
be explicitly added to the case-list in
kvm_hvc_call_default_allowed(). Any function-id that's not enabled
via the bitmap, or not listed in kvm_hvc_call_default_allowed, will
be returned as SMCCC_RET_NOT_SUPPORTED to the guest.
Older userspace code can simply ignore the feature and the
hypercall services will be exposed unconditionally to the guests,
thus ensuring backward compatibility.
In this patch, the framework adds the register only for ARM's standard
secure services (owner value 4). Currently, this includes support only
for ARM True Random Number Generator (TRNG) service, with bit-0 of the
register representing mandatory features of v1.0. Other services are
momentarily added in the upcoming patches.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: reduced the scope of some helpers, tidy-up bitmap max values,
dropped error-only fast path]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-3-rananta@google.com
2022-05-02 23:38:46 +00:00
|
|
|
case KVM_REG_ARM_FW:
|
|
|
|
case KVM_REG_ARM_FW_FEAT_BMAP:
|
|
|
|
return kvm_arm_set_fw_reg(vcpu, reg);
|
2018-09-28 14:39:19 +01:00
|
|
|
case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
|
|
|
|
}
|
2018-01-21 16:42:56 +00:00
|
|
|
|
2014-07-04 15:54:14 +01:00
|
|
|
if (is_timer_reg(reg->id))
|
|
|
|
return set_timer_reg(vcpu, reg);
|
|
|
|
|
2012-12-10 16:37:02 +00:00
|
|
|
return kvm_arm_sys_reg_set_reg(vcpu, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_sregs *sregs)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_sregs *sregs)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2018-07-19 16:24:24 +01:00
|
|
|
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_vcpu_events *events)
|
2018-07-19 16:24:22 +01:00
|
|
|
{
|
arm64: kvm: Use cpus_have_final_cap() explicitly
Much of the arm64 KVM code uses cpus_have_const_cap() to check for
cpucaps, but this is unnecessary and it would be preferable to use
cpus_have_final_cap().
For historical reasons, cpus_have_const_cap() is more complicated than
it needs to be. Before cpucaps are finalized, it will perform a bitmap
test of the system_cpucaps bitmap, and once cpucaps are finalized it
will use an alternative branch. This used to be necessary to handle some
race conditions in the window between cpucap detection and the
subsequent patching of alternatives and static branches, where different
branches could be out-of-sync with one another (or w.r.t. alternative
sequences). Now that we use alternative branches instead of static
branches, these are all patched atomically w.r.t. one another, and there
are only a handful of cases that need special care in the window between
cpucap detection and alternative patching.
Due to the above, it would be nice to remove cpus_have_const_cap(), and
migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(),
or cpus_have_cap() depending on when their requirements. This will
remove redundant instructions and improve code generation, and will make
it easier to determine how each callsite will behave before, during, and
after alternative patching.
KVM is initialized after cpucaps have been finalized and alternatives
have been patched. Since commit:
d86de40decaa14e6 ("arm64: cpufeature: upgrade hyp caps to final")
... use of cpus_have_const_cap() in hyp code is automatically converted
to use cpus_have_final_cap():
| static __always_inline bool cpus_have_const_cap(int num)
| {
| if (is_hyp_code())
| return cpus_have_final_cap(num);
| else if (system_capabilities_finalized())
| return __cpus_have_const_cap(num);
| else
| return cpus_have_cap(num);
| }
Thus, converting hyp code to use cpus_have_final_cap() directly will not
result in any functional change.
Non-hyp KVM code is also not executed until cpucaps have been finalized,
and it would be preferable to extent the same treatment to this code and
use cpus_have_final_cap() directly.
This patch converts instances of cpus_have_const_cap() in KVM-only code
over to cpus_have_final_cap(). As all of this code runs after cpucaps
have been finalized, there should be no functional change as a result of
this patch, but the redundant instructions generated by
cpus_have_const_cap() will be removed from the non-hyp KVM code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16 11:24:32 +01:00
|
|
|
events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
|
2025-07-08 10:25:11 -07:00
|
|
|
events->exception.serror_pending = (vcpu->arch.hcr_el2 & HCR_VSE) ||
|
|
|
|
vcpu_get_flag(vcpu, NESTED_SERROR_PENDING);
|
2018-07-19 16:24:22 +01:00
|
|
|
|
|
|
|
if (events->exception.serror_pending && events->exception.serror_has_esr)
|
|
|
|
events->exception.serror_esr = vcpu_get_vsesr(vcpu);
|
|
|
|
|
2019-10-11 13:07:06 +02:00
|
|
|
/*
|
|
|
|
* We never return a pending ext_dabt here because we deliver it to
|
|
|
|
* the virtual CPU directly when setting the event and it's no longer
|
|
|
|
* 'pending' at this point.
|
|
|
|
*/
|
|
|
|
|
2018-07-19 16:24:22 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2025-07-14 23:25:07 -07:00
|
|
|
static void commit_pending_events(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
if (!vcpu_get_flag(vcpu, PENDING_EXCEPTION))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset the MMIO emulation state to avoid stepping PC after emulating
|
|
|
|
* the exception entry.
|
|
|
|
*/
|
|
|
|
vcpu->mmio_needed = false;
|
|
|
|
kvm_call_hyp(__kvm_adjust_pc, vcpu);
|
|
|
|
}
|
|
|
|
|
2018-07-19 16:24:24 +01:00
|
|
|
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_vcpu_events *events)
|
2018-07-19 16:24:22 +01:00
|
|
|
{
|
|
|
|
bool serror_pending = events->exception.serror_pending;
|
|
|
|
bool has_esr = events->exception.serror_has_esr;
|
2019-10-11 13:07:06 +02:00
|
|
|
bool ext_dabt_pending = events->exception.ext_dabt_pending;
|
2025-07-08 10:25:11 -07:00
|
|
|
u64 esr = events->exception.serror_esr;
|
2025-07-08 10:25:10 -07:00
|
|
|
int ret = 0;
|
2018-07-19 16:24:22 +01:00
|
|
|
|
2025-07-14 23:25:07 -07:00
|
|
|
/*
|
|
|
|
* Immediately commit the pending SEA to the vCPU's architectural
|
|
|
|
* state which is necessary since we do not return a pending SEA
|
|
|
|
* to userspace via KVM_GET_VCPU_EVENTS.
|
|
|
|
*/
|
|
|
|
if (ext_dabt_pending) {
|
2025-07-08 10:25:10 -07:00
|
|
|
ret = kvm_inject_sea_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
2025-07-14 23:25:07 -07:00
|
|
|
commit_pending_events(vcpu);
|
|
|
|
}
|
2019-10-11 13:07:06 +02:00
|
|
|
|
2025-07-08 10:25:11 -07:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (!serror_pending)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && has_esr)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (has_esr && (esr & ~ESR_ELx_ISS_MASK))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (has_esr)
|
|
|
|
ret = kvm_inject_serror_esr(vcpu, esr);
|
|
|
|
else
|
|
|
|
ret = kvm_inject_serror(vcpu);
|
|
|
|
|
2025-07-14 23:25:07 -07:00
|
|
|
/*
|
|
|
|
* We could've decided that the SError is due for immediate software
|
|
|
|
* injection; commit the exception in case userspace decides it wants
|
|
|
|
* to inject more exceptions for some strange reason.
|
|
|
|
*/
|
|
|
|
commit_pending_events(vcpu);
|
2025-07-08 10:25:10 -07:00
|
|
|
return (ret < 0) ? ret : 0;
|
2018-07-19 16:24:22 +01:00
|
|
|
}
|
|
|
|
|
2021-08-12 10:39:53 +05:30
|
|
|
u32 __attribute_const__ kvm_target_cpu(void)
|
2012-12-10 16:37:02 +00:00
|
|
|
{
|
|
|
|
unsigned long implementor = read_cpuid_implementor();
|
|
|
|
unsigned long part_number = read_cpuid_part_number();
|
|
|
|
|
2013-11-14 15:20:08 +00:00
|
|
|
switch (implementor) {
|
|
|
|
case ARM_CPU_IMP_ARM:
|
|
|
|
switch (part_number) {
|
|
|
|
case ARM_CPU_PART_AEM_V8:
|
|
|
|
return KVM_ARM_TARGET_AEM_V8;
|
|
|
|
case ARM_CPU_PART_FOUNDATION:
|
|
|
|
return KVM_ARM_TARGET_FOUNDATION_V8;
|
2014-05-20 18:06:03 +01:00
|
|
|
case ARM_CPU_PART_CORTEX_A53:
|
|
|
|
return KVM_ARM_TARGET_CORTEX_A53;
|
2013-11-14 15:20:08 +00:00
|
|
|
case ARM_CPU_PART_CORTEX_A57:
|
|
|
|
return KVM_ARM_TARGET_CORTEX_A57;
|
2018-08-09 22:20:41 +08:00
|
|
|
}
|
2013-11-14 15:20:08 +00:00
|
|
|
break;
|
|
|
|
case ARM_CPU_IMP_APM:
|
|
|
|
switch (part_number) {
|
2023-10-16 16:31:27 +01:00
|
|
|
case APM_CPU_PART_XGENE:
|
2013-11-14 15:20:08 +00:00
|
|
|
return KVM_ARM_TARGET_XGENE_POTENZA;
|
2018-08-09 22:20:41 +08:00
|
|
|
}
|
2013-11-14 15:20:08 +00:00
|
|
|
break;
|
2018-08-09 22:20:41 +08:00
|
|
|
}
|
2012-12-10 16:37:02 +00:00
|
|
|
|
2015-06-17 10:00:46 +01:00
|
|
|
/* Return a default generic target */
|
|
|
|
return KVM_ARM_TARGET_GENERIC_V8;
|
2012-12-10 16:37:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_translation *tr)
|
|
|
|
{
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2015-07-07 17:29:55 +01:00
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
|
2024-01-17 15:07:06 -08:00
|
|
|
* @vcpu: the vCPU pointer
|
|
|
|
* @dbg: the ioctl data buffer
|
2015-07-07 17:29:55 +01:00
|
|
|
*
|
|
|
|
* This sets up and enables the VM for guest debugging. Userspace
|
|
|
|
* passes in a control flag to enable different debug types and
|
|
|
|
* potentially other architecture specific information in the rest of
|
|
|
|
* the structure.
|
|
|
|
*/
|
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_guest_debug *dbg)
|
|
|
|
{
|
2015-07-07 17:30:03 +01:00
|
|
|
trace_kvm_set_guest_debug(vcpu, dbg->control);
|
|
|
|
|
2024-12-19 14:41:04 -08:00
|
|
|
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
|
|
|
|
return -EINVAL;
|
2015-07-07 17:30:02 +01:00
|
|
|
|
2024-12-19 14:41:04 -08:00
|
|
|
if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
|
2015-07-07 17:29:55 +01:00
|
|
|
vcpu->guest_debug = 0;
|
2024-12-20 08:59:48 +00:00
|
|
|
vcpu_clear_flag(vcpu, HOST_SS_ACTIVE_PENDING);
|
2024-12-19 14:41:04 -08:00
|
|
|
return 0;
|
2015-07-07 17:29:55 +01:00
|
|
|
}
|
2017-12-04 21:35:33 +01:00
|
|
|
|
2024-12-19 14:41:04 -08:00
|
|
|
vcpu->guest_debug = dbg->control;
|
|
|
|
|
|
|
|
/* Hardware assisted Break and Watch points */
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW)
|
|
|
|
vcpu->arch.external_debug_state = dbg->arch;
|
|
|
|
|
|
|
|
return 0;
|
2015-07-07 17:29:55 +01:00
|
|
|
}
|
2016-01-11 21:35:32 +08:00
|
|
|
|
|
|
|
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_device_attr *attr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (attr->group) {
|
|
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
2023-03-27 16:47:46 +00:00
|
|
|
mutex_lock(&vcpu->kvm->arch.config_lock);
|
2016-01-11 21:35:32 +08:00
|
|
|
ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
|
2023-03-27 16:47:46 +00:00
|
|
|
mutex_unlock(&vcpu->kvm->arch.config_lock);
|
2016-01-11 21:35:32 +08:00
|
|
|
break;
|
2017-05-02 20:19:15 +02:00
|
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
|
|
ret = kvm_arm_timer_set_attr(vcpu, attr);
|
|
|
|
break;
|
2019-10-21 16:28:20 +01:00
|
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
|
|
ret = kvm_arm_pvtime_set_attr(vcpu, attr);
|
|
|
|
break;
|
2016-01-11 21:35:32 +08:00
|
|
|
default:
|
|
|
|
ret = -ENXIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_device_attr *attr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (attr->group) {
|
|
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
|
|
|
ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
|
|
|
|
break;
|
2017-05-02 20:19:15 +02:00
|
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
|
|
ret = kvm_arm_timer_get_attr(vcpu, attr);
|
|
|
|
break;
|
2019-10-21 16:28:20 +01:00
|
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
|
|
ret = kvm_arm_pvtime_get_attr(vcpu, attr);
|
|
|
|
break;
|
2016-01-11 21:35:32 +08:00
|
|
|
default:
|
|
|
|
ret = -ENXIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
|
|
|
|
struct kvm_device_attr *attr)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
switch (attr->group) {
|
|
|
|
case KVM_ARM_VCPU_PMU_V3_CTRL:
|
|
|
|
ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
|
|
|
|
break;
|
2017-05-02 20:19:15 +02:00
|
|
|
case KVM_ARM_VCPU_TIMER_CTRL:
|
|
|
|
ret = kvm_arm_timer_has_attr(vcpu, attr);
|
|
|
|
break;
|
2019-10-21 16:28:20 +01:00
|
|
|
case KVM_ARM_VCPU_PVTIME_CTRL:
|
|
|
|
ret = kvm_arm_pvtime_has_attr(vcpu, attr);
|
|
|
|
break;
|
2016-01-11 21:35:32 +08:00
|
|
|
default:
|
|
|
|
ret = -ENXIO;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
2021-06-21 12:17:15 +01:00
|
|
|
|
2023-02-08 15:01:03 +01:00
|
|
|
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
|
|
|
|
struct kvm_arm_copy_mte_tags *copy_tags)
|
2021-06-21 12:17:15 +01:00
|
|
|
{
|
|
|
|
gpa_t guest_ipa = copy_tags->guest_ipa;
|
|
|
|
size_t length = copy_tags->length;
|
|
|
|
void __user *tags = copy_tags->addr;
|
|
|
|
gpa_t gfn;
|
|
|
|
bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!kvm_has_mte(kvm))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (copy_tags->reserved[0] || copy_tags->reserved[1])
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2023-02-08 15:01:03 +01:00
|
|
|
/* Lengths above INT_MAX cannot be represented in the return value */
|
|
|
|
if (length > INT_MAX)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2021-06-21 12:17:15 +01:00
|
|
|
gfn = gpa_to_gfn(guest_ipa);
|
|
|
|
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
|
2024-07-26 16:51:11 -07:00
|
|
|
if (write && atomic_read(&kvm->nr_memslots_dirty_logging)) {
|
|
|
|
ret = -EBUSY;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2021-06-21 12:17:15 +01:00
|
|
|
while (length > 0) {
|
2024-10-10 11:24:19 -07:00
|
|
|
struct page *page = __gfn_to_page(kvm, gfn, write);
|
2021-06-21 12:17:15 +01:00
|
|
|
void *maddr;
|
|
|
|
unsigned long num_tags;
|
2024-10-01 15:52:19 -07:00
|
|
|
struct folio *folio;
|
2021-06-21 12:17:15 +01:00
|
|
|
|
2024-10-10 11:24:19 -07:00
|
|
|
if (!page) {
|
2021-06-21 12:17:15 +01:00
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2024-10-10 11:24:19 -07:00
|
|
|
if (!pfn_to_online_page(page_to_pfn(page))) {
|
2021-06-21 12:17:15 +01:00
|
|
|
/* Reject ZONE_DEVICE memory */
|
2024-10-10 11:24:19 -07:00
|
|
|
kvm_release_page_unused(page);
|
2021-06-21 12:17:15 +01:00
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
2024-10-01 15:52:19 -07:00
|
|
|
folio = page_folio(page);
|
2021-06-21 12:17:15 +01:00
|
|
|
maddr = page_address(page);
|
|
|
|
|
|
|
|
if (!write) {
|
2024-10-01 15:52:19 -07:00
|
|
|
if ((folio_test_hugetlb(folio) &&
|
|
|
|
folio_test_hugetlb_mte_tagged(folio)) ||
|
|
|
|
page_mte_tagged(page))
|
2021-06-21 12:17:15 +01:00
|
|
|
num_tags = mte_copy_tags_to_user(tags, maddr,
|
|
|
|
MTE_GRANULES_PER_PAGE);
|
|
|
|
else
|
|
|
|
/* No tags in memory, so write zeros */
|
|
|
|
num_tags = MTE_GRANULES_PER_PAGE -
|
|
|
|
clear_user(tags, MTE_GRANULES_PER_PAGE);
|
2024-10-10 11:24:19 -07:00
|
|
|
kvm_release_page_clean(page);
|
2021-06-21 12:17:15 +01:00
|
|
|
} else {
|
2022-11-03 18:10:38 -07:00
|
|
|
/*
|
|
|
|
* Only locking to serialise with a concurrent
|
2024-02-15 10:31:57 +00:00
|
|
|
* __set_ptes() in the VMM but still overriding the
|
2022-11-03 18:10:38 -07:00
|
|
|
* tags, hence ignoring the return value.
|
|
|
|
*/
|
2024-10-01 15:52:19 -07:00
|
|
|
if (folio_test_hugetlb(folio))
|
|
|
|
folio_try_hugetlb_mte_tagging(folio);
|
|
|
|
else
|
|
|
|
try_page_mte_tagging(page);
|
2021-06-21 12:17:15 +01:00
|
|
|
num_tags = mte_copy_tags_from_user(maddr, tags,
|
|
|
|
MTE_GRANULES_PER_PAGE);
|
2021-06-24 14:21:05 +01:00
|
|
|
|
2022-11-03 18:10:38 -07:00
|
|
|
/* uaccess failed, don't leave stale tags */
|
|
|
|
if (num_tags != MTE_GRANULES_PER_PAGE)
|
2023-01-19 17:09:02 +00:00
|
|
|
mte_clear_page_tags(maddr);
|
2024-10-01 15:52:19 -07:00
|
|
|
if (folio_test_hugetlb(folio))
|
|
|
|
folio_set_hugetlb_mte_tagged(folio);
|
|
|
|
else
|
|
|
|
set_page_mte_tagged(page);
|
2021-06-24 14:21:05 +01:00
|
|
|
|
2024-10-10 11:24:19 -07:00
|
|
|
kvm_release_page_dirty(page);
|
2021-06-21 12:17:15 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
if (num_tags != MTE_GRANULES_PER_PAGE) {
|
|
|
|
ret = -EFAULT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
gfn++;
|
|
|
|
tags += num_tags;
|
|
|
|
length -= PAGE_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
/* If some data has been copied report the number of bytes copied */
|
|
|
|
if (length != copy_tags->length)
|
|
|
|
return copy_tags->length - length;
|
|
|
|
return ret;
|
|
|
|
}
|