linux/arch/arm64/include/asm/smp.h

161 lines
3.8 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_SMP_H
#define __ASM_SMP_H
#include <linux/const.h>
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* Values for secondary_data.status */
#define CPU_STUCK_REASON_SHIFT (8)
#define CPU_BOOT_STATUS_MASK ((UL(1) << CPU_STUCK_REASON_SHIFT) - 1)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#define CPU_MMU_OFF (-1)
#define CPU_BOOT_SUCCESS (0)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* The cpu invoked ops->cpu_die, synchronise it with cpu_kill */
#define CPU_KILL_ME (1)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* The cpu couldn't die gracefully and is looping in the kernel */
#define CPU_STUCK_IN_KERNEL (2)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* Fatal system error detected by secondary CPU, crash the system */
#define CPU_PANIC_KERNEL (3)
#define CPU_STUCK_REASON_52_BIT_VA (UL(1) << CPU_STUCK_REASON_SHIFT)
#define CPU_STUCK_REASON_NO_GRAN (UL(2) << CPU_STUCK_REASON_SHIFT)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#ifndef __ASSEMBLY__
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/thread_info.h>
arm64: implement raw_smp_processor_id() using thread_info Historically, arm64 implemented raw_smp_processor_id() as a read of current_thread_info()->cpu. This changed when arm64 moved thread_info into task struct, as at the time CONFIG_THREAD_INFO_IN_TASK made core code use thread_struct::cpu for the cpu number, and due to header dependencies prevented using this in raw_smp_processor_id(). As a workaround, we moved to using a percpu variable in commit: 57c82954e77fa12c ("arm64: make cpu number a percpu variable") Since then, thread_info::cpu was reintroduced, and core code was made to use this in commits: 001430c1910df65a ("arm64: add CPU field to struct thread_info") bcf9033e5449bdca ("sched: move CPU field back into thread_info if THREAD_INFO_IN_TASK=y") Consequently it is possible to use current_thread_info()->cpu again. This decreases the number of emitted instructions like in the following example: Dump of assembler code for function bpf_get_smp_processor_id: 0xffff8000802cd608 <+0>: nop 0xffff8000802cd60c <+4>: nop 0xffff8000802cd610 <+8>: adrp x0, 0xffff800082138000 0xffff8000802cd614 <+12>: mrs x1, tpidr_el1 0xffff8000802cd618 <+16>: add x0, x0, #0x8 0xffff8000802cd61c <+20>: ldrsw x0, [x0, x1] 0xffff8000802cd620 <+24>: ret After this patch: Dump of assembler code for function bpf_get_smp_processor_id: 0xffff8000802c9130 <+0>: nop 0xffff8000802c9134 <+4>: nop 0xffff8000802c9138 <+8>: mrs x0, sp_el0 0xffff8000802c913c <+12>: ldr w0, [x0, #24] 0xffff8000802c9140 <+16>: ret A microbenchmark[1] was built to measure the performance improvement provided by this change. It calls the following function given number of times and finds the runtime overhead: static noinline int get_cpu_id(void) { return smp_processor_id(); } Run the benchmark like: modprobe smp_processor_id nr_function_calls=1000000000 +--------------------------+------------------------+ | | Number of Calls | Time taken | +--------+-----------------+------------------------+ | Before | 1000000000 | 1602888401ns | +--------+-----------------+------------------------+ | After | 1000000000 | 1206212658ns | +--------+-----------------+------------------------+ | Difference (decrease) | 396675743ns (24.74%) | +---------------------------------------------------+ Remove the percpu variable cpu_number as it is used only in set_smp_ipi_range() as a dummy variable to be passed to ipi_handler(). Use irq_stat in place of cpu_number here like arm32. [1] https://github.com/puranjaymohan/linux/commit/77d3fdd Signed-off-by: Puranjay Mohan <puranjay@kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Stephen Boyd <swboyd@chromium.org> Link: https://lore.kernel.org/r/20240503171847.68267-2-puranjay@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-05-03 17:18:47 +00:00
#define raw_smp_processor_id() (current_thread_info()->cpu)
/*
* Logical CPU mapping.
*/
extern u64 __cpu_logical_map[NR_CPUS];
extern u64 cpu_logical_map(unsigned int cpu);
static inline void set_cpu_logical_map(unsigned int cpu, u64 hwid)
{
__cpu_logical_map[cpu] = hwid;
}
struct seq_file;
/*
* Discover the set of possible CPUs and determine their
* SMP operations.
*/
extern void smp_init_cpus(void);
irqchip/gic-v5: Add GICv5 LPI/IPI support An IRS supports Logical Peripheral Interrupts (LPIs) and implement Linux IPIs on top of it. LPIs are used for interrupt signals that are translated by a GICv5 ITS (Interrupt Translation Service) but also for software generated IRQs - namely interrupts that are not driven by a HW signal, ie IPIs. LPIs rely on memory storage for interrupt routing and state. LPIs state and routing information is kept in the Interrupt State Table (IST). IRSes provide support for 1- or 2-level IST tables configured to support a maximum number of interrupts that depend on the OS configuration and the HW capabilities. On systems that provide 2-level IST support, always allow the maximum number of LPIs; On systems with only 1-level support, limit the number of LPIs to 2^12 to prevent wasting memory (presumably a system that supports a 1-level only IST is not expecting a large number of interrupts). On a 2-level IST system, L2 entries are allocated on demand. The IST table memory is allocated using the kmalloc() interface; the allocation required may be smaller than a page and must be made up of contiguous physical pages if larger than a page. On systems where the IRS is not cache-coherent with the CPUs, cache mainteinance operations are executed to clean and invalidate the allocated memory to the point of coherency making it visible to the IRS components. On GICv5 systems, IPIs are implemented using LPIs. Add an LPI IRQ domain and implement an IPI-specific IRQ domain created as a child/subdomain of the LPI domain to allocate the required number of LPIs needed to implement the IPIs. IPIs are backed by LPIs, add LPIs allocation/de-allocation functions. The LPI INTID namespace is managed using an IDA to alloc/free LPI INTIDs. Associate an IPI irqchip with IPI IRQ descriptors to provide core code with the irqchip.ipi_send_single() method required to raise an IPI. Co-developed-by: Sascha Bischoff <sascha.bischoff@arm.com> Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com> Co-developed-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Timothy Hayes <timothy.hayes@arm.com> Signed-off-by: Lorenzo Pieralisi <lpieralisi@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Zyngier <maz@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Link: https://lore.kernel.org/r/20250703-gicv5-host-v7-22-12e71f1b3528@kernel.org Signed-off-by: Marc Zyngier <maz@kernel.org>
2025-07-03 12:25:12 +02:00
enum ipi_msg_type {
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CPU_STOP,
IPI_CPU_STOP_NMI,
IPI_TIMER,
IPI_IRQ_WORK,
NR_IPI,
/*
* Any enum >= NR_IPI and < MAX_IPI is special and not tracable
* with trace_ipi_*
*/
IPI_CPU_BACKTRACE = NR_IPI,
IPI_KGDB_ROUNDUP,
MAX_IPI
};
/*
* Register IPI interrupts with the arch SMP code
*/
extern void set_smp_ipi_range_percpu(int ipi_base, int nr_ipi, int ncpus);
static inline void set_smp_ipi_range(int ipi_base, int n)
{
set_smp_ipi_range_percpu(ipi_base, n, 0);
}
/*
* Called from the secondary holding pen, this is the secondary CPU entry point.
*/
asmlinkage void secondary_start_kernel(void);
/*
* Initial data for bringing up a secondary CPU.
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
* @status - Result passed back from the secondary CPU to
* indicate failure.
*/
struct secondary_data {
arm64: split thread_info from task stack This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-03 20:23:13 +00:00
struct task_struct *task;
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
long status;
};
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
extern struct secondary_data secondary_data;
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
extern long __early_cpu_boot_status;
extern void secondary_entry(void);
extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
arm64: kernel: implement ACPI parking protocol The SBBR and ACPI specifications allow ACPI based systems that do not implement PSCI (eg systems with no EL3) to boot through the ACPI parking protocol specification[1]. This patch implements the ACPI parking protocol CPU operations, and adds code that eases parsing the parking protocol data structures to the ARM64 SMP initializion carried out at the same time as cpus enumeration. To wake-up the CPUs from the parked state, this patch implements a wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the ARM one, so that a specific IPI is sent for wake-up purpose in order to distinguish it from other IPI sources. Given the current ACPI MADT parsing API, the patch implements a glue layer that helps passing MADT GICC data structure from SMP initialization code to the parking protocol implementation somewhat overriding the CPU operations interfaces. This to avoid creating a completely trasparent DT/ACPI CPU operations layer that would require creating opaque structure handling for CPUs data (DT represents CPU through DT nodes, ACPI through static MADT table entries), which seems overkill given that ACPI on ARM64 mandates only two booting protocols (PSCI and parking protocol), so there is no need for further protocol additions. Based on the original work by Mark Salter <msalter@redhat.com> [1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docx Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Loc Ho <lho@apm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Salter <msalter@redhat.com> Cc: Al Stone <ahs3@redhat.com> [catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 11:10:38 +00:00
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
extern void arch_send_wakeup_ipi(unsigned int cpu);
arm64: kernel: implement ACPI parking protocol The SBBR and ACPI specifications allow ACPI based systems that do not implement PSCI (eg systems with no EL3) to boot through the ACPI parking protocol specification[1]. This patch implements the ACPI parking protocol CPU operations, and adds code that eases parsing the parking protocol data structures to the ARM64 SMP initializion carried out at the same time as cpus enumeration. To wake-up the CPUs from the parked state, this patch implements a wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the ARM one, so that a specific IPI is sent for wake-up purpose in order to distinguish it from other IPI sources. Given the current ACPI MADT parsing API, the patch implements a glue layer that helps passing MADT GICC data structure from SMP initialization code to the parking protocol implementation somewhat overriding the CPU operations interfaces. This to avoid creating a completely trasparent DT/ACPI CPU operations layer that would require creating opaque structure handling for CPUs data (DT represents CPU through DT nodes, ACPI through static MADT table entries), which seems overkill given that ACPI on ARM64 mandates only two booting protocols (PSCI and parking protocol), so there is no need for further protocol additions. Based on the original work by Mark Salter <msalter@redhat.com> [1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docx Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Loc Ho <lho@apm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Salter <msalter@redhat.com> Cc: Al Stone <ahs3@redhat.com> [catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 11:10:38 +00:00
#else
static inline void arch_send_wakeup_ipi(unsigned int cpu)
arm64: kernel: implement ACPI parking protocol The SBBR and ACPI specifications allow ACPI based systems that do not implement PSCI (eg systems with no EL3) to boot through the ACPI parking protocol specification[1]. This patch implements the ACPI parking protocol CPU operations, and adds code that eases parsing the parking protocol data structures to the ARM64 SMP initializion carried out at the same time as cpus enumeration. To wake-up the CPUs from the parked state, this patch implements a wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the ARM one, so that a specific IPI is sent for wake-up purpose in order to distinguish it from other IPI sources. Given the current ACPI MADT parsing API, the patch implements a glue layer that helps passing MADT GICC data structure from SMP initialization code to the parking protocol implementation somewhat overriding the CPU operations interfaces. This to avoid creating a completely trasparent DT/ACPI CPU operations layer that would require creating opaque structure handling for CPUs data (DT represents CPU through DT nodes, ACPI through static MADT table entries), which seems overkill given that ACPI on ARM64 mandates only two booting protocols (PSCI and parking protocol), so there is no need for further protocol additions. Based on the original work by Mark Salter <msalter@redhat.com> [1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docx Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Loc Ho <lho@apm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Salter <msalter@redhat.com> Cc: Al Stone <ahs3@redhat.com> [catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 11:10:38 +00:00
{
BUILD_BUG();
}
#endif
extern int __cpu_disable(void);
static inline void __cpu_die(unsigned int cpu) { }
extern void __noreturn cpu_die(void);
extern void __noreturn cpu_die_early(void);
static inline void __noreturn cpu_park_loop(void)
{
for (;;) {
wfe();
wfi();
}
}
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
static inline void update_cpu_boot_status(int val)
{
WRITE_ONCE(secondary_data.status, val);
/* Ensure the visibility of the status update */
dsb(ishst);
}
/*
* The calling secondary CPU has detected serious configuration mismatch,
* which calls for a kernel panic. Update the boot status and park the calling
* CPU.
*/
static inline void __noreturn cpu_panic_kernel(void)
{
update_cpu_boot_status(CPU_PANIC_KERNEL);
cpu_park_loop();
}
/*
* If a secondary CPU enters the kernel but fails to come online,
* (e.g. due to mismatched features), and cannot exit the kernel,
* we increment cpus_stuck_in_kernel and leave the CPU in a
* quiesecent loop within the kernel text. The memory containing
* this loop must not be re-used for anything else as the 'stuck'
* core is executing it.
*
* This function is used to inhibit features like kexec and hibernate.
*/
bool cpus_are_stuck_in_kernel(void);
arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores Commit 0ee5941 : (x86/panic: replace smp_send_stop() with kdump friendly version in panic path) introduced crash_smp_send_stop() which is a weak function and can be overridden by architecture codes to fix the side effect caused by commit f06e515 : (kernel/panic.c: add "crash_kexec_post_ notifiers" option). ARM64 architecture uses the weak version function and the problem is that the weak function simply calls smp_send_stop() which makes other CPUs offline and takes away the chance to save crash information for nonpanic CPUs in machine_crash_shutdown() when crash_kexec_post_notifiers kernel option is enabled. Calling smp_send_crash_stop() in machine_crash_shutdown() is useless because all nonpanic CPUs are already offline by smp_send_stop() in this case and smp_send_crash_stop() only works against online CPUs. The result is that secondary CPUs registers are not saved by crash_save_cpu() and the vmcore file misreports these CPUs as being offline. crash_smp_send_stop() is implemented to fix this problem by replacing the existing smp_send_crash_stop() and adding a check for multiple calling to the function. The function (strong symbol version) saves crash information for nonpanic CPUs and machine_crash_shutdown() tries to save crash information for nonpanic CPUs only when crash_kexec_post_notifiers kernel option is disabled. * crash_kexec_post_notifiers : false panic() __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= save crash dump for nonpanic cores * crash_kexec_post_notifiers : true panic() crash_smp_send_stop() <= save crash dump for nonpanic cores __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= just return. Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> Tested-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-17 11:24:27 +09:00
extern void crash_smp_send_stop(void);
extern bool smp_crash_stop_failed(void);
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#endif /* ifndef __ASSEMBLY__ */
#endif /* ifndef __ASM_SMP_H */