linux/arch/arm64/include/asm/ftrace.h

231 lines
5.9 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* arch/arm64/include/asm/ftrace.h
*
* Copyright (C) 2013 Linaro Limited
* Author: AKASHI Takahiro <takahiro.akashi@linaro.org>
*/
#ifndef __ASM_FTRACE_H
#define __ASM_FTRACE_H
#include <asm/insn.h>
#define HAVE_FUNCTION_GRAPH_FP_TEST
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_ARGS
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
#define ARCH_SUPPORTS_FTRACE_OPS 1
#else
#define MCOUNT_ADDR ((unsigned long)_mcount)
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
#endif
/* The BL at the callsite's adjusted rec->ip */
#define MCOUNT_INSN_SIZE AARCH64_INSN_SIZE
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
#define FTRACE_PLT_IDX 0
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
#define NR_FTRACE_PLTS 1
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
/*
* Currently, gcc tends to save the link register after the local variables
* on the stack. This causes the max stack tracer to report the function
* frame sizes for the wrong functions. By defining
* ARCH_FTRACE_SHIFT_STACK_TRACER, it will tell the stack tracer to expect
* to find the return address on the stack after the local variables have
* been set up.
*
* Note, this may change in the future, and we will need to deal with that
* if it were to happen.
*/
#define ARCH_FTRACE_SHIFT_STACK_TRACER 1
#ifndef __ASSEMBLY__
#include <linux/compat.h>
extern void _mcount(unsigned long);
extern void *return_address(unsigned int);
struct dyn_arch_ftrace {
/* No extra data needed for arm64 */
};
extern unsigned long ftrace_graph_call;
arm64: ftrace: fix a stack tracer's output under function graph tracer Function graph tracer modifies a return address (LR) in a stack frame to hook a function return. This will result in many useless entries (return_to_handler) showing up in a) a stack tracer's output b) perf call graph (with perf record -g) c) dump_backtrace (at panic et al.) For example, in case of a), $ echo function_graph > /sys/kernel/debug/tracing/current_tracer $ echo 1 > /proc/sys/kernel/stack_trace_enabled $ cat /sys/kernel/debug/tracing/stack_trace Depth Size Location (54 entries) ----- ---- -------- 0) 4504 16 gic_raise_softirq+0x28/0x150 1) 4488 80 smp_cross_call+0x38/0xb8 2) 4408 48 return_to_handler+0x0/0x40 3) 4360 32 return_to_handler+0x0/0x40 ... In case of b), $ echo function_graph > /sys/kernel/debug/tracing/current_tracer $ perf record -e mem:XXX:x -ag -- sleep 10 $ perf report ... | | |--0.22%-- 0x550f8 | | | 0x10888 | | | el0_svc_naked | | | sys_openat | | | return_to_handler | | | return_to_handler ... In case of c), $ echo function_graph > /sys/kernel/debug/tracing/current_tracer $ echo c > /proc/sysrq-trigger ... Call trace: [<ffffffc00044d3ac>] sysrq_handle_crash+0x24/0x30 [<ffffffc000092250>] return_to_handler+0x0/0x40 [<ffffffc000092250>] return_to_handler+0x0/0x40 ... This patch replaces such entries with real addresses preserved in current->ret_stack[] at unwind_frame(). This way, we can cover all the cases. Reviewed-by: Jungseok Lee <jungseoklee85@gmail.com> Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> [will: fixed minor context changes conflicting with irq stack bits] Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-15 17:33:41 +09:00
extern void return_to_handler(void);
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS This patch enables support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64. This allows each ftrace callsite to provide an ftrace_ops to the common ftrace trampoline, allowing each callsite to invoke distinct tracer functions without the need to fall back to list processing or to allocate custom trampolines for each callsite. This significantly speeds up cases where multiple distinct trace functions are used and callsites are mostly traced by a single tracer. The main idea is to place a pointer to the ftrace_ops as a literal at a fixed offset from the function entry point, which can be recovered by the common ftrace trampoline. Using a 64-bit literal avoids branch range limitations, and permits the ops to be swapped atomically without special considerations that apply to code-patching. In future this will also allow for the implementation of DYNAMIC_FTRACE_WITH_DIRECT_CALLS without branch range limitations by using additional fields in struct ftrace_ops. As noted in the core patch adding support for DYNAMIC_FTRACE_WITH_CALL_OPS, this approach allows for directly invoking ftrace_ops::func even for ftrace_ops which are dynamically-allocated (or part of a module), without going via ftrace_ops_list_func. Currently, this approach is not compatible with CLANG_CFI, as the presence/absence of pre-function NOPs changes the offset of the pre-function type hash, and there's no existing mechanism to ensure a consistent offset for instrumented and uninstrumented functions. When CLANG_CFI is enabled, the existing scheme with a global ops->func pointer is used, and there should be no functional change. I am currently working with others to allow the two to work together in future (though this will liekly require updated compiler support). I've benchamrked this with the ftrace_ops sample module [1], which is not currently upstream, but available at: https://lore.kernel.org/lkml/20230103124912.2948963-1-mark.rutland@arm.com git://git.kernel.org/pub/scm/linux/kernel/git/mark/linux.git ftrace-ops-sample-20230109 Using that module I measured the total time taken for 100,000 calls to a trivial instrumented function, with a number of tracers enabled with relevant filters (which would apply to the instrumented function) and a number of tracers enabled with irrelevant filters (which would not apply to the instrumented function). I tested on an M1 MacBook Pro, running under a HVF-accelerated QEMU VM (i.e. on real hardware). Before this patch: Number of tracers || Total time | Per-call average time (ns) Relevant | Irrelevant || (ns) | Total | Overhead =========+============++=============+==============+============ 0 | 0 || 94,583 | 0.95 | - 0 | 1 || 93,709 | 0.94 | - 0 | 2 || 93,666 | 0.94 | - 0 | 10 || 93,709 | 0.94 | - 0 | 100 || 93,792 | 0.94 | - ---------+------------++-------------+--------------+------------ 1 | 1 || 6,467,833 | 64.68 | 63.73 1 | 2 || 7,509,708 | 75.10 | 74.15 1 | 10 || 23,786,792 | 237.87 | 236.92 1 | 100 || 106,432,500 | 1,064.43 | 1063.38 ---------+------------++-------------+--------------+------------ 1 | 0 || 1,431,875 | 14.32 | 13.37 2 | 0 || 6,456,334 | 64.56 | 63.62 10 | 0 || 22,717,000 | 227.17 | 226.22 100 | 0 || 103,293,667 | 1032.94 | 1031.99 ---------+------------++-------------+--------------+-------------- Note: per-call overhead is estimated relative to the baseline case with 0 relevant tracers and 0 irrelevant tracers. After this patch Number of tracers || Total time | Per-call average time (ns) Relevant | Irrelevant || (ns) | Total | Overhead =========+============++=============+==============+============ 0 | 0 || 94,541 | 0.95 | - 0 | 1 || 93,666 | 0.94 | - 0 | 2 || 93,709 | 0.94 | - 0 | 10 || 93,667 | 0.94 | - 0 | 100 || 93,792 | 0.94 | - ---------+------------++-------------+--------------+------------ 1 | 1 || 281,000 | 2.81 | 1.86 1 | 2 || 281,042 | 2.81 | 1.87 1 | 10 || 280,958 | 2.81 | 1.86 1 | 100 || 281,250 | 2.81 | 1.87 ---------+------------++-------------+--------------+------------ 1 | 0 || 280,959 | 2.81 | 1.86 2 | 0 || 6,502,708 | 65.03 | 64.08 10 | 0 || 18,681,209 | 186.81 | 185.87 100 | 0 || 103,550,458 | 1,035.50 | 1034.56 ---------+------------++-------------+--------------+------------ Note: per-call overhead is estimated relative to the baseline case with 0 relevant tracers and 0 irrelevant tracers. As can be seen from the above: a) Whenever there is a single relevant tracer function associated with a tracee, the overhead of invoking the tracer is constant, and does not scale with the number of tracers which are *not* associated with that tracee. b) The overhead for a single relevant tracer has dropped to ~1/7 of the overhead prior to this series (from 13.37ns to 1.86ns). This is largely due to permitting calls to dynamically-allocated ftrace_ops without going through ftrace_ops_list_func. I've run the ftrace selftests from v6.2-rc3, which reports: | # of passed: 110 | # of failed: 0 | # of unresolved: 3 | # of untested: 0 | # of unsupported: 0 | # of xfailed: 1 | # of undefined(test bug): 0 ... where the unresolved entries were the tests for DIRECT functions (which are not supported), and the checkbashisms selftest (which is irrelevant here): | [8] Test ftrace direct functions against tracers [UNRESOLVED] | [9] Test ftrace direct functions against kprobes [UNRESOLVED] | [62] Meta-selftest: Checkbashisms [UNRESOLVED] ... with all other tests passing (or failing as expected). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Florent Revest <revest@chromium.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20230123134603.1064407-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-01-23 13:46:03 +00:00
unsigned long ftrace_call_adjust(unsigned long addr);
unsigned long arch_ftrace_get_symaddr(unsigned long fentry_ip);
#define ftrace_get_symaddr(fentry_ip) arch_ftrace_get_symaddr(fentry_ip)
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_ARGS
ftrace: Consolidate ftrace_regs accessor functions for archs using pt_regs Most architectures use pt_regs within ftrace_regs making a lot of the accessor functions just calls to the pt_regs internally. Instead of duplication this effort, use a HAVE_ARCH_FTRACE_REGS for architectures that have their own ftrace_regs that is not based on pt_regs and will define all the accessor functions, and for the architectures that just use pt_regs, it will leave it undefined, and the default accessor functions will be used. Note, this will also make it easier to add new accessor functions to ftrace_regs as it will mean having to touch less architectures. Cc: <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241010202114.2289f6fd@gandalf.local.home Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # powerpc Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-10 20:21:14 -04:00
#define HAVE_ARCH_FTRACE_REGS
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
struct dyn_ftrace;
struct ftrace_ops;
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
struct ftrace_regs;
#define arch_ftrace_regs(fregs) ((struct __arch_ftrace_regs *)(fregs))
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
#define arch_ftrace_get_regs(regs) NULL
/*
* Note: sizeof(struct ftrace_regs) must be a multiple of 16 to ensure correct
* stack alignment
*/
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
struct __arch_ftrace_regs {
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
/* x0 - x8 */
unsigned long regs[9];
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
unsigned long direct_tramp;
#else
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
unsigned long __unused;
#endif
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
unsigned long fp;
unsigned long lr;
unsigned long sp;
unsigned long pc;
};
static __always_inline unsigned long
ftrace_regs_get_instruction_pointer(const struct ftrace_regs *fregs)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
return arch_ftrace_regs(fregs)->pc;
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
static __always_inline void
ftrace_regs_set_instruction_pointer(struct ftrace_regs *fregs,
unsigned long pc)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
arch_ftrace_regs(fregs)->pc = pc;
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
static __always_inline unsigned long
ftrace_regs_get_stack_pointer(const struct ftrace_regs *fregs)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
return arch_ftrace_regs(fregs)->sp;
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
static __always_inline unsigned long
ftrace_regs_get_argument(struct ftrace_regs *fregs, unsigned int n)
{
if (n < 8)
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
return arch_ftrace_regs(fregs)->regs[n];
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
return 0;
}
static __always_inline unsigned long
ftrace_regs_get_return_value(const struct ftrace_regs *fregs)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
return arch_ftrace_regs(fregs)->regs[0];
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
static __always_inline void
ftrace_regs_set_return_value(struct ftrace_regs *fregs,
unsigned long ret)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
arch_ftrace_regs(fregs)->regs[0] = ret;
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
static __always_inline void
ftrace_override_function_with_return(struct ftrace_regs *fregs)
{
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
arch_ftrace_regs(fregs)->pc = arch_ftrace_regs(fregs)->lr;
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
}
fgraph: Replace fgraph_ret_regs with ftrace_regs Use ftrace_regs instead of fgraph_ret_regs for tracing return value on function_graph tracer because of simplifying the callback interface. The CONFIG_HAVE_FUNCTION_GRAPH_RETVAL is also replaced by CONFIG_HAVE_FUNCTION_GRAPH_FREGS. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> Acked-by: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/173518991508.391279.16635322774382197642.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:11:55 +09:00
static __always_inline unsigned long
ftrace_regs_get_frame_pointer(const struct ftrace_regs *fregs)
{
return arch_ftrace_regs(fregs)->fp;
}
fprobe: Rewrite fprobe on function-graph tracer Rewrite fprobe implementation on function-graph tracer. Major API changes are: - 'nr_maxactive' field is deprecated. - This depends on CONFIG_DYNAMIC_FTRACE_WITH_ARGS or !CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS, and CONFIG_HAVE_FUNCTION_GRAPH_FREGS. So currently works only on x86_64. - Currently the entry size is limited in 15 * sizeof(long). - If there is too many fprobe exit handler set on the same function, it will fail to probe. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/173519003970.391279.14406792285453830996.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:13:59 +09:00
static __always_inline unsigned long
ftrace_regs_get_return_address(const struct ftrace_regs *fregs)
{
return arch_ftrace_regs(fregs)->lr;
}
static __always_inline struct pt_regs *
ftrace_partial_regs(const struct ftrace_regs *fregs, struct pt_regs *regs)
{
struct __arch_ftrace_regs *afregs = arch_ftrace_regs(fregs);
memcpy(regs->regs, afregs->regs, sizeof(afregs->regs));
regs->sp = afregs->sp;
regs->pc = afregs->pc;
regs->regs[29] = afregs->fp;
regs->regs[30] = afregs->lr;
return regs;
}
tracing: Add ftrace_fill_perf_regs() for perf event Add ftrace_fill_perf_regs() which should be compatible with the perf_fetch_caller_regs(). In other words, the pt_regs returned from the ftrace_fill_perf_regs() must satisfy 'user_mode(regs) == false' and can be used for stack tracing. Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Will Deacon <will@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com> Cc: Florent Revest <revest@chromium.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Cc: bpf <bpf@vger.kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alan Maguire <alan.maguire@oracle.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lore.kernel.org/173518997908.391279.15910334347345106424.stgit@devnote2 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-12-26 14:12:59 +09:00
#define arch_ftrace_fill_perf_regs(fregs, _regs) do { \
(_regs)->pc = arch_ftrace_regs(fregs)->pc; \
(_regs)->regs[29] = arch_ftrace_regs(fregs)->fp; \
(_regs)->sp = arch_ftrace_regs(fregs)->sp; \
(_regs)->pstate = PSR_MODE_EL1h; \
} while (0)
ftrace: arm64: move from REGS to ARGS This commit replaces arm64's support for FTRACE_WITH_REGS with support for FTRACE_WITH_ARGS. This removes some overhead and complexity, and removes some latent issues with inconsistent presentation of struct pt_regs (which can only be reliably saved/restored at exception boundaries). FTRACE_WITH_REGS has been supported on arm64 since commit: 3b23e4991fb66f6d ("arm64: implement ftrace with regs") As noted in the commit message, the major reasons for implementing FTRACE_WITH_REGS were: (1) To make it possible to use the ftrace graph tracer with pointer authentication, where it's necessary to snapshot/manipulate the LR before it is signed by the instrumented function. (2) To make it possible to implement LIVEPATCH in future, where we need to hook function entry before an instrumented function manipulates the stack or argument registers. Practically speaking, we need to preserve the argument/return registers, PC, LR, and SP. Neither of these need a struct pt_regs, and only require the set of registers which are live at function call/return boundaries. Our calling convention is defined by "Procedure Call Standard for the Arm® 64-bit Architecture (AArch64)" (AKA "AAPCS64"), which can currently be found at: https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst Per AAPCS64, all function call argument and return values are held in the following GPRs: * X0 - X7 : parameter / result registers * X8 : indirect result location register * SP : stack pointer (AKA SP) Additionally, ad function call boundaries, the following GPRs hold context/return information: * X29 : frame pointer (AKA FP) * X30 : link register (AKA LR) ... and for ftrace we need to capture the instrumented address: * PC : program counter No other GPRs are relevant, as none of the other arguments hold parameters or return values: * X9 - X17 : temporaries, may be clobbered * X18 : shadow call stack pointer (or temorary) * X19 - X28 : callee saved This patch implements FTRACE_WITH_ARGS for arm64, only saving/restoring the minimal set of registers necessary. This is always sufficient to manipulate control flow (e.g. for live-patching) or to manipulate function arguments and return values. This reduces the necessary stack usage from 336 bytes for pt_regs down to 112 bytes for ftrace_regs + 32 bytes for two frame records, freeing up 188 bytes. This could be reduced further with changes to the unwinder. As there is no longer a need to save different sets of registers for different features, we no longer need distinct `ftrace_caller` and `ftrace_regs_caller` trampolines. This allows the trampoline assembly to be simpler, and simplifies code which previously had to handle the two trampolines. I've tested this with the ftrace selftests, where there are no unexpected failures. Co-developed-by: Florent Revest <revest@chromium.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Florent Revest <revest@chromium.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Deacon <will@kernel.org> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20221103170520.931305-5-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2022-11-03 17:05:20 +00:00
int ftrace_regs_query_register_offset(const char *name);
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec);
#define ftrace_init_nop ftrace_init_nop
void ftrace_graph_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct ftrace_regs *fregs);
#define ftrace_graph_func ftrace_graph_func
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
static inline void arch_ftrace_set_direct_caller(struct ftrace_regs *fregs,
unsigned long addr)
{
/*
* The ftrace trampoline will return to this address instead of the
* instrumented function.
*/
ftrace: Make ftrace_regs abstract from direct use ftrace_regs was created to hold registers that store information to save function parameters, return value and stack. Since it is a subset of pt_regs, it should only be used by its accessor functions. But because pt_regs can easily be taken from ftrace_regs (on most archs), it is tempting to use it directly. But when running on other architectures, it may fail to build or worse, build but crash the kernel! Instead, make struct ftrace_regs an empty structure and have the architectures define __arch_ftrace_regs and all the accessor functions will typecast to it to get to the actual fields. This will help avoid usage of ftrace_regs directly. Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/ Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "x86@kernel.org" <x86@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Naveen N Rao <naveen@kernel.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390 Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2024-10-08 19:05:28 -04:00
arch_ftrace_regs(fregs)->direct_tramp = addr;
}
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
arm64: implement ftrace with regs This patch implements FTRACE_WITH_REGS for arm64, which allows a traced function's arguments (and some other registers) to be captured into a struct pt_regs, allowing these to be inspected and/or modified. This is a building block for live-patching, where a function's arguments may be forwarded to another function. This is also necessary to enable ftrace and in-kernel pointer authentication at the same time, as it allows the LR value to be captured and adjusted prior to signing. Using GCC's -fpatchable-function-entry=N option, we can have the compiler insert a configurable number of NOPs between the function entry point and the usual prologue. This also ensures functions are AAPCS compliant (e.g. disabling inter-procedural register allocation). For example, with -fpatchable-function-entry=2, GCC 8.1.0 compiles the following: | unsigned long bar(void); | | unsigned long foo(void) | { | return bar() + 1; | } ... to: | <foo>: | nop | nop | stp x29, x30, [sp, #-16]! | mov x29, sp | bl 0 <bar> | add x0, x0, #0x1 | ldp x29, x30, [sp], #16 | ret This patch builds the kernel with -fpatchable-function-entry=2, prefixing each function with two NOPs. To trace a function, we replace these NOPs with a sequence that saves the LR into a GPR, then calls an ftrace entry assembly function which saves this and other relevant registers: | mov x9, x30 | bl <ftrace-entry> Since patchable functions are AAPCS compliant (and the kernel does not use x18 as a platform register), x9-x18 can be safely clobbered in the patched sequence and the ftrace entry code. There are now two ftrace entry functions, ftrace_regs_entry (which saves all GPRs), and ftrace_entry (which saves the bare minimum). A PLT is allocated for each within modules. Signed-off-by: Torsten Duwe <duwe@suse.de> [Mark: rework asm, comments, PLTs, initialization, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Torsten Duwe <duwe@suse.de> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Tested-by: Torsten Duwe <duwe@suse.de> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Julien Thierry <jthierry@redhat.com> Cc: Will Deacon <will@kernel.org>
2019-02-08 16:10:19 +01:00
#endif
#define ftrace_return_address(n) return_address(n)
/*
* Because AArch32 mode does not share the same syscall table with AArch64,
* tracing compat syscalls may result in reporting bogus syscalls or even
* hang-up, so just do not trace them.
* See kernel/trace/trace_syscalls.c
*
* x86 code says:
* If the user really wants these, then they should use the
* raw syscall tracepoints with filtering.
*/
#define ARCH_TRACE_IGNORE_COMPAT_SYSCALLS
static inline bool arch_trace_is_compat_syscall(struct pt_regs *regs)
{
return is_compat_task();
}
#define ARCH_HAS_SYSCALL_MATCH_SYM_NAME
static inline bool arch_syscall_match_sym_name(const char *sym,
const char *name)
{
/*
* Since all syscall functions have __arm64_ prefix, we must skip it.
* However, as we described above, we decided to ignore compat
* syscalls, so we don't care about __arm64_compat_ prefix here.
*/
return !strcmp(sym + 8, name);
}
#endif /* ifndef __ASSEMBLY__ */
#ifndef __ASSEMBLY__
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
tracing: arm64: Avoid missing-prototype warnings These are all tracing W=1 warnings in arm64 allmodconfig about missing prototypes: kernel/trace/trace_kprobe_selftest.c:7:5: error: no previous prototype for 'kprobe_trace_selftest_target' [-Werror=missing-pro totypes] kernel/trace/ftrace.c:329:5: error: no previous prototype for '__register_ftrace_function' [-Werror=missing-prototypes] kernel/trace/ftrace.c:372:5: error: no previous prototype for '__unregister_ftrace_function' [-Werror=missing-prototypes] kernel/trace/ftrace.c:4130:15: error: no previous prototype for 'arch_ftrace_match_adjust' [-Werror=missing-prototypes] kernel/trace/fgraph.c:243:15: error: no previous prototype for 'ftrace_return_to_handler' [-Werror=missing-prototypes] kernel/trace/fgraph.c:358:6: error: no previous prototype for 'ftrace_graph_sleep_time_control' [-Werror=missing-prototypes] arch/arm64/kernel/ftrace.c:460:6: error: no previous prototype for 'prepare_ftrace_return' [-Werror=missing-prototypes] arch/arm64/kernel/ptrace.c:2172:5: error: no previous prototype for 'syscall_trace_enter' [-Werror=missing-prototypes] arch/arm64/kernel/ptrace.c:2195:6: error: no previous prototype for 'syscall_trace_exit' [-Werror=missing-prototypes] Move the declarations to an appropriate header where they can be seen by the caller and callee, and make sure the headers are included where needed. Link: https://lore.kernel.org/linux-trace-kernel/20230517125215.930689-1-arnd@kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Florent Revest <revest@chromium.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [ Fixed ftrace_return_to_handler() to handle CONFIG_HAVE_FUNCTION_GRAPH_RETVAL case ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-05-17 14:51:48 +02:00
void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
unsigned long frame_pointer);
#endif /* ifdef CONFIG_FUNCTION_GRAPH_TRACER */
#endif
#endif /* __ASM_FTRACE_H */