License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2023-05-24 13:50:54 -07:00
|
|
|
/*
|
|
|
|
* x86 instruction nmemonic table to parse disasm lines for annotate.
|
|
|
|
* This table is searched twice - one for exact match and another for
|
|
|
|
* match without a size suffix (b, w, l, q) in case of AT&T syntax.
|
|
|
|
*
|
|
|
|
* So this table should not have entries with the suffix unless it's
|
|
|
|
* a complete different instruction than ones without the suffix.
|
|
|
|
*/
|
2016-11-17 12:31:51 -03:00
|
|
|
static struct ins x86__instructions[] = {
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "adc", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "add", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "addsd", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "and", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "andpd", .ops = &mov_ops, },
|
|
|
|
{ .name = "andps", .ops = &mov_ops, },
|
|
|
|
{ .name = "bsr", .ops = &mov_ops, },
|
|
|
|
{ .name = "bt", .ops = &mov_ops, },
|
|
|
|
{ .name = "btr", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "bts", .ops = &mov_ops, },
|
|
|
|
{ .name = "call", .ops = &call_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "cmovbe", .ops = &mov_ops, },
|
|
|
|
{ .name = "cmove", .ops = &mov_ops, },
|
|
|
|
{ .name = "cmovae", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "cmp", .ops = &mov_ops, },
|
|
|
|
{ .name = "cmpxch", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "cmpxchg", .ops = &mov_ops, },
|
|
|
|
{ .name = "cs", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "dec", .ops = &dec_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "divsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "divss", .ops = &mov_ops, },
|
|
|
|
{ .name = "gs", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "imul", .ops = &mov_ops, },
|
|
|
|
{ .name = "inc", .ops = &dec_ops, },
|
|
|
|
{ .name = "ja", .ops = &jump_ops, },
|
|
|
|
{ .name = "jae", .ops = &jump_ops, },
|
|
|
|
{ .name = "jb", .ops = &jump_ops, },
|
|
|
|
{ .name = "jbe", .ops = &jump_ops, },
|
|
|
|
{ .name = "jc", .ops = &jump_ops, },
|
|
|
|
{ .name = "jcxz", .ops = &jump_ops, },
|
|
|
|
{ .name = "je", .ops = &jump_ops, },
|
|
|
|
{ .name = "jecxz", .ops = &jump_ops, },
|
|
|
|
{ .name = "jg", .ops = &jump_ops, },
|
|
|
|
{ .name = "jge", .ops = &jump_ops, },
|
|
|
|
{ .name = "jl", .ops = &jump_ops, },
|
|
|
|
{ .name = "jle", .ops = &jump_ops, },
|
|
|
|
{ .name = "jmp", .ops = &jump_ops, },
|
|
|
|
{ .name = "jna", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnae", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnb", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnbe", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnc", .ops = &jump_ops, },
|
|
|
|
{ .name = "jne", .ops = &jump_ops, },
|
|
|
|
{ .name = "jng", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnge", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnl", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnle", .ops = &jump_ops, },
|
|
|
|
{ .name = "jno", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnp", .ops = &jump_ops, },
|
|
|
|
{ .name = "jns", .ops = &jump_ops, },
|
|
|
|
{ .name = "jnz", .ops = &jump_ops, },
|
|
|
|
{ .name = "jo", .ops = &jump_ops, },
|
|
|
|
{ .name = "jp", .ops = &jump_ops, },
|
|
|
|
{ .name = "jpe", .ops = &jump_ops, },
|
|
|
|
{ .name = "jpo", .ops = &jump_ops, },
|
|
|
|
{ .name = "jrcxz", .ops = &jump_ops, },
|
|
|
|
{ .name = "js", .ops = &jump_ops, },
|
|
|
|
{ .name = "jz", .ops = &jump_ops, },
|
|
|
|
{ .name = "lea", .ops = &mov_ops, },
|
|
|
|
{ .name = "lock", .ops = &lock_ops, },
|
|
|
|
{ .name = "mov", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "movapd", .ops = &mov_ops, },
|
|
|
|
{ .name = "movaps", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "movdqa", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "movdqu", .ops = &mov_ops, },
|
|
|
|
{ .name = "movsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "movss", .ops = &mov_ops, },
|
2023-09-07 22:22:16 -07:00
|
|
|
{ .name = "movsb", .ops = &mov_ops, },
|
|
|
|
{ .name = "movsw", .ops = &mov_ops, },
|
|
|
|
{ .name = "movsl", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "movupd", .ops = &mov_ops, },
|
|
|
|
{ .name = "movups", .ops = &mov_ops, },
|
2023-09-07 22:22:16 -07:00
|
|
|
{ .name = "movzb", .ops = &mov_ops, },
|
|
|
|
{ .name = "movzw", .ops = &mov_ops, },
|
|
|
|
{ .name = "movzl", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "mulsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "mulss", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "nop", .ops = &nop_ops, },
|
|
|
|
{ .name = "or", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "orps", .ops = &mov_ops, },
|
|
|
|
{ .name = "pand", .ops = &mov_ops, },
|
|
|
|
{ .name = "paddq", .ops = &mov_ops, },
|
|
|
|
{ .name = "pcmpeqb", .ops = &mov_ops, },
|
|
|
|
{ .name = "por", .ops = &mov_ops, },
|
2023-05-24 13:50:54 -07:00
|
|
|
{ .name = "rcl", .ops = &mov_ops, },
|
2020-09-04 14:11:18 -03:00
|
|
|
{ .name = "ret", .ops = &ret_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "sbb", .ops = &mov_ops, },
|
|
|
|
{ .name = "sete", .ops = &mov_ops, },
|
|
|
|
{ .name = "sub", .ops = &mov_ops, },
|
|
|
|
{ .name = "subsd", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "test", .ops = &mov_ops, },
|
2023-05-10 23:27:23 -07:00
|
|
|
{ .name = "tzcnt", .ops = &mov_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "ucomisd", .ops = &mov_ops, },
|
|
|
|
{ .name = "ucomiss", .ops = &mov_ops, },
|
|
|
|
{ .name = "vaddsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vandpd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vmovdqa", .ops = &mov_ops, },
|
|
|
|
{ .name = "vmovq", .ops = &mov_ops, },
|
|
|
|
{ .name = "vmovsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vmulsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vorpd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vsubsd", .ops = &mov_ops, },
|
|
|
|
{ .name = "vucomisd", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
{ .name = "xadd", .ops = &mov_ops, },
|
2023-05-24 13:50:54 -07:00
|
|
|
{ .name = "xbegin", .ops = &jump_ops, },
|
2018-04-12 16:28:18 -03:00
|
|
|
{ .name = "xchg", .ops = &mov_ops, },
|
|
|
|
{ .name = "xor", .ops = &mov_ops, },
|
|
|
|
{ .name = "xorpd", .ops = &mov_ops, },
|
|
|
|
{ .name = "xorps", .ops = &mov_ops, },
|
2016-11-17 12:31:51 -03:00
|
|
|
};
|
perf annotate: Check for fused instructions
Macro fusion merges two instructions to a single micro-op. Intel core
platform performs this hardware optimization under limited
circumstances.
For example, CMP + JCC can be "fused" and executed /retired together.
While with sampling this can result in the sample sometimes being on the
JCC and sometimes on the CMP. So for the fused instruction pair, they
could be considered together.
On Nehalem, fused instruction pairs:
cmp/test + jcc.
On other new CPU:
cmp/test/add/sub/and/inc/dec + jcc.
This patch adds an x86-specific function which checks if 2 instructions
are in a "fused" pair. For non-x86 arch, the function is just NULL.
Changelog:
v4: Move the CPU model checking to symbol__disassemble and save the CPU
family/model in arch structure.
It avoids checking every time when jump arrow printed.
v3: Add checking for Nehalem (CMP, TEST). For other newer Intel CPUs
just check it by default (CMP, TEST, ADD, SUB, AND, INC, DEC).
v2: Remove the original weak function. Arnaldo points out that doing it
as a weak function that will be overridden by the host arch doesn't
work. So now it's implemented as an arch-specific function.
Committer fix:
Do not access evsel->evlist->env->cpuid, ->env can be null, introduce
perf_evsel__env_cpuid(), just like perf_evsel__env_arch(), also used in
this function call.
The original patch was segfaulting 'perf top' + annotation.
But this essentially disables this fused instructions augmentation in
'perf top', the right thing is to get the cpuid from the running kernel,
left for a later patch tho.
Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1499403995-19857-2-git-send-email-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-07-07 13:06:34 +08:00
|
|
|
|
perf annotate: Add fusion logic for AMD microarchs
AMD family 15h and above microarchs fuse a subset of cmp/test/ALU
instructions with branch instructions[1][2]. Add perf annotate
fused instruction support for these microarchs.
Before:
│ testb $0x80,0x51(%rax)
│ ┌──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
After:
│ ┌──testb $0x80,0x51(%rax)
│ ├──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
[1] https://bugzilla.kernel.org/attachment.cgi?id=298553
[2] https://bugzilla.kernel.org/attachment.cgi?id=298555
Committer testing:
On a:
$ grep -m1 "model name" /proc/cpuinfo
model name : AMD Ryzen 9 3900X 12-Core Processor
$
Samples: 44K of event 'cycles', 4000 Hz, Event count (approx.): 7533249650
_int_malloc /usr/lib64/libc-2.33.so [Percent: local period]
Percent│ ┌──test %eax,%eax
│ ├──jne 884
│ │↓ jmpq 943
│ │ nop
│878:│ add $0x10,%rdx
0.64 │ │ add %eax,%eax
0.57 │ │↓ je cc9
0.77 │884:└─→test %esi,%eax
│ ↑ je 878
│ mov 0x18(%rdx),%r15
Reported-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https //lore.kernel.org/r/20210911043854.8373-2-ravi.bangoria@amd.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-09-11 10:08:54 +05:30
|
|
|
static bool amd__ins_is_fused(struct arch *arch, const char *ins1,
|
perf annotate: Check for fused instructions
Macro fusion merges two instructions to a single micro-op. Intel core
platform performs this hardware optimization under limited
circumstances.
For example, CMP + JCC can be "fused" and executed /retired together.
While with sampling this can result in the sample sometimes being on the
JCC and sometimes on the CMP. So for the fused instruction pair, they
could be considered together.
On Nehalem, fused instruction pairs:
cmp/test + jcc.
On other new CPU:
cmp/test/add/sub/and/inc/dec + jcc.
This patch adds an x86-specific function which checks if 2 instructions
are in a "fused" pair. For non-x86 arch, the function is just NULL.
Changelog:
v4: Move the CPU model checking to symbol__disassemble and save the CPU
family/model in arch structure.
It avoids checking every time when jump arrow printed.
v3: Add checking for Nehalem (CMP, TEST). For other newer Intel CPUs
just check it by default (CMP, TEST, ADD, SUB, AND, INC, DEC).
v2: Remove the original weak function. Arnaldo points out that doing it
as a weak function that will be overridden by the host arch doesn't
work. So now it's implemented as an arch-specific function.
Committer fix:
Do not access evsel->evlist->env->cpuid, ->env can be null, introduce
perf_evsel__env_cpuid(), just like perf_evsel__env_arch(), also used in
this function call.
The original patch was segfaulting 'perf top' + annotation.
But this essentially disables this fused instructions augmentation in
'perf top', the right thing is to get the cpuid from the running kernel,
left for a later patch tho.
Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1499403995-19857-2-git-send-email-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-07-07 13:06:34 +08:00
|
|
|
const char *ins2)
|
perf annotate: Add fusion logic for AMD microarchs
AMD family 15h and above microarchs fuse a subset of cmp/test/ALU
instructions with branch instructions[1][2]. Add perf annotate
fused instruction support for these microarchs.
Before:
│ testb $0x80,0x51(%rax)
│ ┌──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
After:
│ ┌──testb $0x80,0x51(%rax)
│ ├──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
[1] https://bugzilla.kernel.org/attachment.cgi?id=298553
[2] https://bugzilla.kernel.org/attachment.cgi?id=298555
Committer testing:
On a:
$ grep -m1 "model name" /proc/cpuinfo
model name : AMD Ryzen 9 3900X 12-Core Processor
$
Samples: 44K of event 'cycles', 4000 Hz, Event count (approx.): 7533249650
_int_malloc /usr/lib64/libc-2.33.so [Percent: local period]
Percent│ ┌──test %eax,%eax
│ ├──jne 884
│ │↓ jmpq 943
│ │ nop
│878:│ add $0x10,%rdx
0.64 │ │ add %eax,%eax
0.57 │ │↓ je cc9
0.77 │884:└─→test %esi,%eax
│ ↑ je 878
│ mov 0x18(%rdx),%r15
Reported-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https //lore.kernel.org/r/20210911043854.8373-2-ravi.bangoria@amd.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-09-11 10:08:54 +05:30
|
|
|
{
|
|
|
|
if (strstr(ins2, "jmp"))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* Family >= 15h supports cmp/test + branch fusion */
|
|
|
|
if (arch->family >= 0x15 && (strstarts(ins1, "test") ||
|
|
|
|
(strstarts(ins1, "cmp") && !strstr(ins1, "xchg")))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Family >= 19h supports some ALU + branch fusion */
|
|
|
|
if (arch->family >= 0x19 && (strstarts(ins1, "add") ||
|
|
|
|
strstarts(ins1, "sub") || strstarts(ins1, "and") ||
|
|
|
|
strstarts(ins1, "inc") || strstarts(ins1, "dec") ||
|
|
|
|
strstarts(ins1, "or") || strstarts(ins1, "xor"))) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool intel__ins_is_fused(struct arch *arch, const char *ins1,
|
|
|
|
const char *ins2)
|
perf annotate: Check for fused instructions
Macro fusion merges two instructions to a single micro-op. Intel core
platform performs this hardware optimization under limited
circumstances.
For example, CMP + JCC can be "fused" and executed /retired together.
While with sampling this can result in the sample sometimes being on the
JCC and sometimes on the CMP. So for the fused instruction pair, they
could be considered together.
On Nehalem, fused instruction pairs:
cmp/test + jcc.
On other new CPU:
cmp/test/add/sub/and/inc/dec + jcc.
This patch adds an x86-specific function which checks if 2 instructions
are in a "fused" pair. For non-x86 arch, the function is just NULL.
Changelog:
v4: Move the CPU model checking to symbol__disassemble and save the CPU
family/model in arch structure.
It avoids checking every time when jump arrow printed.
v3: Add checking for Nehalem (CMP, TEST). For other newer Intel CPUs
just check it by default (CMP, TEST, ADD, SUB, AND, INC, DEC).
v2: Remove the original weak function. Arnaldo points out that doing it
as a weak function that will be overridden by the host arch doesn't
work. So now it's implemented as an arch-specific function.
Committer fix:
Do not access evsel->evlist->env->cpuid, ->env can be null, introduce
perf_evsel__env_cpuid(), just like perf_evsel__env_arch(), also used in
this function call.
The original patch was segfaulting 'perf top' + annotation.
But this essentially disables this fused instructions augmentation in
'perf top', the right thing is to get the cpuid from the running kernel,
left for a later patch tho.
Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1499403995-19857-2-git-send-email-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-07-07 13:06:34 +08:00
|
|
|
{
|
|
|
|
if (arch->family != 6 || arch->model < 0x1e || strstr(ins2, "jmp"))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (arch->model == 0x1e) {
|
|
|
|
/* Nehalem */
|
|
|
|
if ((strstr(ins1, "cmp") && !strstr(ins1, "xchg")) ||
|
|
|
|
strstr(ins1, "test")) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Newer platform */
|
|
|
|
if ((strstr(ins1, "cmp") && !strstr(ins1, "xchg")) ||
|
|
|
|
strstr(ins1, "test") ||
|
|
|
|
strstr(ins1, "add") ||
|
|
|
|
strstr(ins1, "sub") ||
|
|
|
|
strstr(ins1, "and") ||
|
|
|
|
strstr(ins1, "inc") ||
|
|
|
|
strstr(ins1, "dec")) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x86__cpuid_parse(struct arch *arch, char *cpuid)
|
|
|
|
{
|
|
|
|
unsigned int family, model, stepping;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* cpuid = "GenuineIntel,family,model,stepping"
|
|
|
|
*/
|
|
|
|
ret = sscanf(cpuid, "%*[^,],%u,%u,%u", &family, &model, &stepping);
|
|
|
|
if (ret == 3) {
|
|
|
|
arch->family = family;
|
|
|
|
arch->model = model;
|
perf annotate: Add fusion logic for AMD microarchs
AMD family 15h and above microarchs fuse a subset of cmp/test/ALU
instructions with branch instructions[1][2]. Add perf annotate
fused instruction support for these microarchs.
Before:
│ testb $0x80,0x51(%rax)
│ ┌──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
After:
│ ┌──testb $0x80,0x51(%rax)
│ ├──jne 5b3
0.78 │ │ mov %r13,%rdi
│ │→ callq mark_page_accessed
1.08 │5b3:└─→mov 0x8(%r13),%rax
[1] https://bugzilla.kernel.org/attachment.cgi?id=298553
[2] https://bugzilla.kernel.org/attachment.cgi?id=298555
Committer testing:
On a:
$ grep -m1 "model name" /proc/cpuinfo
model name : AMD Ryzen 9 3900X 12-Core Processor
$
Samples: 44K of event 'cycles', 4000 Hz, Event count (approx.): 7533249650
_int_malloc /usr/lib64/libc-2.33.so [Percent: local period]
Percent│ ┌──test %eax,%eax
│ ├──jne 884
│ │↓ jmpq 943
│ │ nop
│878:│ add $0x10,%rdx
0.64 │ │ add %eax,%eax
0.57 │ │↓ je cc9
0.77 │884:└─→test %esi,%eax
│ ↑ je 878
│ mov 0x18(%rdx),%r15
Reported-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https //lore.kernel.org/r/20210911043854.8373-2-ravi.bangoria@amd.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2021-09-11 10:08:54 +05:30
|
|
|
arch->ins_is_fused = strstarts(cpuid, "AuthenticAMD") ?
|
|
|
|
amd__ins_is_fused :
|
|
|
|
intel__ins_is_fused;
|
perf annotate: Check for fused instructions
Macro fusion merges two instructions to a single micro-op. Intel core
platform performs this hardware optimization under limited
circumstances.
For example, CMP + JCC can be "fused" and executed /retired together.
While with sampling this can result in the sample sometimes being on the
JCC and sometimes on the CMP. So for the fused instruction pair, they
could be considered together.
On Nehalem, fused instruction pairs:
cmp/test + jcc.
On other new CPU:
cmp/test/add/sub/and/inc/dec + jcc.
This patch adds an x86-specific function which checks if 2 instructions
are in a "fused" pair. For non-x86 arch, the function is just NULL.
Changelog:
v4: Move the CPU model checking to symbol__disassemble and save the CPU
family/model in arch structure.
It avoids checking every time when jump arrow printed.
v3: Add checking for Nehalem (CMP, TEST). For other newer Intel CPUs
just check it by default (CMP, TEST, ADD, SUB, AND, INC, DEC).
v2: Remove the original weak function. Arnaldo points out that doing it
as a weak function that will be overridden by the host arch doesn't
work. So now it's implemented as an arch-specific function.
Committer fix:
Do not access evsel->evlist->env->cpuid, ->env can be null, introduce
perf_evsel__env_cpuid(), just like perf_evsel__env_arch(), also used in
this function call.
The original patch was segfaulting 'perf top' + annotation.
But this essentially disables this fused instructions augmentation in
'perf top', the right thing is to get the cpuid from the running kernel,
left for a later patch tho.
Signed-off-by: Yao Jin <yao.jin@linux.intel.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1499403995-19857-2-git-send-email-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-07-07 13:06:34 +08:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
2017-10-11 17:01:24 +02:00
|
|
|
|
|
|
|
static int x86__annotate_init(struct arch *arch, char *cpuid)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if (arch->initialized)
|
|
|
|
return 0;
|
|
|
|
|
2019-09-30 15:48:12 -03:00
|
|
|
if (cpuid) {
|
|
|
|
if (x86__cpuid_parse(arch, cpuid))
|
|
|
|
err = SYMBOL_ANNOTATE_ERRNO__ARCH_INIT_CPUID_PARSING;
|
|
|
|
}
|
2024-11-08 15:45:49 -08:00
|
|
|
arch->e_machine = EM_X86_64;
|
|
|
|
arch->e_flags = 0;
|
2017-10-11 17:01:24 +02:00
|
|
|
arch->initialized = true;
|
|
|
|
return err;
|
|
|
|
}
|
2024-07-18 14:13:45 +05:30
|
|
|
|
2024-10-16 17:13:53 -07:00
|
|
|
#ifdef HAVE_LIBDW_SUPPORT
|
2024-07-18 14:13:45 +05:30
|
|
|
static void update_insn_state_x86(struct type_state *state,
|
|
|
|
struct data_loc_info *dloc, Dwarf_Die *cu_die,
|
|
|
|
struct disasm_line *dl)
|
|
|
|
{
|
|
|
|
struct annotated_insn_loc loc;
|
|
|
|
struct annotated_op_loc *src = &loc.ops[INSN_OP_SOURCE];
|
|
|
|
struct annotated_op_loc *dst = &loc.ops[INSN_OP_TARGET];
|
|
|
|
struct type_state_reg *tsr;
|
|
|
|
Dwarf_Die type_die;
|
|
|
|
u32 insn_offset = dl->al.offset;
|
|
|
|
int fbreg = dloc->fbreg;
|
|
|
|
int fboff = 0;
|
|
|
|
|
|
|
|
if (annotate_get_insn_location(dloc->arch, dl, &loc) < 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (ins__is_call(&dl->ins)) {
|
|
|
|
struct symbol *func = dl->ops.target.sym;
|
|
|
|
|
|
|
|
if (func == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* __fentry__ will preserve all registers */
|
|
|
|
if (!strcmp(func->name, "__fentry__"))
|
|
|
|
return;
|
|
|
|
|
|
|
|
pr_debug_dtp("call [%x] %s\n", insn_offset, func->name);
|
|
|
|
|
|
|
|
/* Otherwise invalidate caller-saved registers after call */
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(state->regs); i++) {
|
|
|
|
if (state->regs[i].caller_saved)
|
|
|
|
state->regs[i].ok = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Update register with the return type (if any) */
|
|
|
|
if (die_find_func_rettype(cu_die, func->name, &type_die)) {
|
|
|
|
tsr = &state->regs[state->ret_reg];
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("call [%x] return -> reg%d",
|
|
|
|
insn_offset, state->ret_reg);
|
|
|
|
pr_debug_type_name(&type_die, tsr->kind);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!strncmp(dl->ins.name, "add", 3)) {
|
|
|
|
u64 imm_value = -1ULL;
|
|
|
|
int offset;
|
|
|
|
const char *var_name = NULL;
|
|
|
|
struct map_symbol *ms = dloc->ms;
|
|
|
|
u64 ip = ms->sym->start + dl->al.offset;
|
|
|
|
|
|
|
|
if (!has_reg_type(state, dst->reg1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
tsr = &state->regs[dst->reg1];
|
perf annotate-data: Copy back variable types after move
In some cases, compilers don't set the location expression in DWARF
precisely. For instance, it may assign a variable to a register after
copying it from a different register. Then it should use the register
for the new type but still uses the old register. This makes hard to
track the type information properly.
This is an example I found in __tcp_transmit_skb(). The first argument
(sk) of this function is a pointer to sock and there's a variable (tp)
for tcp_sock.
static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
...
struct tcp_sock *tp;
BUG_ON(!skb || !tcp_skb_pcount(skb));
tp = tcp_sk(sk);
prior_wstamp = tp->tcp_wstamp_ns;
tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
...
So it basically calls tcp_sk(sk) to get the tcp_sock pointer from sk.
But it turned out to be the same value because tcp_sock embeds sock as
the first member. The sk is located in reg5 (RDI) and tp is in reg3
(RBX). The offset of tcp_wstamp_ns is 0x748 and tcp_clock_cache is
0x750. So you need to use RBX (reg3) to access the fields in the
tcp_sock. But the code used RDI (reg5) as it has the same value.
$ pahole --hex -C tcp_sock vmlinux | grep -e 748 -e 750
u64 tcp_wstamp_ns; /* 0x748 0x8 */
u64 tcp_clock_cache; /* 0x750 0x8 */
And this is the disassembly of the part of the function.
<__tcp_transmit_skb>:
...
44: mov %rdi, %rbx
47: mov 0x748(%rdi), %rsi
4e: mov 0x750(%rdi), %rax
55: cmp %rax, %rsi
Because compiler put the debug info to RBX, it only knows RDI is a
pointer to sock and accessing those two fields resulted in error
due to offset being beyond the type size.
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
CU for net/ipv4/tcp_output.c (die:0x817f543)
frame base: cfa=0 fbreg=6
scope: [1/1] (die:81aac3e)
bb: [0 - 30]
var [0] -0x98(stack) type='struct tcp_out_options' size=0x28 (die:0x81af3df)
var [5] reg8 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg2 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg1 type='int' size=0x4 (die:0x818059e)
var [5] reg4 type='struct sk_buff*' size=0x8 (die:0x8181360)
var [5] reg5 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- the first argument ('sk' at %RDI)
mov [19] reg8 -> -0xa8(stack) type='unsigned int' size=0x4 (die:0x8180ed6)
mov [20] stack canary -> reg0
mov [29] reg0 -> -0x30(stack) stack canary
bb: [36 - 3e]
mov [36] reg4 -> reg15 type='struct sk_buff*' size=0x8 (die:0x8181360)
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- calling tcp_sk()
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- new variable ('tp' at %RBX)
var [4e] reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct sock*) : offset bigger than size <<<--- access with old variable
final result: offset bigger than size
While it's a fault in the compiler, we could work around this issue by
using the type of new variable when it's copied directly. So I've added
copied_from field in the register state to track those direct register
to register copies. After that new register gets a new type and the old
register still has the same type, it'll update (copy it back) the type
of the old register.
For example, if we can update type of reg5 at __tcp_transmit_skb+0x47,
we can find the target type of the instruction at 0x63 like below:
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
...
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c)
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead)
var [47] copyback reg5 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- here
mov [47] 0x748(reg5) -> reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [4e] 0x750(reg5) -> reg0 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct tcp_sock*) : Good! <<<--- new type
found by insn track: 0x748(reg5) type-offset=0x748
final result: type='struct tcp_sock' size=0xa98 (die:0x819eeb2)
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240821232628.353177-5-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-21 16:26:28 -07:00
|
|
|
tsr->copied_from = -1;
|
2024-07-18 14:13:45 +05:30
|
|
|
|
|
|
|
if (src->imm)
|
|
|
|
imm_value = src->offset;
|
|
|
|
else if (has_reg_type(state, src->reg1) &&
|
|
|
|
state->regs[src->reg1].kind == TSR_KIND_CONST)
|
|
|
|
imm_value = state->regs[src->reg1].imm_value;
|
|
|
|
else if (src->reg1 == DWARF_REG_PC) {
|
|
|
|
u64 var_addr = annotate_calc_pcrel(dloc->ms, ip,
|
|
|
|
src->offset, dl);
|
|
|
|
|
|
|
|
if (get_global_var_info(dloc, var_addr,
|
|
|
|
&var_name, &offset) &&
|
|
|
|
!strcmp(var_name, "this_cpu_off") &&
|
|
|
|
tsr->kind == TSR_KIND_CONST) {
|
|
|
|
tsr->kind = TSR_KIND_PERCPU_BASE;
|
2024-08-20 23:54:08 -07:00
|
|
|
tsr->ok = true;
|
2024-07-18 14:13:45 +05:30
|
|
|
imm_value = tsr->imm_value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (tsr->kind != TSR_KIND_PERCPU_BASE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (get_global_var_type(cu_die, dloc, ip, imm_value, &offset,
|
|
|
|
&type_die) && offset == 0) {
|
|
|
|
/*
|
|
|
|
* This is not a pointer type, but it should be treated
|
|
|
|
* as a pointer.
|
|
|
|
*/
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_POINTER;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("add [%x] percpu %#"PRIx64" -> reg%d",
|
|
|
|
insn_offset, imm_value, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (strncmp(dl->ins.name, "mov", 3))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (dloc->fb_cfa) {
|
|
|
|
u64 ip = dloc->ms->sym->start + dl->al.offset;
|
|
|
|
u64 pc = map__rip_2objdump(dloc->ms->map, ip);
|
|
|
|
|
|
|
|
if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0)
|
|
|
|
fbreg = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Case 1. register to register or segment:offset to register transfers */
|
|
|
|
if (!src->mem_ref && !dst->mem_ref) {
|
|
|
|
if (!has_reg_type(state, dst->reg1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
tsr = &state->regs[dst->reg1];
|
perf annotate-data: Copy back variable types after move
In some cases, compilers don't set the location expression in DWARF
precisely. For instance, it may assign a variable to a register after
copying it from a different register. Then it should use the register
for the new type but still uses the old register. This makes hard to
track the type information properly.
This is an example I found in __tcp_transmit_skb(). The first argument
(sk) of this function is a pointer to sock and there's a variable (tp)
for tcp_sock.
static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
...
struct tcp_sock *tp;
BUG_ON(!skb || !tcp_skb_pcount(skb));
tp = tcp_sk(sk);
prior_wstamp = tp->tcp_wstamp_ns;
tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
...
So it basically calls tcp_sk(sk) to get the tcp_sock pointer from sk.
But it turned out to be the same value because tcp_sock embeds sock as
the first member. The sk is located in reg5 (RDI) and tp is in reg3
(RBX). The offset of tcp_wstamp_ns is 0x748 and tcp_clock_cache is
0x750. So you need to use RBX (reg3) to access the fields in the
tcp_sock. But the code used RDI (reg5) as it has the same value.
$ pahole --hex -C tcp_sock vmlinux | grep -e 748 -e 750
u64 tcp_wstamp_ns; /* 0x748 0x8 */
u64 tcp_clock_cache; /* 0x750 0x8 */
And this is the disassembly of the part of the function.
<__tcp_transmit_skb>:
...
44: mov %rdi, %rbx
47: mov 0x748(%rdi), %rsi
4e: mov 0x750(%rdi), %rax
55: cmp %rax, %rsi
Because compiler put the debug info to RBX, it only knows RDI is a
pointer to sock and accessing those two fields resulted in error
due to offset being beyond the type size.
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
CU for net/ipv4/tcp_output.c (die:0x817f543)
frame base: cfa=0 fbreg=6
scope: [1/1] (die:81aac3e)
bb: [0 - 30]
var [0] -0x98(stack) type='struct tcp_out_options' size=0x28 (die:0x81af3df)
var [5] reg8 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg2 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg1 type='int' size=0x4 (die:0x818059e)
var [5] reg4 type='struct sk_buff*' size=0x8 (die:0x8181360)
var [5] reg5 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- the first argument ('sk' at %RDI)
mov [19] reg8 -> -0xa8(stack) type='unsigned int' size=0x4 (die:0x8180ed6)
mov [20] stack canary -> reg0
mov [29] reg0 -> -0x30(stack) stack canary
bb: [36 - 3e]
mov [36] reg4 -> reg15 type='struct sk_buff*' size=0x8 (die:0x8181360)
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- calling tcp_sk()
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- new variable ('tp' at %RBX)
var [4e] reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct sock*) : offset bigger than size <<<--- access with old variable
final result: offset bigger than size
While it's a fault in the compiler, we could work around this issue by
using the type of new variable when it's copied directly. So I've added
copied_from field in the register state to track those direct register
to register copies. After that new register gets a new type and the old
register still has the same type, it'll update (copy it back) the type
of the old register.
For example, if we can update type of reg5 at __tcp_transmit_skb+0x47,
we can find the target type of the instruction at 0x63 like below:
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
...
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c)
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead)
var [47] copyback reg5 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- here
mov [47] 0x748(reg5) -> reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [4e] 0x750(reg5) -> reg0 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct tcp_sock*) : Good! <<<--- new type
found by insn track: 0x748(reg5) type-offset=0x748
final result: type='struct tcp_sock' size=0xa98 (die:0x819eeb2)
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240821232628.353177-5-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-21 16:26:28 -07:00
|
|
|
tsr->copied_from = -1;
|
|
|
|
|
2024-07-18 14:13:45 +05:30
|
|
|
if (dso__kernel(map__dso(dloc->ms->map)) &&
|
|
|
|
src->segment == INSN_SEG_X86_GS && src->imm) {
|
|
|
|
u64 ip = dloc->ms->sym->start + dl->al.offset;
|
|
|
|
u64 var_addr;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In kernel, %gs points to a per-cpu region for the
|
|
|
|
* current CPU. Access with a constant offset should
|
|
|
|
* be treated as a global variable access.
|
|
|
|
*/
|
|
|
|
var_addr = src->offset;
|
|
|
|
|
|
|
|
if (var_addr == 40) {
|
|
|
|
tsr->kind = TSR_KIND_CANARY;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] stack canary -> reg%d\n",
|
|
|
|
insn_offset, dst->reg1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!get_global_var_type(cu_die, dloc, ip, var_addr,
|
|
|
|
&offset, &type_die) ||
|
|
|
|
!die_get_member_type(&type_die, offset, &type_die)) {
|
|
|
|
tsr->ok = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] this-cpu addr=%#"PRIx64" -> reg%d",
|
|
|
|
insn_offset, var_addr, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (src->imm) {
|
|
|
|
tsr->kind = TSR_KIND_CONST;
|
|
|
|
tsr->imm_value = src->offset;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] imm=%#x -> reg%d\n",
|
|
|
|
insn_offset, tsr->imm_value, dst->reg1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!has_reg_type(state, src->reg1) ||
|
|
|
|
!state->regs[src->reg1].ok) {
|
|
|
|
tsr->ok = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
tsr->type = state->regs[src->reg1].type;
|
|
|
|
tsr->kind = state->regs[src->reg1].kind;
|
2024-08-20 23:54:06 -07:00
|
|
|
tsr->imm_value = state->regs[src->reg1].imm_value;
|
2024-07-18 14:13:45 +05:30
|
|
|
tsr->ok = true;
|
|
|
|
|
perf annotate-data: Copy back variable types after move
In some cases, compilers don't set the location expression in DWARF
precisely. For instance, it may assign a variable to a register after
copying it from a different register. Then it should use the register
for the new type but still uses the old register. This makes hard to
track the type information properly.
This is an example I found in __tcp_transmit_skb(). The first argument
(sk) of this function is a pointer to sock and there's a variable (tp)
for tcp_sock.
static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
...
struct tcp_sock *tp;
BUG_ON(!skb || !tcp_skb_pcount(skb));
tp = tcp_sk(sk);
prior_wstamp = tp->tcp_wstamp_ns;
tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
...
So it basically calls tcp_sk(sk) to get the tcp_sock pointer from sk.
But it turned out to be the same value because tcp_sock embeds sock as
the first member. The sk is located in reg5 (RDI) and tp is in reg3
(RBX). The offset of tcp_wstamp_ns is 0x748 and tcp_clock_cache is
0x750. So you need to use RBX (reg3) to access the fields in the
tcp_sock. But the code used RDI (reg5) as it has the same value.
$ pahole --hex -C tcp_sock vmlinux | grep -e 748 -e 750
u64 tcp_wstamp_ns; /* 0x748 0x8 */
u64 tcp_clock_cache; /* 0x750 0x8 */
And this is the disassembly of the part of the function.
<__tcp_transmit_skb>:
...
44: mov %rdi, %rbx
47: mov 0x748(%rdi), %rsi
4e: mov 0x750(%rdi), %rax
55: cmp %rax, %rsi
Because compiler put the debug info to RBX, it only knows RDI is a
pointer to sock and accessing those two fields resulted in error
due to offset being beyond the type size.
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
CU for net/ipv4/tcp_output.c (die:0x817f543)
frame base: cfa=0 fbreg=6
scope: [1/1] (die:81aac3e)
bb: [0 - 30]
var [0] -0x98(stack) type='struct tcp_out_options' size=0x28 (die:0x81af3df)
var [5] reg8 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg2 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg1 type='int' size=0x4 (die:0x818059e)
var [5] reg4 type='struct sk_buff*' size=0x8 (die:0x8181360)
var [5] reg5 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- the first argument ('sk' at %RDI)
mov [19] reg8 -> -0xa8(stack) type='unsigned int' size=0x4 (die:0x8180ed6)
mov [20] stack canary -> reg0
mov [29] reg0 -> -0x30(stack) stack canary
bb: [36 - 3e]
mov [36] reg4 -> reg15 type='struct sk_buff*' size=0x8 (die:0x8181360)
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- calling tcp_sk()
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- new variable ('tp' at %RBX)
var [4e] reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct sock*) : offset bigger than size <<<--- access with old variable
final result: offset bigger than size
While it's a fault in the compiler, we could work around this issue by
using the type of new variable when it's copied directly. So I've added
copied_from field in the register state to track those direct register
to register copies. After that new register gets a new type and the old
register still has the same type, it'll update (copy it back) the type
of the old register.
For example, if we can update type of reg5 at __tcp_transmit_skb+0x47,
we can find the target type of the instruction at 0x63 like below:
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
...
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c)
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead)
var [47] copyback reg5 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- here
mov [47] 0x748(reg5) -> reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [4e] 0x750(reg5) -> reg0 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct tcp_sock*) : Good! <<<--- new type
found by insn track: 0x748(reg5) type-offset=0x748
final result: type='struct tcp_sock' size=0xa98 (die:0x819eeb2)
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240821232628.353177-5-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-21 16:26:28 -07:00
|
|
|
/* To copy back the variable type later (hopefully) */
|
|
|
|
if (tsr->kind == TSR_KIND_TYPE)
|
|
|
|
tsr->copied_from = src->reg1;
|
|
|
|
|
2024-07-18 14:13:45 +05:30
|
|
|
pr_debug_dtp("mov [%x] reg%d -> reg%d",
|
|
|
|
insn_offset, src->reg1, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
/* Case 2. memory to register transers */
|
|
|
|
if (src->mem_ref && !dst->mem_ref) {
|
|
|
|
int sreg = src->reg1;
|
|
|
|
|
|
|
|
if (!has_reg_type(state, dst->reg1))
|
|
|
|
return;
|
|
|
|
|
|
|
|
tsr = &state->regs[dst->reg1];
|
perf annotate-data: Copy back variable types after move
In some cases, compilers don't set the location expression in DWARF
precisely. For instance, it may assign a variable to a register after
copying it from a different register. Then it should use the register
for the new type but still uses the old register. This makes hard to
track the type information properly.
This is an example I found in __tcp_transmit_skb(). The first argument
(sk) of this function is a pointer to sock and there's a variable (tp)
for tcp_sock.
static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
...
struct tcp_sock *tp;
BUG_ON(!skb || !tcp_skb_pcount(skb));
tp = tcp_sk(sk);
prior_wstamp = tp->tcp_wstamp_ns;
tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
...
So it basically calls tcp_sk(sk) to get the tcp_sock pointer from sk.
But it turned out to be the same value because tcp_sock embeds sock as
the first member. The sk is located in reg5 (RDI) and tp is in reg3
(RBX). The offset of tcp_wstamp_ns is 0x748 and tcp_clock_cache is
0x750. So you need to use RBX (reg3) to access the fields in the
tcp_sock. But the code used RDI (reg5) as it has the same value.
$ pahole --hex -C tcp_sock vmlinux | grep -e 748 -e 750
u64 tcp_wstamp_ns; /* 0x748 0x8 */
u64 tcp_clock_cache; /* 0x750 0x8 */
And this is the disassembly of the part of the function.
<__tcp_transmit_skb>:
...
44: mov %rdi, %rbx
47: mov 0x748(%rdi), %rsi
4e: mov 0x750(%rdi), %rax
55: cmp %rax, %rsi
Because compiler put the debug info to RBX, it only knows RDI is a
pointer to sock and accessing those two fields resulted in error
due to offset being beyond the type size.
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
CU for net/ipv4/tcp_output.c (die:0x817f543)
frame base: cfa=0 fbreg=6
scope: [1/1] (die:81aac3e)
bb: [0 - 30]
var [0] -0x98(stack) type='struct tcp_out_options' size=0x28 (die:0x81af3df)
var [5] reg8 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg2 type='unsigned int' size=0x4 (die:0x8180ed6)
var [5] reg1 type='int' size=0x4 (die:0x818059e)
var [5] reg4 type='struct sk_buff*' size=0x8 (die:0x8181360)
var [5] reg5 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- the first argument ('sk' at %RDI)
mov [19] reg8 -> -0xa8(stack) type='unsigned int' size=0x4 (die:0x8180ed6)
mov [20] stack canary -> reg0
mov [29] reg0 -> -0x30(stack) stack canary
bb: [36 - 3e]
mov [36] reg4 -> reg15 type='struct sk_buff*' size=0x8 (die:0x8181360)
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c) <<<--- calling tcp_sk()
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- new variable ('tp' at %RBX)
var [4e] reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct sock*) : offset bigger than size <<<--- access with old variable
final result: offset bigger than size
While it's a fault in the compiler, we could work around this issue by
using the type of new variable when it's copied directly. So I've added
copied_from field in the register state to track those direct register
to register copies. After that new register gets a new type and the old
register still has the same type, it'll update (copy it back) the type
of the old register.
For example, if we can update type of reg5 at __tcp_transmit_skb+0x47,
we can find the target type of the instruction at 0x63 like below:
-----------------------------------------------------------
find data type for 0x748(reg5) at __tcp_transmit_skb+0x63
...
bb: [44 - 63]
mov [44] reg5 -> reg3 type='struct sock*' size=0x8 (die:0x8181a0c)
var [47] reg3 type='struct tcp_sock*' size=0x8 (die:0x819eead)
var [47] copyback reg5 type='struct tcp_sock*' size=0x8 (die:0x819eead) <<<--- here
mov [47] 0x748(reg5) -> reg4 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [4e] 0x750(reg5) -> reg0 type='unsigned long long' size=0x8 (die:0x8180edd)
mov [58] reg4 -> -0xc0(stack) type='unsigned long long' size=0x8 (die:0x8180edd)
chk [63] reg5 offset=0x748 ok=1 kind=1 (struct tcp_sock*) : Good! <<<--- new type
found by insn track: 0x748(reg5) type-offset=0x748
final result: type='struct tcp_sock' size=0xa98 (die:0x819eeb2)
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240821232628.353177-5-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2024-08-21 16:26:28 -07:00
|
|
|
tsr->copied_from = -1;
|
2024-07-18 14:13:45 +05:30
|
|
|
|
|
|
|
retry:
|
|
|
|
/* Check stack variables with offset */
|
|
|
|
if (sreg == fbreg) {
|
|
|
|
struct type_state_stack *stack;
|
|
|
|
int offset = src->offset - fboff;
|
|
|
|
|
|
|
|
stack = find_stack_state(state, offset);
|
|
|
|
if (stack == NULL) {
|
|
|
|
tsr->ok = false;
|
|
|
|
return;
|
|
|
|
} else if (!stack->compound) {
|
|
|
|
tsr->type = stack->type;
|
|
|
|
tsr->kind = stack->kind;
|
|
|
|
tsr->ok = true;
|
|
|
|
} else if (die_get_member_type(&stack->type,
|
|
|
|
offset - stack->offset,
|
|
|
|
&type_die)) {
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
} else {
|
|
|
|
tsr->ok = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] -%#x(stack) -> reg%d",
|
|
|
|
insn_offset, -offset, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
/* And then dereference the pointer if it has one */
|
|
|
|
else if (has_reg_type(state, sreg) && state->regs[sreg].ok &&
|
|
|
|
state->regs[sreg].kind == TSR_KIND_TYPE &&
|
|
|
|
die_deref_ptr_type(&state->regs[sreg].type,
|
|
|
|
src->offset, &type_die)) {
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] %#x(reg%d) -> reg%d",
|
|
|
|
insn_offset, src->offset, sreg, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
/* Or check if it's a global variable */
|
|
|
|
else if (sreg == DWARF_REG_PC) {
|
|
|
|
struct map_symbol *ms = dloc->ms;
|
|
|
|
u64 ip = ms->sym->start + dl->al.offset;
|
|
|
|
u64 addr;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
addr = annotate_calc_pcrel(ms, ip, src->offset, dl);
|
|
|
|
|
|
|
|
if (!get_global_var_type(cu_die, dloc, ip, addr, &offset,
|
|
|
|
&type_die) ||
|
|
|
|
!die_get_member_type(&type_die, offset, &type_die)) {
|
|
|
|
tsr->ok = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] global addr=%"PRIx64" -> reg%d",
|
|
|
|
insn_offset, addr, dst->reg1);
|
|
|
|
pr_debug_type_name(&type_die, tsr->kind);
|
|
|
|
}
|
|
|
|
/* And check percpu access with base register */
|
|
|
|
else if (has_reg_type(state, sreg) &&
|
|
|
|
state->regs[sreg].kind == TSR_KIND_PERCPU_BASE) {
|
|
|
|
u64 ip = dloc->ms->sym->start + dl->al.offset;
|
|
|
|
u64 var_addr = src->offset;
|
|
|
|
int offset;
|
|
|
|
|
|
|
|
if (src->multi_regs) {
|
|
|
|
int reg2 = (sreg == src->reg1) ? src->reg2 : src->reg1;
|
|
|
|
|
|
|
|
if (has_reg_type(state, reg2) && state->regs[reg2].ok &&
|
|
|
|
state->regs[reg2].kind == TSR_KIND_CONST)
|
|
|
|
var_addr += state->regs[reg2].imm_value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In kernel, %gs points to a per-cpu region for the
|
|
|
|
* current CPU. Access with a constant offset should
|
|
|
|
* be treated as a global variable access.
|
|
|
|
*/
|
|
|
|
if (get_global_var_type(cu_die, dloc, ip, var_addr,
|
|
|
|
&offset, &type_die) &&
|
|
|
|
die_get_member_type(&type_die, offset, &type_die)) {
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
if (src->multi_regs) {
|
|
|
|
pr_debug_dtp("mov [%x] percpu %#x(reg%d,reg%d) -> reg%d",
|
|
|
|
insn_offset, src->offset, src->reg1,
|
|
|
|
src->reg2, dst->reg1);
|
|
|
|
} else {
|
|
|
|
pr_debug_dtp("mov [%x] percpu %#x(reg%d) -> reg%d",
|
|
|
|
insn_offset, src->offset, sreg, dst->reg1);
|
|
|
|
}
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
} else {
|
|
|
|
tsr->ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* And then dereference the calculated pointer if it has one */
|
|
|
|
else if (has_reg_type(state, sreg) && state->regs[sreg].ok &&
|
|
|
|
state->regs[sreg].kind == TSR_KIND_POINTER &&
|
|
|
|
die_get_member_type(&state->regs[sreg].type,
|
|
|
|
src->offset, &type_die)) {
|
|
|
|
tsr->type = type_die;
|
|
|
|
tsr->kind = TSR_KIND_TYPE;
|
|
|
|
tsr->ok = true;
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] pointer %#x(reg%d) -> reg%d",
|
|
|
|
insn_offset, src->offset, sreg, dst->reg1);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
/* Or try another register if any */
|
|
|
|
else if (src->multi_regs && sreg == src->reg1 &&
|
|
|
|
src->reg1 != src->reg2) {
|
|
|
|
sreg = src->reg2;
|
|
|
|
goto retry;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
int offset;
|
|
|
|
const char *var_name = NULL;
|
|
|
|
|
|
|
|
/* it might be per-cpu variable (in kernel) access */
|
|
|
|
if (src->offset < 0) {
|
|
|
|
if (get_global_var_info(dloc, (s64)src->offset,
|
|
|
|
&var_name, &offset) &&
|
|
|
|
!strcmp(var_name, "__per_cpu_offset")) {
|
|
|
|
tsr->kind = TSR_KIND_PERCPU_BASE;
|
2024-08-20 23:54:08 -07:00
|
|
|
tsr->ok = true;
|
2024-07-18 14:13:45 +05:30
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] percpu base reg%d\n",
|
|
|
|
insn_offset, dst->reg1);
|
2024-08-20 23:54:08 -07:00
|
|
|
return;
|
2024-07-18 14:13:45 +05:30
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tsr->ok = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* Case 3. register to memory transfers */
|
|
|
|
if (!src->mem_ref && dst->mem_ref) {
|
|
|
|
if (!has_reg_type(state, src->reg1) ||
|
|
|
|
!state->regs[src->reg1].ok)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Check stack variables with offset */
|
|
|
|
if (dst->reg1 == fbreg) {
|
|
|
|
struct type_state_stack *stack;
|
|
|
|
int offset = dst->offset - fboff;
|
|
|
|
|
|
|
|
tsr = &state->regs[src->reg1];
|
|
|
|
|
|
|
|
stack = find_stack_state(state, offset);
|
|
|
|
if (stack) {
|
|
|
|
/*
|
|
|
|
* The source register is likely to hold a type
|
|
|
|
* of member if it's a compound type. Do not
|
|
|
|
* update the stack variable type since we can
|
|
|
|
* get the member type later by using the
|
|
|
|
* die_get_member_type().
|
|
|
|
*/
|
|
|
|
if (!stack->compound)
|
|
|
|
set_stack_state(stack, offset, tsr->kind,
|
|
|
|
&tsr->type);
|
|
|
|
} else {
|
|
|
|
findnew_stack_state(state, offset, tsr->kind,
|
|
|
|
&tsr->type);
|
|
|
|
}
|
|
|
|
|
|
|
|
pr_debug_dtp("mov [%x] reg%d -> -%#x(stack)",
|
|
|
|
insn_offset, src->reg1, -offset);
|
|
|
|
pr_debug_type_name(&tsr->type, tsr->kind);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Ignore other transfers since it'd set a value in a struct
|
|
|
|
* and won't change the type.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
/* Case 4. memory to memory transfers (not handled for now) */
|
|
|
|
}
|
|
|
|
#endif
|