virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* virtio-fs: Virtio Filesystem
|
|
|
|
* Copyright (C) 2018 Red Hat, Inc.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/fs.h>
|
2020-08-19 18:19:46 -04:00
|
|
|
#include <linux/dax.h>
|
|
|
|
#include <linux/pci.h>
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/group_cpus.h>
|
2020-08-19 18:19:46 -04:00
|
|
|
#include <linux/pfn_t.h>
|
2022-02-16 15:31:36 +11:00
|
|
|
#include <linux/memremap.h>
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/virtio.h>
|
|
|
|
#include <linux/virtio_fs.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/fs_context.h>
|
2020-08-19 18:19:47 -04:00
|
|
|
#include <linux/fs_parser.h>
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
#include <linux/highmem.h>
|
2024-02-15 09:46:30 -05:00
|
|
|
#include <linux/cleanup.h>
|
2020-08-19 18:19:46 -04:00
|
|
|
#include <linux/uio.h>
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
#include "fuse_i.h"
|
|
|
|
|
2021-03-18 08:52:22 -05:00
|
|
|
/* Used to help calculate the FUSE connection's max_pages limit for a request's
|
|
|
|
* size. Parts of the struct fuse_req are sliced into scattergather lists in
|
|
|
|
* addition to the pages used, so this can help account for that overhead.
|
|
|
|
*/
|
|
|
|
#define FUSE_HEADER_OVERHEAD 4
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* List of virtio-fs device instances and a lock for the list. Also provides
|
|
|
|
* mutual exclusion in device removal and mounting path
|
|
|
|
*/
|
|
|
|
static DEFINE_MUTEX(virtio_fs_mutex);
|
|
|
|
static LIST_HEAD(virtio_fs_instances);
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
/* The /sys/fs/virtio_fs/ kset */
|
|
|
|
static struct kset *virtio_fs_kset;
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
enum {
|
|
|
|
VQ_HIPRIO,
|
|
|
|
VQ_REQUEST
|
|
|
|
};
|
|
|
|
|
2020-08-19 18:19:44 -04:00
|
|
|
#define VQ_NAME_LEN 24
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Per-virtqueue state */
|
|
|
|
struct virtio_fs_vq {
|
|
|
|
spinlock_t lock;
|
|
|
|
struct virtqueue *vq; /* protected by ->lock */
|
|
|
|
struct work_struct done_work;
|
|
|
|
struct list_head queued_reqs;
|
2019-10-15 13:46:22 -04:00
|
|
|
struct list_head end_reqs; /* End these requests */
|
2024-05-17 21:04:35 +02:00
|
|
|
struct work_struct dispatch_work;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct fuse_dev *fud;
|
|
|
|
bool connected;
|
|
|
|
long in_flight;
|
2019-10-30 11:07:19 -04:00
|
|
|
struct completion in_flight_zero; /* No inflight requests */
|
2024-08-25 16:07:16 +03:00
|
|
|
struct kobject *kobj;
|
2020-08-19 18:19:44 -04:00
|
|
|
char name[VQ_NAME_LEN];
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
} ____cacheline_aligned_in_smp;
|
|
|
|
|
|
|
|
/* A virtio-fs device instance */
|
|
|
|
struct virtio_fs {
|
2024-02-12 19:11:48 -05:00
|
|
|
struct kobject kobj;
|
2024-08-25 16:07:16 +03:00
|
|
|
struct kobject *mqs_kobj;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct list_head list; /* on virtio_fs_instances */
|
|
|
|
char *tag;
|
|
|
|
struct virtio_fs_vq *vqs;
|
|
|
|
unsigned int nvqs; /* number of virtqueues */
|
|
|
|
unsigned int num_request_queues; /* number of request queues */
|
2020-08-19 18:19:46 -04:00
|
|
|
struct dax_device *dax_dev;
|
|
|
|
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
unsigned int *mq_map; /* index = cpu id, value = request vq id */
|
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
/* DAX memory window where file contents are mapped */
|
|
|
|
void *window_kaddr;
|
|
|
|
phys_addr_t window_phys_addr;
|
|
|
|
size_t window_len;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
};
|
|
|
|
|
2019-10-30 11:07:18 -04:00
|
|
|
struct virtio_fs_forget_req {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct fuse_in_header ih;
|
|
|
|
struct fuse_forget_in arg;
|
2019-10-30 11:07:18 -04:00
|
|
|
};
|
|
|
|
|
|
|
|
struct virtio_fs_forget {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* This request can be temporarily queued on virt queue */
|
|
|
|
struct list_head list;
|
2019-10-30 11:07:18 -04:00
|
|
|
struct virtio_fs_forget_req req;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
};
|
|
|
|
|
2020-04-20 17:01:34 +02:00
|
|
|
struct virtio_fs_req_work {
|
|
|
|
struct fuse_req *req;
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
struct work_struct done_work;
|
|
|
|
};
|
|
|
|
|
2019-10-15 13:46:26 -04:00
|
|
|
static int virtio_fs_enqueue_req(struct virtio_fs_vq *fsvq,
|
2024-08-31 17:37:50 +08:00
|
|
|
struct fuse_req *req, bool in_flight,
|
|
|
|
gfp_t gfp);
|
2019-10-15 13:46:26 -04:00
|
|
|
|
2021-11-25 15:05:25 +08:00
|
|
|
static const struct constant_table dax_param_enums[] = {
|
|
|
|
{"always", FUSE_DAX_ALWAYS },
|
|
|
|
{"never", FUSE_DAX_NEVER },
|
|
|
|
{"inode", FUSE_DAX_INODE_USER },
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
2020-08-19 18:19:47 -04:00
|
|
|
enum {
|
|
|
|
OPT_DAX,
|
2021-11-25 15:05:25 +08:00
|
|
|
OPT_DAX_ENUM,
|
2020-08-19 18:19:47 -04:00
|
|
|
};
|
|
|
|
|
|
|
|
static const struct fs_parameter_spec virtio_fs_parameters[] = {
|
|
|
|
fsparam_flag("dax", OPT_DAX),
|
2021-11-25 15:05:25 +08:00
|
|
|
fsparam_enum("dax", OPT_DAX_ENUM, dax_param_enums),
|
2020-08-19 18:19:47 -04:00
|
|
|
{}
|
|
|
|
};
|
|
|
|
|
2021-08-04 13:22:58 +02:00
|
|
|
static int virtio_fs_parse_param(struct fs_context *fsc,
|
2020-08-19 18:19:47 -04:00
|
|
|
struct fs_parameter *param)
|
|
|
|
{
|
|
|
|
struct fs_parse_result result;
|
2021-08-04 13:22:58 +02:00
|
|
|
struct fuse_fs_context *ctx = fsc->fs_private;
|
2020-08-19 18:19:47 -04:00
|
|
|
int opt;
|
|
|
|
|
2021-08-04 13:22:58 +02:00
|
|
|
opt = fs_parse(fsc, virtio_fs_parameters, param, &result);
|
2020-08-19 18:19:47 -04:00
|
|
|
if (opt < 0)
|
|
|
|
return opt;
|
|
|
|
|
|
|
|
switch (opt) {
|
|
|
|
case OPT_DAX:
|
2021-11-25 15:05:25 +08:00
|
|
|
ctx->dax_mode = FUSE_DAX_ALWAYS;
|
|
|
|
break;
|
|
|
|
case OPT_DAX_ENUM:
|
|
|
|
ctx->dax_mode = result.uint_32;
|
2020-08-19 18:19:47 -04:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-08-04 13:22:58 +02:00
|
|
|
static void virtio_fs_free_fsc(struct fs_context *fsc)
|
2020-08-19 18:19:47 -04:00
|
|
|
{
|
2021-08-04 13:22:58 +02:00
|
|
|
struct fuse_fs_context *ctx = fsc->fs_private;
|
2020-08-19 18:19:47 -04:00
|
|
|
|
|
|
|
kfree(ctx);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static inline struct virtio_fs_vq *vq_to_fsvq(struct virtqueue *vq)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs = vq->vdev->priv;
|
|
|
|
|
|
|
|
return &fs->vqs[vq->index];
|
|
|
|
}
|
|
|
|
|
2019-10-15 13:46:25 -04:00
|
|
|
/* Should be called with fsvq->lock held. */
|
|
|
|
static inline void inc_in_flight_req(struct virtio_fs_vq *fsvq)
|
|
|
|
{
|
|
|
|
fsvq->in_flight++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Should be called with fsvq->lock held. */
|
|
|
|
static inline void dec_in_flight_req(struct virtio_fs_vq *fsvq)
|
|
|
|
{
|
|
|
|
WARN_ON(fsvq->in_flight <= 0);
|
|
|
|
fsvq->in_flight--;
|
2019-10-30 11:07:19 -04:00
|
|
|
if (!fsvq->in_flight)
|
|
|
|
complete(&fsvq->in_flight_zero);
|
2019-10-15 13:46:25 -04:00
|
|
|
}
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
static ssize_t tag_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs = container_of(kobj, struct virtio_fs, kobj);
|
|
|
|
|
2024-04-25 06:44:00 -04:00
|
|
|
return sysfs_emit(buf, "%s\n", fs->tag);
|
2024-02-12 19:11:48 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct kobj_attribute virtio_fs_tag_attr = __ATTR_RO(tag);
|
|
|
|
|
|
|
|
static struct attribute *virtio_fs_attrs[] = {
|
|
|
|
&virtio_fs_tag_attr.attr,
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(virtio_fs);
|
|
|
|
|
|
|
|
static void virtio_fs_ktype_release(struct kobject *kobj)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2024-02-12 19:11:48 -05:00
|
|
|
struct virtio_fs *vfs = container_of(kobj, struct virtio_fs, kobj);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
kfree(vfs->mq_map);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
kfree(vfs->vqs);
|
|
|
|
kfree(vfs);
|
|
|
|
}
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
static const struct kobj_type virtio_fs_ktype = {
|
|
|
|
.release = virtio_fs_ktype_release,
|
|
|
|
.sysfs_ops = &kobj_sysfs_ops,
|
|
|
|
.default_groups = virtio_fs_groups,
|
|
|
|
};
|
|
|
|
|
2024-08-25 16:07:16 +03:00
|
|
|
static struct virtio_fs_vq *virtio_fs_kobj_to_vq(struct virtio_fs *fs,
|
|
|
|
struct kobject *kobj)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
if (kobj == fs->vqs[i].kobj)
|
|
|
|
return &fs->vqs[i];
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t name_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs = container_of(kobj->parent->parent, struct virtio_fs, kobj);
|
|
|
|
struct virtio_fs_vq *fsvq = virtio_fs_kobj_to_vq(fs, kobj);
|
|
|
|
|
|
|
|
if (!fsvq)
|
|
|
|
return -EINVAL;
|
|
|
|
return sysfs_emit(buf, "%s\n", fsvq->name);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct kobj_attribute virtio_fs_vq_name_attr = __ATTR_RO(name);
|
|
|
|
|
|
|
|
static ssize_t cpu_list_show(struct kobject *kobj,
|
|
|
|
struct kobj_attribute *attr, char *buf)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs = container_of(kobj->parent->parent, struct virtio_fs, kobj);
|
|
|
|
struct virtio_fs_vq *fsvq = virtio_fs_kobj_to_vq(fs, kobj);
|
|
|
|
unsigned int cpu, qid;
|
|
|
|
const size_t size = PAGE_SIZE - 1;
|
|
|
|
bool first = true;
|
|
|
|
int ret = 0, pos = 0;
|
|
|
|
|
|
|
|
if (!fsvq)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
qid = fsvq->vq->index;
|
|
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
|
2024-10-06 21:43:41 +03:00
|
|
|
if (qid < VQ_REQUEST || (fs->mq_map[cpu] == qid)) {
|
2024-08-25 16:07:16 +03:00
|
|
|
if (first)
|
|
|
|
ret = snprintf(buf + pos, size - pos, "%u", cpu);
|
|
|
|
else
|
|
|
|
ret = snprintf(buf + pos, size - pos, ", %u", cpu);
|
|
|
|
|
|
|
|
if (ret >= size - pos)
|
|
|
|
break;
|
|
|
|
first = false;
|
|
|
|
pos += ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ret = snprintf(buf + pos, size + 1 - pos, "\n");
|
|
|
|
return pos + ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct kobj_attribute virtio_fs_vq_cpu_list_attr = __ATTR_RO(cpu_list);
|
|
|
|
|
|
|
|
static struct attribute *virtio_fs_vq_attrs[] = {
|
|
|
|
&virtio_fs_vq_name_attr.attr,
|
|
|
|
&virtio_fs_vq_cpu_list_attr.attr,
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct attribute_group virtio_fs_vq_attr_group = {
|
|
|
|
.attrs = virtio_fs_vq_attrs,
|
|
|
|
};
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Make sure virtiofs_mutex is held */
|
2024-08-25 16:07:15 +03:00
|
|
|
static void virtio_fs_put_locked(struct virtio_fs *fs)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2024-08-25 16:07:15 +03:00
|
|
|
lockdep_assert_held(&virtio_fs_mutex);
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
kobject_put(&fs->kobj);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
2024-08-25 16:07:15 +03:00
|
|
|
static void virtio_fs_put(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
virtio_fs_put_locked(fs);
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static void virtio_fs_fiq_release(struct fuse_iqueue *fiq)
|
|
|
|
{
|
|
|
|
struct virtio_fs *vfs = fiq->priv;
|
|
|
|
|
|
|
|
virtio_fs_put(vfs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_fs_drain_queue(struct virtio_fs_vq *fsvq)
|
|
|
|
{
|
|
|
|
WARN_ON(fsvq->in_flight < 0);
|
|
|
|
|
|
|
|
/* Wait for in flight requests to finish.*/
|
2019-10-30 11:07:19 -04:00
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
if (fsvq->in_flight) {
|
|
|
|
/* We are holding virtio_fs_mutex. There should not be any
|
|
|
|
* waiters waiting for completion.
|
|
|
|
*/
|
|
|
|
reinit_completion(&fsvq->in_flight_zero);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
wait_for_completion(&fsvq->in_flight_zero);
|
|
|
|
} else {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
flush_work(&fsvq->done_work);
|
2024-05-17 21:04:35 +02:00
|
|
|
flush_work(&fsvq->dispatch_work);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
2019-10-30 11:07:19 -04:00
|
|
|
static void virtio_fs_drain_all_queues_locked(struct virtio_fs *fs)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
fsvq = &fs->vqs[i];
|
|
|
|
virtio_fs_drain_queue(fsvq);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-10-30 11:07:19 -04:00
|
|
|
static void virtio_fs_drain_all_queues(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
/* Provides mutual exclusion between ->remove and ->kill_sb
|
|
|
|
* paths. We don't want both of these draining queue at the
|
|
|
|
* same time. Current completion logic reinits completion
|
|
|
|
* and that means there should not be any other thread
|
|
|
|
* doing reinit or waiting for completion already.
|
|
|
|
*/
|
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
virtio_fs_drain_all_queues_locked(fs);
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static void virtio_fs_start_all_queues(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
fsvq = &fs->vqs[i];
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
fsvq->connected = true;
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-08-25 16:07:16 +03:00
|
|
|
static void virtio_fs_delete_queues_sysfs(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
fsvq = &fs->vqs[i];
|
|
|
|
kobject_put(fsvq->kobj);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_fs_add_queues_sysfs(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
char buff[12];
|
|
|
|
int i, j, ret;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
fsvq = &fs->vqs[i];
|
|
|
|
|
|
|
|
sprintf(buff, "%d", i);
|
|
|
|
fsvq->kobj = kobject_create_and_add(buff, fs->mqs_kobj);
|
|
|
|
if (!fs->mqs_kobj) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out_del;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = sysfs_create_group(fsvq->kobj, &virtio_fs_vq_attr_group);
|
|
|
|
if (ret) {
|
|
|
|
kobject_put(fsvq->kobj);
|
|
|
|
goto out_del;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_del:
|
|
|
|
for (j = 0; j < i; j++) {
|
|
|
|
fsvq = &fs->vqs[j];
|
|
|
|
kobject_put(fsvq->kobj);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Add a new instance to the list or return -EEXIST if tag name exists*/
|
2024-02-12 19:11:48 -05:00
|
|
|
static int virtio_fs_add_instance(struct virtio_device *vdev,
|
|
|
|
struct virtio_fs *fs)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
struct virtio_fs *fs2;
|
2024-02-12 19:11:48 -05:00
|
|
|
int ret;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
|
|
|
|
list_for_each_entry(fs2, &virtio_fs_instances, list) {
|
2024-02-12 19:11:48 -05:00
|
|
|
if (strcmp(fs->tag, fs2->tag) == 0) {
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
return -EEXIST;
|
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
/* Use the virtio_device's index as a unique identifier, there is no
|
|
|
|
* need to allocate our own identifiers because the virtio_fs instance
|
|
|
|
* is only visible to userspace as long as the underlying virtio_device
|
|
|
|
* exists.
|
|
|
|
*/
|
|
|
|
fs->kobj.kset = virtio_fs_kset;
|
|
|
|
ret = kobject_add(&fs->kobj, NULL, "%d", vdev->index);
|
2024-08-25 16:07:16 +03:00
|
|
|
if (ret < 0)
|
|
|
|
goto out_unlock;
|
|
|
|
|
|
|
|
fs->mqs_kobj = kobject_create_and_add("mqs", &fs->kobj);
|
|
|
|
if (!fs->mqs_kobj) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out_del;
|
2024-02-12 19:11:48 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = sysfs_create_link(&fs->kobj, &vdev->dev.kobj, "device");
|
2024-08-25 16:07:16 +03:00
|
|
|
if (ret < 0)
|
|
|
|
goto out_put;
|
|
|
|
|
|
|
|
ret = virtio_fs_add_queues_sysfs(fs);
|
|
|
|
if (ret)
|
|
|
|
goto out_remove;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
list_add_tail(&fs->list, &virtio_fs_instances);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
|
2024-02-12 19:11:49 -05:00
|
|
|
kobject_uevent(&fs->kobj, KOBJ_ADD);
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
return 0;
|
2024-08-25 16:07:16 +03:00
|
|
|
|
|
|
|
out_remove:
|
|
|
|
sysfs_remove_link(&fs->kobj, "device");
|
|
|
|
out_put:
|
|
|
|
kobject_put(fs->mqs_kobj);
|
|
|
|
out_del:
|
|
|
|
kobject_del(&fs->kobj);
|
|
|
|
out_unlock:
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
return ret;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the virtio_fs with a given tag, or NULL */
|
|
|
|
static struct virtio_fs *virtio_fs_find_instance(const char *tag)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs;
|
|
|
|
|
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
|
|
|
|
list_for_each_entry(fs, &virtio_fs_instances, list) {
|
|
|
|
if (strcmp(fs->tag, tag) == 0) {
|
2024-02-12 19:11:48 -05:00
|
|
|
kobject_get(&fs->kobj);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
goto found;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fs = NULL; /* not found */
|
|
|
|
|
|
|
|
found:
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
|
|
|
|
return fs;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_fs_free_devs(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
struct virtio_fs_vq *fsvq = &fs->vqs[i];
|
|
|
|
|
|
|
|
if (!fsvq->fud)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
fuse_dev_free(fsvq->fud);
|
|
|
|
fsvq->fud = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read filesystem name from virtio config into fs->tag (must kfree()). */
|
|
|
|
static int virtio_fs_read_tag(struct virtio_device *vdev, struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
char tag_buf[sizeof_field(struct virtio_fs_config, tag)];
|
|
|
|
char *end;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
virtio_cread_bytes(vdev, offsetof(struct virtio_fs_config, tag),
|
|
|
|
&tag_buf, sizeof(tag_buf));
|
|
|
|
end = memchr(tag_buf, '\0', sizeof(tag_buf));
|
|
|
|
if (end == tag_buf)
|
|
|
|
return -EINVAL; /* empty tag */
|
|
|
|
if (!end)
|
|
|
|
end = &tag_buf[sizeof(tag_buf)];
|
|
|
|
|
|
|
|
len = end - tag_buf;
|
|
|
|
fs->tag = devm_kmalloc(&vdev->dev, len + 1, GFP_KERNEL);
|
|
|
|
if (!fs->tag)
|
|
|
|
return -ENOMEM;
|
|
|
|
memcpy(fs->tag, tag_buf, len);
|
|
|
|
fs->tag[len] = '\0';
|
2024-02-12 19:11:47 -05:00
|
|
|
|
|
|
|
/* While the VIRTIO specification allows any character, newlines are
|
|
|
|
* awkward on mount(8) command-lines and cause problems in the sysfs
|
|
|
|
* "tag" attr and uevent TAG= properties. Forbid them.
|
|
|
|
*/
|
|
|
|
if (strchr(fs->tag, '\n')) {
|
|
|
|
dev_dbg(&vdev->dev, "refusing virtiofs tag with newline character\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2024-10-06 21:43:24 +03:00
|
|
|
dev_info(&vdev->dev, "discovered new tag: %s\n", fs->tag);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Work function for hiprio completion */
|
|
|
|
static void virtio_fs_hiprio_done_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq = container_of(work, struct virtio_fs_vq,
|
|
|
|
done_work);
|
|
|
|
struct virtqueue *vq = fsvq->vq;
|
|
|
|
|
|
|
|
/* Free completed FUSE_FORGET requests */
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
do {
|
|
|
|
unsigned int len;
|
|
|
|
void *req;
|
|
|
|
|
|
|
|
virtqueue_disable_cb(vq);
|
|
|
|
|
|
|
|
while ((req = virtqueue_get_buf(vq, &len)) != NULL) {
|
|
|
|
kfree(req);
|
2019-10-15 13:46:25 -04:00
|
|
|
dec_in_flight_req(fsvq);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
2024-01-15 11:09:14 +08:00
|
|
|
} while (!virtqueue_enable_cb(vq));
|
2024-05-17 21:04:35 +02:00
|
|
|
|
|
|
|
if (!list_empty(&fsvq->queued_reqs))
|
|
|
|
schedule_work(&fsvq->dispatch_work);
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
}
|
|
|
|
|
2019-10-15 13:46:22 -04:00
|
|
|
static void virtio_fs_request_dispatch_work(struct work_struct *work)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2019-10-15 13:46:22 -04:00
|
|
|
struct fuse_req *req;
|
|
|
|
struct virtio_fs_vq *fsvq = container_of(work, struct virtio_fs_vq,
|
2024-05-17 21:04:35 +02:00
|
|
|
dispatch_work);
|
2019-10-15 13:46:26 -04:00
|
|
|
int ret;
|
2019-10-15 13:46:22 -04:00
|
|
|
|
|
|
|
pr_debug("virtio-fs: worker %s called.\n", __func__);
|
|
|
|
while (1) {
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
req = list_first_entry_or_null(&fsvq->end_reqs, struct fuse_req,
|
|
|
|
list);
|
|
|
|
if (!req) {
|
|
|
|
spin_unlock(&fsvq->lock);
|
2019-10-15 13:46:26 -04:00
|
|
|
break;
|
2019-10-15 13:46:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
list_del_init(&req->list);
|
|
|
|
spin_unlock(&fsvq->lock);
|
2020-04-20 17:59:34 +02:00
|
|
|
fuse_request_end(req);
|
2019-10-15 13:46:22 -04:00
|
|
|
}
|
2019-10-15 13:46:26 -04:00
|
|
|
|
|
|
|
/* Dispatch pending requests */
|
|
|
|
while (1) {
|
2024-08-31 17:37:50 +08:00
|
|
|
unsigned int flags;
|
|
|
|
|
2019-10-15 13:46:26 -04:00
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
req = list_first_entry_or_null(&fsvq->queued_reqs,
|
|
|
|
struct fuse_req, list);
|
|
|
|
if (!req) {
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
list_del_init(&req->list);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
|
2024-08-31 17:37:50 +08:00
|
|
|
flags = memalloc_nofs_save();
|
|
|
|
ret = virtio_fs_enqueue_req(fsvq, req, true, GFP_KERNEL);
|
|
|
|
memalloc_nofs_restore(flags);
|
2019-10-15 13:46:26 -04:00
|
|
|
if (ret < 0) {
|
2024-05-17 21:04:34 +02:00
|
|
|
if (ret == -ENOSPC) {
|
2019-10-15 13:46:26 -04:00
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
list_add_tail(&req->list, &fsvq->queued_reqs);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
req->out.h.error = ret;
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
dec_in_flight_req(fsvq);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
pr_err("virtio-fs: virtio_fs_enqueue_req() failed %d\n",
|
|
|
|
ret);
|
2020-04-20 17:59:34 +02:00
|
|
|
fuse_request_end(req);
|
2019-10-15 13:46:26 -04:00
|
|
|
}
|
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
2019-10-30 11:07:17 -04:00
|
|
|
/*
|
|
|
|
* Returns 1 if queue is full and sender should wait a bit before sending
|
|
|
|
* next request, 0 otherwise.
|
|
|
|
*/
|
|
|
|
static int send_forget_request(struct virtio_fs_vq *fsvq,
|
|
|
|
struct virtio_fs_forget *forget,
|
|
|
|
bool in_flight)
|
|
|
|
{
|
|
|
|
struct scatterlist sg;
|
|
|
|
struct virtqueue *vq;
|
|
|
|
int ret = 0;
|
|
|
|
bool notify;
|
2019-10-30 11:07:18 -04:00
|
|
|
struct virtio_fs_forget_req *req = &forget->req;
|
2019-10-30 11:07:17 -04:00
|
|
|
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
if (!fsvq->connected) {
|
|
|
|
if (in_flight)
|
|
|
|
dec_in_flight_req(fsvq);
|
|
|
|
kfree(forget);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2019-10-30 11:07:18 -04:00
|
|
|
sg_init_one(&sg, req, sizeof(*req));
|
2019-10-30 11:07:17 -04:00
|
|
|
vq = fsvq->vq;
|
|
|
|
dev_dbg(&vq->vdev->dev, "%s\n", __func__);
|
|
|
|
|
|
|
|
ret = virtqueue_add_outbuf(vq, &sg, 1, forget, GFP_ATOMIC);
|
|
|
|
if (ret < 0) {
|
2024-05-17 21:04:34 +02:00
|
|
|
if (ret == -ENOSPC) {
|
2019-10-30 11:07:17 -04:00
|
|
|
pr_debug("virtio-fs: Could not queue FORGET: err=%d. Will try later\n",
|
|
|
|
ret);
|
|
|
|
list_add_tail(&forget->list, &fsvq->queued_reqs);
|
|
|
|
if (!in_flight)
|
|
|
|
inc_in_flight_req(fsvq);
|
|
|
|
/* Queue is full */
|
|
|
|
ret = 1;
|
|
|
|
} else {
|
|
|
|
pr_debug("virtio-fs: Could not queue FORGET: err=%d. Dropping it.\n",
|
|
|
|
ret);
|
|
|
|
kfree(forget);
|
|
|
|
if (in_flight)
|
|
|
|
dec_in_flight_req(fsvq);
|
|
|
|
}
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!in_flight)
|
|
|
|
inc_in_flight_req(fsvq);
|
|
|
|
notify = virtqueue_kick_prepare(vq);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
|
|
|
|
if (notify)
|
|
|
|
virtqueue_notify(vq);
|
|
|
|
return ret;
|
|
|
|
out:
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static void virtio_fs_hiprio_dispatch_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct virtio_fs_forget *forget;
|
|
|
|
struct virtio_fs_vq *fsvq = container_of(work, struct virtio_fs_vq,
|
2024-05-17 21:04:35 +02:00
|
|
|
dispatch_work);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
pr_debug("virtio-fs: worker %s called.\n", __func__);
|
|
|
|
while (1) {
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
forget = list_first_entry_or_null(&fsvq->queued_reqs,
|
|
|
|
struct virtio_fs_forget, list);
|
|
|
|
if (!forget) {
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
list_del(&forget->list);
|
|
|
|
spin_unlock(&fsvq->lock);
|
2019-10-30 11:07:17 -04:00
|
|
|
if (send_forget_request(fsvq, forget, true))
|
|
|
|
return;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate and copy args into req->argbuf */
|
2024-08-31 17:37:50 +08:00
|
|
|
static int copy_args_to_argbuf(struct fuse_req *req, gfp_t gfp)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
struct fuse_args *args = req->args;
|
|
|
|
unsigned int offset = 0;
|
|
|
|
unsigned int num_in;
|
|
|
|
unsigned int num_out;
|
|
|
|
unsigned int len;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
num_in = args->in_numargs - args->in_pages;
|
|
|
|
num_out = args->out_numargs - args->out_pages;
|
|
|
|
len = fuse_len_args(num_in, (struct fuse_arg *) args->in_args) +
|
|
|
|
fuse_len_args(num_out, args->out_args);
|
|
|
|
|
2024-08-31 17:37:50 +08:00
|
|
|
req->argbuf = kmalloc(len, gfp);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (!req->argbuf)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
for (i = 0; i < num_in; i++) {
|
|
|
|
memcpy(req->argbuf + offset,
|
|
|
|
args->in_args[i].value,
|
|
|
|
args->in_args[i].size);
|
|
|
|
offset += args->in_args[i].size;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy args out of and free req->argbuf */
|
|
|
|
static void copy_args_from_argbuf(struct fuse_args *args, struct fuse_req *req)
|
|
|
|
{
|
|
|
|
unsigned int remaining;
|
|
|
|
unsigned int offset;
|
|
|
|
unsigned int num_in;
|
|
|
|
unsigned int num_out;
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
remaining = req->out.h.len - sizeof(req->out.h);
|
|
|
|
num_in = args->in_numargs - args->in_pages;
|
|
|
|
num_out = args->out_numargs - args->out_pages;
|
|
|
|
offset = fuse_len_args(num_in, (struct fuse_arg *)args->in_args);
|
|
|
|
|
|
|
|
for (i = 0; i < num_out; i++) {
|
|
|
|
unsigned int argsize = args->out_args[i].size;
|
|
|
|
|
|
|
|
if (args->out_argvar &&
|
|
|
|
i == args->out_numargs - 1 &&
|
|
|
|
argsize > remaining) {
|
|
|
|
argsize = remaining;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(args->out_args[i].value, req->argbuf + offset, argsize);
|
|
|
|
offset += argsize;
|
|
|
|
|
|
|
|
if (i != args->out_numargs - 1)
|
|
|
|
remaining -= argsize;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Store the actual size of the variable-length arg */
|
|
|
|
if (args->out_argvar)
|
|
|
|
args->out_args[args->out_numargs - 1].size = remaining;
|
|
|
|
|
|
|
|
kfree(req->argbuf);
|
|
|
|
req->argbuf = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Work function for request completion */
|
2020-04-20 17:01:34 +02:00
|
|
|
static void virtio_fs_request_complete(struct fuse_req *req,
|
|
|
|
struct virtio_fs_vq *fsvq)
|
|
|
|
{
|
|
|
|
struct fuse_pqueue *fpq = &fsvq->fud->pq;
|
|
|
|
struct fuse_args *args;
|
|
|
|
struct fuse_args_pages *ap;
|
|
|
|
unsigned int len, i, thislen;
|
2024-10-24 10:17:58 -07:00
|
|
|
struct folio *folio;
|
2020-04-20 17:01:34 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* TODO verify that server properly follows FUSE protocol
|
|
|
|
* (oh.uniq, oh.len)
|
|
|
|
*/
|
|
|
|
args = req->args;
|
|
|
|
copy_args_from_argbuf(args, req);
|
|
|
|
|
|
|
|
if (args->out_pages && args->page_zeroing) {
|
|
|
|
len = args->out_args[args->out_numargs - 1].size;
|
|
|
|
ap = container_of(args, typeof(*ap), args);
|
2024-10-24 10:18:09 -07:00
|
|
|
for (i = 0; i < ap->num_folios; i++) {
|
|
|
|
thislen = ap->descs[i].length;
|
|
|
|
if (len < thislen) {
|
|
|
|
WARN_ON(ap->descs[i].offset);
|
|
|
|
folio = ap->folios[i];
|
|
|
|
folio_zero_segment(folio, len, thislen);
|
|
|
|
len = 0;
|
|
|
|
} else {
|
|
|
|
len -= thislen;
|
2020-04-20 17:01:34 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&fpq->lock);
|
|
|
|
clear_bit(FR_SENT, &req->flags);
|
|
|
|
spin_unlock(&fpq->lock);
|
|
|
|
|
2020-04-20 17:59:34 +02:00
|
|
|
fuse_request_end(req);
|
2020-04-20 17:01:34 +02:00
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
dec_in_flight_req(fsvq);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_fs_complete_req_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct virtio_fs_req_work *w =
|
|
|
|
container_of(work, typeof(*w), done_work);
|
|
|
|
|
|
|
|
virtio_fs_request_complete(w->req, w->fsvq);
|
|
|
|
kfree(w);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static void virtio_fs_requests_done_work(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq = container_of(work, struct virtio_fs_vq,
|
|
|
|
done_work);
|
|
|
|
struct fuse_pqueue *fpq = &fsvq->fud->pq;
|
|
|
|
struct virtqueue *vq = fsvq->vq;
|
|
|
|
struct fuse_req *req;
|
|
|
|
struct fuse_req *next;
|
2020-04-20 17:01:34 +02:00
|
|
|
unsigned int len;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
LIST_HEAD(reqs);
|
|
|
|
|
|
|
|
/* Collect completed requests off the virtqueue */
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
do {
|
|
|
|
virtqueue_disable_cb(vq);
|
|
|
|
|
|
|
|
while ((req = virtqueue_get_buf(vq, &len)) != NULL) {
|
|
|
|
spin_lock(&fpq->lock);
|
|
|
|
list_move_tail(&req->list, &reqs);
|
|
|
|
spin_unlock(&fpq->lock);
|
|
|
|
}
|
2024-01-15 11:09:14 +08:00
|
|
|
} while (!virtqueue_enable_cb(vq));
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
|
|
|
|
/* End requests */
|
|
|
|
list_for_each_entry_safe(req, next, &reqs, list) {
|
|
|
|
list_del_init(&req->list);
|
|
|
|
|
2020-04-20 17:01:34 +02:00
|
|
|
/* blocking async request completes in a worker context */
|
|
|
|
if (req->args->may_block) {
|
|
|
|
struct virtio_fs_req_work *w;
|
|
|
|
|
|
|
|
w = kzalloc(sizeof(*w), GFP_NOFS | __GFP_NOFAIL);
|
|
|
|
INIT_WORK(&w->done_work, virtio_fs_complete_req_work);
|
|
|
|
w->fsvq = fsvq;
|
|
|
|
w->req = req;
|
|
|
|
schedule_work(&w->done_work);
|
|
|
|
} else {
|
|
|
|
virtio_fs_request_complete(req, fsvq);
|
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
2024-05-17 21:04:35 +02:00
|
|
|
|
|
|
|
/* Try to push previously queued requests, as the queue might no longer be full */
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
if (!list_empty(&fsvq->queued_reqs))
|
|
|
|
schedule_work(&fsvq->dispatch_work);
|
|
|
|
spin_unlock(&fsvq->lock);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
static void virtio_fs_map_queues(struct virtio_device *vdev, struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
const struct cpumask *mask, *masks;
|
|
|
|
unsigned int q, cpu;
|
|
|
|
|
|
|
|
/* First attempt to map using existing transport layer affinities
|
|
|
|
* e.g. PCIe MSI-X
|
|
|
|
*/
|
|
|
|
if (!vdev->config->get_vq_affinity)
|
|
|
|
goto fallback;
|
|
|
|
|
|
|
|
for (q = 0; q < fs->num_request_queues; q++) {
|
|
|
|
mask = vdev->config->get_vq_affinity(vdev, VQ_REQUEST + q);
|
|
|
|
if (!mask)
|
|
|
|
goto fallback;
|
|
|
|
|
|
|
|
for_each_cpu(cpu, mask)
|
2024-10-06 21:43:41 +03:00
|
|
|
fs->mq_map[cpu] = q + VQ_REQUEST;
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
fallback:
|
|
|
|
/* Attempt to map evenly in groups over the CPUs */
|
|
|
|
masks = group_cpus_evenly(fs->num_request_queues);
|
2024-10-06 21:43:41 +03:00
|
|
|
/* If even this fails we default to all CPUs use first request queue */
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
if (!masks) {
|
|
|
|
for_each_possible_cpu(cpu)
|
2024-10-06 21:43:41 +03:00
|
|
|
fs->mq_map[cpu] = VQ_REQUEST;
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (q = 0; q < fs->num_request_queues; q++) {
|
|
|
|
for_each_cpu(cpu, &masks[q])
|
2024-10-06 21:43:41 +03:00
|
|
|
fs->mq_map[cpu] = q + VQ_REQUEST;
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
}
|
|
|
|
kfree(masks);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Virtqueue interrupt handler */
|
|
|
|
static void virtio_fs_vq_done(struct virtqueue *vq)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq = vq_to_fsvq(vq);
|
|
|
|
|
|
|
|
dev_dbg(&vq->vdev->dev, "%s %s\n", __func__, fsvq->name);
|
|
|
|
|
|
|
|
schedule_work(&fsvq->done_work);
|
|
|
|
}
|
|
|
|
|
2020-08-19 18:19:44 -04:00
|
|
|
static void virtio_fs_init_vq(struct virtio_fs_vq *fsvq, char *name,
|
|
|
|
int vq_type)
|
|
|
|
{
|
2021-11-02 11:08:19 +01:00
|
|
|
strscpy(fsvq->name, name, VQ_NAME_LEN);
|
2020-08-19 18:19:44 -04:00
|
|
|
spin_lock_init(&fsvq->lock);
|
|
|
|
INIT_LIST_HEAD(&fsvq->queued_reqs);
|
|
|
|
INIT_LIST_HEAD(&fsvq->end_reqs);
|
|
|
|
init_completion(&fsvq->in_flight_zero);
|
|
|
|
|
|
|
|
if (vq_type == VQ_REQUEST) {
|
|
|
|
INIT_WORK(&fsvq->done_work, virtio_fs_requests_done_work);
|
2024-05-17 21:04:35 +02:00
|
|
|
INIT_WORK(&fsvq->dispatch_work,
|
|
|
|
virtio_fs_request_dispatch_work);
|
2020-08-19 18:19:44 -04:00
|
|
|
} else {
|
|
|
|
INIT_WORK(&fsvq->done_work, virtio_fs_hiprio_done_work);
|
2024-05-17 21:04:35 +02:00
|
|
|
INIT_WORK(&fsvq->dispatch_work,
|
|
|
|
virtio_fs_hiprio_dispatch_work);
|
2020-08-19 18:19:44 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Initialize virtqueues */
|
|
|
|
static int virtio_fs_setup_vqs(struct virtio_device *vdev,
|
|
|
|
struct virtio_fs *fs)
|
|
|
|
{
|
2024-07-08 09:48:10 +02:00
|
|
|
struct virtqueue_info *vqs_info;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct virtqueue **vqs;
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
/* Specify pre_vectors to ensure that the queues before the
|
|
|
|
* request queues (e.g. hiprio) don't claim any of the CPUs in
|
|
|
|
* the multi-queue mapping and interrupt affinities
|
|
|
|
*/
|
|
|
|
struct irq_affinity desc = { .pre_vectors = VQ_REQUEST };
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
unsigned int i;
|
|
|
|
int ret = 0;
|
|
|
|
|
2020-08-05 05:39:36 -04:00
|
|
|
virtio_cread_le(vdev, struct virtio_fs_config, num_request_queues,
|
|
|
|
&fs->num_request_queues);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (fs->num_request_queues == 0)
|
|
|
|
return -EINVAL;
|
|
|
|
|
2024-05-01 17:38:16 +02:00
|
|
|
/* Truncate nr of request queues to nr_cpu_id */
|
|
|
|
fs->num_request_queues = min_t(unsigned int, fs->num_request_queues,
|
|
|
|
nr_cpu_ids);
|
2020-08-19 18:19:44 -04:00
|
|
|
fs->nvqs = VQ_REQUEST + fs->num_request_queues;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
fs->vqs = kcalloc(fs->nvqs, sizeof(fs->vqs[VQ_HIPRIO]), GFP_KERNEL);
|
|
|
|
if (!fs->vqs)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
vqs = kmalloc_array(fs->nvqs, sizeof(vqs[VQ_HIPRIO]), GFP_KERNEL);
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
fs->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*fs->mq_map), GFP_KERNEL,
|
|
|
|
dev_to_node(&vdev->dev));
|
2024-07-08 09:48:10 +02:00
|
|
|
vqs_info = kcalloc(fs->nvqs, sizeof(*vqs_info), GFP_KERNEL);
|
|
|
|
if (!vqs || !vqs_info || !fs->mq_map) {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2020-08-19 18:19:44 -04:00
|
|
|
/* Initialize the hiprio/forget request virtqueue */
|
2024-07-08 09:48:10 +02:00
|
|
|
vqs_info[VQ_HIPRIO].callback = virtio_fs_vq_done;
|
2020-08-19 18:19:44 -04:00
|
|
|
virtio_fs_init_vq(&fs->vqs[VQ_HIPRIO], "hiprio", VQ_HIPRIO);
|
2024-07-08 09:48:10 +02:00
|
|
|
vqs_info[VQ_HIPRIO].name = fs->vqs[VQ_HIPRIO].name;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
/* Initialize the requests virtqueues */
|
|
|
|
for (i = VQ_REQUEST; i < fs->nvqs; i++) {
|
2020-08-19 18:19:44 -04:00
|
|
|
char vq_name[VQ_NAME_LEN];
|
|
|
|
|
|
|
|
snprintf(vq_name, VQ_NAME_LEN, "requests.%u", i - VQ_REQUEST);
|
|
|
|
virtio_fs_init_vq(&fs->vqs[i], vq_name, VQ_REQUEST);
|
2024-07-08 09:48:10 +02:00
|
|
|
vqs_info[i].callback = virtio_fs_vq_done;
|
|
|
|
vqs_info[i].name = fs->vqs[i].name;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
2024-07-08 09:48:14 +02:00
|
|
|
ret = virtio_find_vqs(vdev, fs->nvqs, vqs, vqs_info, &desc);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++)
|
|
|
|
fs->vqs[i].vq = vqs[i];
|
|
|
|
|
|
|
|
virtio_fs_start_all_queues(fs);
|
|
|
|
out:
|
2024-07-08 09:48:10 +02:00
|
|
|
kfree(vqs_info);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
kfree(vqs);
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
if (ret) {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
kfree(fs->vqs);
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
kfree(fs->mq_map);
|
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free virtqueues (device must already be reset) */
|
2022-06-09 22:08:38 -04:00
|
|
|
static void virtio_fs_cleanup_vqs(struct virtio_device *vdev)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
vdev->config->del_vqs(vdev);
|
|
|
|
}
|
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
/* Map a window offset to a page frame number. The window offset will have
|
|
|
|
* been produced by .iomap_begin(), which maps a file offset to a window
|
|
|
|
* offset.
|
|
|
|
*/
|
|
|
|
static long virtio_fs_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
|
2022-05-13 15:10:58 -07:00
|
|
|
long nr_pages, enum dax_access_mode mode,
|
|
|
|
void **kaddr, pfn_t *pfn)
|
2020-08-19 18:19:46 -04:00
|
|
|
{
|
|
|
|
struct virtio_fs *fs = dax_get_private(dax_dev);
|
|
|
|
phys_addr_t offset = PFN_PHYS(pgoff);
|
2022-06-22 17:17:58 -04:00
|
|
|
size_t max_nr_pages = fs->window_len / PAGE_SIZE - pgoff;
|
2020-08-19 18:19:46 -04:00
|
|
|
|
|
|
|
if (kaddr)
|
|
|
|
*kaddr = fs->window_kaddr + offset;
|
|
|
|
if (pfn)
|
|
|
|
*pfn = phys_to_pfn_t(fs->window_phys_addr + offset,
|
|
|
|
PFN_DEV | PFN_MAP);
|
|
|
|
return nr_pages > max_nr_pages ? max_nr_pages : nr_pages;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_fs_zero_page_range(struct dax_device *dax_dev,
|
|
|
|
pgoff_t pgoff, size_t nr_pages)
|
|
|
|
{
|
|
|
|
long rc;
|
|
|
|
void *kaddr;
|
|
|
|
|
2022-05-13 15:10:58 -07:00
|
|
|
rc = dax_direct_access(dax_dev, pgoff, nr_pages, DAX_ACCESS, &kaddr,
|
|
|
|
NULL);
|
2020-08-19 18:19:46 -04:00
|
|
|
if (rc < 0)
|
2023-06-15 12:13:25 -06:00
|
|
|
return dax_mem2blk_err(rc);
|
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
memset(kaddr, 0, nr_pages << PAGE_SHIFT);
|
|
|
|
dax_flush(dax_dev, kaddr, nr_pages << PAGE_SHIFT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct dax_operations virtio_fs_dax_ops = {
|
|
|
|
.direct_access = virtio_fs_direct_access,
|
|
|
|
.zero_page_range = virtio_fs_zero_page_range,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void virtio_fs_cleanup_dax(void *data)
|
|
|
|
{
|
|
|
|
struct dax_device *dax_dev = data;
|
|
|
|
|
|
|
|
kill_dax(dax_dev);
|
|
|
|
put_dax(dax_dev);
|
|
|
|
}
|
|
|
|
|
2024-02-15 09:46:30 -05:00
|
|
|
DEFINE_FREE(cleanup_dax, struct dax_dev *, if (!IS_ERR_OR_NULL(_T)) virtio_fs_cleanup_dax(_T))
|
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
static int virtio_fs_setup_dax(struct virtio_device *vdev, struct virtio_fs *fs)
|
|
|
|
{
|
2024-02-15 09:46:30 -05:00
|
|
|
struct dax_device *dax_dev __free(cleanup_dax) = NULL;
|
2020-08-19 18:19:46 -04:00
|
|
|
struct virtio_shm_region cache_reg;
|
|
|
|
struct dev_pagemap *pgmap;
|
|
|
|
bool have_cache;
|
|
|
|
|
|
|
|
if (!IS_ENABLED(CONFIG_FUSE_DAX))
|
|
|
|
return 0;
|
|
|
|
|
2024-02-15 09:46:30 -05:00
|
|
|
dax_dev = alloc_dax(fs, &virtio_fs_dax_ops);
|
|
|
|
if (IS_ERR(dax_dev)) {
|
|
|
|
int rc = PTR_ERR(dax_dev);
|
|
|
|
return rc == -EOPNOTSUPP ? 0 : rc;
|
|
|
|
}
|
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
/* Get cache region */
|
|
|
|
have_cache = virtio_get_shm_region(vdev, &cache_reg,
|
|
|
|
(u8)VIRTIO_FS_SHMCAP_ID_CACHE);
|
|
|
|
if (!have_cache) {
|
|
|
|
dev_notice(&vdev->dev, "%s: No cache capability\n", __func__);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!devm_request_mem_region(&vdev->dev, cache_reg.addr, cache_reg.len,
|
|
|
|
dev_name(&vdev->dev))) {
|
|
|
|
dev_warn(&vdev->dev, "could not reserve region addr=0x%llx len=0x%llx\n",
|
|
|
|
cache_reg.addr, cache_reg.len);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_notice(&vdev->dev, "Cache len: 0x%llx @ 0x%llx\n", cache_reg.len,
|
|
|
|
cache_reg.addr);
|
|
|
|
|
|
|
|
pgmap = devm_kzalloc(&vdev->dev, sizeof(*pgmap), GFP_KERNEL);
|
|
|
|
if (!pgmap)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
pgmap->type = MEMORY_DEVICE_FS_DAX;
|
|
|
|
|
|
|
|
/* Ideally we would directly use the PCI BAR resource but
|
|
|
|
* devm_memremap_pages() wants its own copy in pgmap. So
|
|
|
|
* initialize a struct resource from scratch (only the start
|
|
|
|
* and end fields will be used).
|
|
|
|
*/
|
2020-10-19 14:28:30 -07:00
|
|
|
pgmap->range = (struct range) {
|
2020-08-19 18:19:46 -04:00
|
|
|
.start = (phys_addr_t) cache_reg.addr,
|
|
|
|
.end = (phys_addr_t) cache_reg.addr + cache_reg.len - 1,
|
|
|
|
};
|
2020-10-19 14:28:30 -07:00
|
|
|
pgmap->nr_range = 1;
|
2020-08-19 18:19:46 -04:00
|
|
|
|
|
|
|
fs->window_kaddr = devm_memremap_pages(&vdev->dev, pgmap);
|
|
|
|
if (IS_ERR(fs->window_kaddr))
|
|
|
|
return PTR_ERR(fs->window_kaddr);
|
|
|
|
|
|
|
|
fs->window_phys_addr = (phys_addr_t) cache_reg.addr;
|
|
|
|
fs->window_len = (phys_addr_t) cache_reg.len;
|
|
|
|
|
|
|
|
dev_dbg(&vdev->dev, "%s: window kaddr 0x%px phys_addr 0x%llx len 0x%llx\n",
|
|
|
|
__func__, fs->window_kaddr, cache_reg.addr, cache_reg.len);
|
|
|
|
|
2024-02-15 09:46:30 -05:00
|
|
|
fs->dax_dev = no_free_ptr(dax_dev);
|
2020-08-19 18:19:46 -04:00
|
|
|
return devm_add_action_or_reset(&vdev->dev, virtio_fs_cleanup_dax,
|
|
|
|
fs->dax_dev);
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static int virtio_fs_probe(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
fs = kzalloc(sizeof(*fs), GFP_KERNEL);
|
|
|
|
if (!fs)
|
|
|
|
return -ENOMEM;
|
2024-02-12 19:11:48 -05:00
|
|
|
kobject_init(&fs->kobj, &virtio_fs_ktype);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
vdev->priv = fs;
|
|
|
|
|
|
|
|
ret = virtio_fs_read_tag(vdev, fs);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = virtio_fs_setup_vqs(vdev, fs);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
virtio_fs_map_queues(vdev, fs);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2020-08-19 18:19:46 -04:00
|
|
|
ret = virtio_fs_setup_dax(vdev, fs);
|
|
|
|
if (ret < 0)
|
|
|
|
goto out_vqs;
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Bring the device online in case the filesystem is mounted and
|
|
|
|
* requests need to be sent before we return.
|
|
|
|
*/
|
|
|
|
virtio_device_ready(vdev);
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
ret = virtio_fs_add_instance(vdev, fs);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (ret < 0)
|
|
|
|
goto out_vqs;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_vqs:
|
2021-10-13 06:55:44 -04:00
|
|
|
virtio_reset_device(vdev);
|
2022-06-09 22:08:38 -04:00
|
|
|
virtio_fs_cleanup_vqs(vdev);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
out:
|
|
|
|
vdev->priv = NULL;
|
2024-02-12 19:11:48 -05:00
|
|
|
kobject_put(&fs->kobj);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_fs_stop_all_queues(struct virtio_fs *fs)
|
|
|
|
{
|
|
|
|
struct virtio_fs_vq *fsvq;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
fsvq = &fs->vqs[i];
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
fsvq->connected = false;
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void virtio_fs_remove(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs = vdev->priv;
|
|
|
|
|
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
/* This device is going away. No one should get new reference */
|
|
|
|
list_del_init(&fs->list);
|
2024-08-25 16:07:16 +03:00
|
|
|
virtio_fs_delete_queues_sysfs(fs);
|
2024-02-12 19:11:48 -05:00
|
|
|
sysfs_remove_link(&fs->kobj, "device");
|
2024-08-25 16:07:16 +03:00
|
|
|
kobject_put(fs->mqs_kobj);
|
2024-02-12 19:11:48 -05:00
|
|
|
kobject_del(&fs->kobj);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
virtio_fs_stop_all_queues(fs);
|
2019-10-30 11:07:19 -04:00
|
|
|
virtio_fs_drain_all_queues_locked(fs);
|
2021-10-13 06:55:44 -04:00
|
|
|
virtio_reset_device(vdev);
|
2022-06-09 22:08:38 -04:00
|
|
|
virtio_fs_cleanup_vqs(vdev);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
vdev->priv = NULL;
|
|
|
|
/* Put device reference on virtio_fs object */
|
2024-08-25 16:07:15 +03:00
|
|
|
virtio_fs_put_locked(fs);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
static int virtio_fs_freeze(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
/* TODO need to save state here */
|
|
|
|
pr_warn("virtio-fs: suspend/resume not yet supported\n");
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_fs_restore(struct virtio_device *vdev)
|
|
|
|
{
|
|
|
|
/* TODO need to restore state here */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
|
2019-11-11 20:23:59 +08:00
|
|
|
static const struct virtio_device_id id_table[] = {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{ VIRTIO_ID_FS, VIRTIO_DEV_ANY_ID },
|
|
|
|
{},
|
|
|
|
};
|
|
|
|
|
2019-11-11 20:23:59 +08:00
|
|
|
static const unsigned int feature_table[] = {};
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
static struct virtio_driver virtio_fs_driver = {
|
|
|
|
.driver.name = KBUILD_MODNAME,
|
|
|
|
.id_table = id_table,
|
|
|
|
.feature_table = feature_table,
|
|
|
|
.feature_table_size = ARRAY_SIZE(feature_table),
|
|
|
|
.probe = virtio_fs_probe,
|
|
|
|
.remove = virtio_fs_remove,
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
.freeze = virtio_fs_freeze,
|
|
|
|
.restore = virtio_fs_restore,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
2024-05-29 17:09:07 +02:00
|
|
|
static void virtio_fs_send_forget(struct fuse_iqueue *fiq, struct fuse_forget_link *link)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
struct virtio_fs_forget *forget;
|
2019-10-30 11:07:18 -04:00
|
|
|
struct virtio_fs_forget_req *req;
|
2024-05-29 17:09:07 +02:00
|
|
|
struct virtio_fs *fs = fiq->priv;
|
|
|
|
struct virtio_fs_vq *fsvq = &fs->vqs[VQ_HIPRIO];
|
|
|
|
u64 unique = fuse_get_unique(fiq);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
/* Allocate a buffer for the request */
|
|
|
|
forget = kmalloc(sizeof(*forget), GFP_NOFS | __GFP_NOFAIL);
|
2019-10-30 11:07:18 -04:00
|
|
|
req = &forget->req;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2019-10-30 11:07:18 -04:00
|
|
|
req->ih = (struct fuse_in_header){
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
.opcode = FUSE_FORGET,
|
|
|
|
.nodeid = link->forget_one.nodeid,
|
|
|
|
.unique = unique,
|
2019-10-30 11:07:18 -04:00
|
|
|
.len = sizeof(*req),
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
};
|
2019-10-30 11:07:18 -04:00
|
|
|
req->arg = (struct fuse_forget_in){
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
.nlookup = link->forget_one.nlookup,
|
|
|
|
};
|
|
|
|
|
2019-10-30 11:07:17 -04:00
|
|
|
send_forget_request(fsvq, forget, false);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
kfree(link);
|
|
|
|
}
|
|
|
|
|
2024-05-29 17:09:07 +02:00
|
|
|
static void virtio_fs_send_interrupt(struct fuse_iqueue *fiq, struct fuse_req *req)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* TODO interrupts.
|
|
|
|
*
|
|
|
|
* Normal fs operations on a local filesystems aren't interruptible.
|
|
|
|
* Exceptions are blocking lock operations; for example fcntl(F_SETLKW)
|
|
|
|
* with shared lock between host and guest.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
/* Count number of scatter-gather elements required */
|
2024-10-24 10:18:09 -07:00
|
|
|
static unsigned int sg_count_fuse_folios(struct fuse_folio_desc *folio_descs,
|
|
|
|
unsigned int num_folios,
|
|
|
|
unsigned int total_len)
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
unsigned int this_len;
|
|
|
|
|
2024-10-24 10:18:09 -07:00
|
|
|
for (i = 0; i < num_folios && total_len; i++) {
|
|
|
|
this_len = min(folio_descs[i].length, total_len);
|
|
|
|
total_len -= this_len;
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
/* Return the number of scatter-gather list elements required */
|
|
|
|
static unsigned int sg_count_fuse_req(struct fuse_req *req)
|
|
|
|
{
|
|
|
|
struct fuse_args *args = req->args;
|
|
|
|
struct fuse_args_pages *ap = container_of(args, typeof(*ap), args);
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
unsigned int size, total_sgs = 1 /* fuse_in_header */;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
if (args->in_numargs - args->in_pages)
|
|
|
|
total_sgs += 1;
|
|
|
|
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
if (args->in_pages) {
|
|
|
|
size = args->in_args[args->in_numargs - 1].size;
|
2024-10-24 10:18:09 -07:00
|
|
|
total_sgs += sg_count_fuse_folios(ap->descs, ap->num_folios,
|
|
|
|
size);
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
if (!test_bit(FR_ISREPLY, &req->flags))
|
|
|
|
return total_sgs;
|
|
|
|
|
|
|
|
total_sgs += 1 /* fuse_out_header */;
|
|
|
|
|
|
|
|
if (args->out_numargs - args->out_pages)
|
|
|
|
total_sgs += 1;
|
|
|
|
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
if (args->out_pages) {
|
|
|
|
size = args->out_args[args->out_numargs - 1].size;
|
2024-10-24 10:18:09 -07:00
|
|
|
total_sgs += sg_count_fuse_folios(ap->descs, ap->num_folios,
|
|
|
|
size);
|
virtiofs: calculate number of scatter-gather elements accurately
virtiofs currently maps various buffers in scatter gather list and it looks
at number of pages (ap->pages) and assumes that same number of pages will
be used both for input and output (sg_count_fuse_req()), and calculates
total number of scatterlist elements accordingly.
But looks like this assumption is not valid in all the cases. For example,
Cai Qian reported that trinity, triggers warning with virtiofs sometimes.
A closer look revealed that if one calls ioctl(fd, 0x5a004000, buf), it
will trigger following warning.
WARN_ON(out_sgs + in_sgs != total_sgs)
In this case, total_sgs = 8, out_sgs=4, in_sgs=3. Number of pages is 2
(ap->pages), but out_sgs are using both the pages but in_sgs are using
only one page. In this case, fuse_do_ioctl() sets different size values
for input and output.
args->in_args[args->in_numargs - 1].size == 6656
args->out_args[args->out_numargs - 1].size == 4096
So current method of calculating how many scatter-gather list elements
will be used is not accurate. Make calculations more precise by parsing
size and ap->descs.
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/linux-fsdevel/5ea77e9f6cb8c2db43b09fbd4158ab2d8c066a0a.camel@redhat.com/
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2020-10-06 14:53:06 -04:00
|
|
|
}
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
return total_sgs;
|
|
|
|
}
|
|
|
|
|
2024-10-24 10:18:09 -07:00
|
|
|
/* Add folios to scatter-gather list and return number of elements used */
|
|
|
|
static unsigned int sg_init_fuse_folios(struct scatterlist *sg,
|
|
|
|
struct folio **folios,
|
|
|
|
struct fuse_folio_desc *folio_descs,
|
|
|
|
unsigned int num_folios,
|
|
|
|
unsigned int total_len)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
unsigned int this_len;
|
|
|
|
|
2024-10-24 10:18:09 -07:00
|
|
|
for (i = 0; i < num_folios && total_len; i++) {
|
|
|
|
sg_init_table(&sg[i], 1);
|
|
|
|
this_len = min(folio_descs[i].length, total_len);
|
|
|
|
sg_set_folio(&sg[i], folios[i], this_len, folio_descs[i].offset);
|
|
|
|
total_len -= this_len;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add args to scatter-gather list and return number of elements used */
|
|
|
|
static unsigned int sg_init_fuse_args(struct scatterlist *sg,
|
|
|
|
struct fuse_req *req,
|
|
|
|
struct fuse_arg *args,
|
|
|
|
unsigned int numargs,
|
|
|
|
bool argpages,
|
|
|
|
void *argbuf,
|
|
|
|
unsigned int *len_used)
|
|
|
|
{
|
|
|
|
struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
|
|
|
|
unsigned int total_sgs = 0;
|
|
|
|
unsigned int len;
|
|
|
|
|
|
|
|
len = fuse_len_args(numargs - argpages, args);
|
|
|
|
if (len)
|
|
|
|
sg_init_one(&sg[total_sgs++], argbuf, len);
|
|
|
|
|
|
|
|
if (argpages)
|
2024-10-24 10:18:09 -07:00
|
|
|
total_sgs += sg_init_fuse_folios(&sg[total_sgs],
|
|
|
|
ap->folios, ap->descs,
|
|
|
|
ap->num_folios,
|
|
|
|
args[numargs - 1].size);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
if (len_used)
|
|
|
|
*len_used = len;
|
|
|
|
|
|
|
|
return total_sgs;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add a request to a virtqueue and kick the device */
|
|
|
|
static int virtio_fs_enqueue_req(struct virtio_fs_vq *fsvq,
|
2024-08-31 17:37:50 +08:00
|
|
|
struct fuse_req *req, bool in_flight,
|
|
|
|
gfp_t gfp)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
|
|
|
/* requests need at least 4 elements */
|
|
|
|
struct scatterlist *stack_sgs[6];
|
|
|
|
struct scatterlist stack_sg[ARRAY_SIZE(stack_sgs)];
|
|
|
|
struct scatterlist **sgs = stack_sgs;
|
|
|
|
struct scatterlist *sg = stack_sg;
|
|
|
|
struct virtqueue *vq;
|
|
|
|
struct fuse_args *args = req->args;
|
|
|
|
unsigned int argbuf_used = 0;
|
|
|
|
unsigned int out_sgs = 0;
|
|
|
|
unsigned int in_sgs = 0;
|
|
|
|
unsigned int total_sgs;
|
|
|
|
unsigned int i;
|
|
|
|
int ret;
|
|
|
|
bool notify;
|
2019-10-15 13:46:24 -04:00
|
|
|
struct fuse_pqueue *fpq;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
/* Does the sglist fit on the stack? */
|
|
|
|
total_sgs = sg_count_fuse_req(req);
|
|
|
|
if (total_sgs > ARRAY_SIZE(stack_sgs)) {
|
2024-08-31 17:37:50 +08:00
|
|
|
sgs = kmalloc_array(total_sgs, sizeof(sgs[0]), gfp);
|
|
|
|
sg = kmalloc_array(total_sgs, sizeof(sg[0]), gfp);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (!sgs || !sg) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Use a bounce buffer since stack args cannot be mapped */
|
2024-08-31 17:37:50 +08:00
|
|
|
ret = copy_args_to_argbuf(req, gfp);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (ret < 0)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Request elements */
|
|
|
|
sg_init_one(&sg[out_sgs++], &req->in.h, sizeof(req->in.h));
|
|
|
|
out_sgs += sg_init_fuse_args(&sg[out_sgs], req,
|
|
|
|
(struct fuse_arg *)args->in_args,
|
|
|
|
args->in_numargs, args->in_pages,
|
|
|
|
req->argbuf, &argbuf_used);
|
|
|
|
|
|
|
|
/* Reply elements */
|
|
|
|
if (test_bit(FR_ISREPLY, &req->flags)) {
|
|
|
|
sg_init_one(&sg[out_sgs + in_sgs++],
|
|
|
|
&req->out.h, sizeof(req->out.h));
|
|
|
|
in_sgs += sg_init_fuse_args(&sg[out_sgs + in_sgs], req,
|
|
|
|
args->out_args, args->out_numargs,
|
|
|
|
args->out_pages,
|
|
|
|
req->argbuf + argbuf_used, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
WARN_ON(out_sgs + in_sgs != total_sgs);
|
|
|
|
|
|
|
|
for (i = 0; i < total_sgs; i++)
|
|
|
|
sgs[i] = &sg[i];
|
|
|
|
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
|
|
|
|
if (!fsvq->connected) {
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
ret = -ENOTCONN;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
vq = fsvq->vq;
|
|
|
|
ret = virtqueue_add_sgs(vq, sgs, out_sgs, in_sgs, req, GFP_ATOMIC);
|
|
|
|
if (ret < 0) {
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
2019-10-15 13:46:24 -04:00
|
|
|
/* Request successfully sent. */
|
|
|
|
fpq = &fsvq->fud->pq;
|
|
|
|
spin_lock(&fpq->lock);
|
|
|
|
list_add_tail(&req->list, fpq->processing);
|
|
|
|
spin_unlock(&fpq->lock);
|
|
|
|
set_bit(FR_SENT, &req->flags);
|
|
|
|
/* matches barrier in request_wait_answer() */
|
|
|
|
smp_mb__after_atomic();
|
|
|
|
|
2019-10-15 13:46:26 -04:00
|
|
|
if (!in_flight)
|
|
|
|
inc_in_flight_req(fsvq);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
notify = virtqueue_kick_prepare(vq);
|
|
|
|
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
|
|
|
|
if (notify)
|
|
|
|
virtqueue_notify(vq);
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (ret < 0 && req->argbuf) {
|
|
|
|
kfree(req->argbuf);
|
|
|
|
req->argbuf = NULL;
|
|
|
|
}
|
|
|
|
if (sgs != stack_sgs) {
|
|
|
|
kfree(sgs);
|
|
|
|
kfree(sg);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2024-05-29 17:09:07 +02:00
|
|
|
static void virtio_fs_send_req(struct fuse_iqueue *fiq, struct fuse_req *req)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
unsigned int queue_id;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct virtio_fs *fs;
|
2019-10-15 13:46:22 -04:00
|
|
|
struct virtio_fs_vq *fsvq;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
int ret;
|
|
|
|
|
2024-05-29 17:09:07 +02:00
|
|
|
if (req->in.h.opcode != FUSE_NOTIFY_REPLY)
|
|
|
|
req->in.h.unique = fuse_get_unique(fiq);
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
clear_bit(FR_PENDING, &req->flags);
|
|
|
|
|
|
|
|
fs = fiq->priv;
|
2024-10-06 21:43:41 +03:00
|
|
|
queue_id = fs->mq_map[raw_smp_processor_id()];
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
pr_debug("%s: opcode %u unique %#llx nodeid %#llx in.len %u out.len %u queue_id %u\n",
|
|
|
|
__func__, req->in.h.opcode, req->in.h.unique,
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
req->in.h.nodeid, req->in.h.len,
|
virtio-fs: add multi-queue support
This commit creates a multi-queue mapping at device bring-up.
The driver first attempts to use the existing MSI-X interrupt
affinities (previously disabled), and if not present, will distribute
the request queues evenly over the CPUs.
If the latter fails as well, all CPUs are mapped to request queue zero.
When a request is handed from FUSE to the virtio-fs device driver, the
driver will use the current CPU to index into the multi-queue mapping
and determine the optimal request queue to use.
We measured the performance of this patch with the fio benchmarking
tool, increasing the number of queues results in a significant speedup
for both read and write operations, demonstrating the effectiveness
of multi-queue support.
Host:
- Dell PowerEdge R760
- CPU: Intel(R) Xeon(R) Gold 6438M, 128 cores
- VM: KVM with 32 cores
Virtio-fs device:
- BlueField-3 DPU
- CPU: ARM Cortex-A78AE, 16 cores
- One thread per queue, each busy polling on one request queue
- Each queue is 1024 descriptors deep
Workload:
- fio, sequential read or write, ioengine=libaio, numjobs=32,
4GiB file per job, iodepth=8, bs=256KiB, runtime=30s
Performance Results:
+===========================+==========+===========+
| Number of queues | Fio read | Fio write |
+===========================+==========+===========+
| 1 request queue (GiB/s) | 6.1 | 4.6 |
+---------------------------+----------+-----------+
| 8 request queues (GiB/s) | 25.8 | 10.3 |
+---------------------------+----------+-----------+
| 16 request queues (GiB/s) | 30.9 | 19.5 |
+---------------------------+----------+-----------+
| 32 request queue (GiB/s) | 33.2 | 22.6 |
+---------------------------+----------+-----------+
| Speedup | 5.5x | 5x |
+---------------=-----------+----------+-----------+
Signed-off-by: Peter-Jan Gootzen <pgootzen@nvidia.com>
Signed-off-by: Yoray Zack <yorayz@nvidia.com>
Signed-off-by: Max Gurtovoy <mgurtovoy@nvidia.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-05-01 17:38:17 +02:00
|
|
|
fuse_len_args(req->args->out_numargs, req->args->out_args),
|
|
|
|
queue_id);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2019-10-15 13:46:22 -04:00
|
|
|
fsvq = &fs->vqs[queue_id];
|
2024-08-31 17:37:50 +08:00
|
|
|
ret = virtio_fs_enqueue_req(fsvq, req, false, GFP_ATOMIC);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (ret < 0) {
|
2024-05-17 21:04:34 +02:00
|
|
|
if (ret == -ENOSPC) {
|
2019-10-15 13:46:26 -04:00
|
|
|
/*
|
|
|
|
* Virtqueue full. Retry submission from worker
|
|
|
|
* context as we might be holding fc->bg_lock.
|
|
|
|
*/
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
list_add_tail(&req->list, &fsvq->queued_reqs);
|
|
|
|
inc_in_flight_req(fsvq);
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
return;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
req->out.h.error = ret;
|
|
|
|
pr_err("virtio-fs: virtio_fs_enqueue_req() failed %d\n", ret);
|
2019-10-15 13:46:22 -04:00
|
|
|
|
|
|
|
/* Can't end request in submission context. Use a worker */
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
list_add_tail(&req->list, &fsvq->end_reqs);
|
2024-05-17 21:04:35 +02:00
|
|
|
schedule_work(&fsvq->dispatch_work);
|
2019-10-15 13:46:22 -04:00
|
|
|
spin_unlock(&fsvq->lock);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-11 20:23:59 +08:00
|
|
|
static const struct fuse_iqueue_ops virtio_fs_fiq_ops = {
|
2024-05-29 17:09:07 +02:00
|
|
|
.send_forget = virtio_fs_send_forget,
|
|
|
|
.send_interrupt = virtio_fs_send_interrupt,
|
|
|
|
.send_req = virtio_fs_send_req,
|
|
|
|
.release = virtio_fs_fiq_release,
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
};
|
|
|
|
|
2020-08-19 18:19:47 -04:00
|
|
|
static inline void virtio_fs_ctx_set_defaults(struct fuse_fs_context *ctx)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2020-08-19 18:19:47 -04:00
|
|
|
ctx->rootmode = S_IFDIR;
|
|
|
|
ctx->default_permissions = 1;
|
|
|
|
ctx->allow_other = 1;
|
|
|
|
ctx->max_read = UINT_MAX;
|
|
|
|
ctx->blksize = 512;
|
|
|
|
ctx->destroy = true;
|
|
|
|
ctx->no_control = true;
|
|
|
|
ctx->no_force_umount = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_fs_fill_super(struct super_block *sb, struct fs_context *fsc)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2020-05-06 17:44:12 +02:00
|
|
|
struct fuse_mount *fm = get_fuse_mount_super(sb);
|
|
|
|
struct fuse_conn *fc = fm->fc;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct virtio_fs *fs = fc->iq.priv;
|
2020-08-19 18:19:47 -04:00
|
|
|
struct fuse_fs_context *ctx = fsc->fs_private;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
unsigned int i;
|
|
|
|
int err;
|
|
|
|
|
2020-08-19 18:19:47 -04:00
|
|
|
virtio_fs_ctx_set_defaults(ctx);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
mutex_lock(&virtio_fs_mutex);
|
|
|
|
|
|
|
|
/* After holding mutex, make sure virtiofs device is still there.
|
|
|
|
* Though we are holding a reference to it, drive ->remove might
|
|
|
|
* still have cleaned up virtual queues. In that case bail out.
|
|
|
|
*/
|
|
|
|
err = -EINVAL;
|
|
|
|
if (list_empty(&fs->list)) {
|
|
|
|
pr_info("virtio-fs: tag <%s> not found\n", fs->tag);
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = -ENOMEM;
|
|
|
|
/* Allocate fuse_dev for hiprio and notification queues */
|
2020-05-04 14:33:15 -04:00
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
struct virtio_fs_vq *fsvq = &fs->vqs[i];
|
|
|
|
|
|
|
|
fsvq->fud = fuse_dev_alloc();
|
|
|
|
if (!fsvq->fud)
|
|
|
|
goto err_free_fuse_devs;
|
|
|
|
}
|
|
|
|
|
2020-05-04 14:33:15 -04:00
|
|
|
/* virtiofs allocates and installs its own fuse devices */
|
2020-08-19 18:19:47 -04:00
|
|
|
ctx->fudptr = NULL;
|
2021-11-25 15:05:25 +08:00
|
|
|
if (ctx->dax_mode != FUSE_DAX_NEVER) {
|
|
|
|
if (ctx->dax_mode == FUSE_DAX_ALWAYS && !fs->dax_dev) {
|
2021-02-09 17:47:54 -05:00
|
|
|
err = -EINVAL;
|
|
|
|
pr_err("virtio-fs: dax can't be enabled as filesystem"
|
|
|
|
" device does not support it.\n");
|
|
|
|
goto err_free_fuse_devs;
|
|
|
|
}
|
2020-08-19 18:19:47 -04:00
|
|
|
ctx->dax_dev = fs->dax_dev;
|
2021-02-09 17:47:54 -05:00
|
|
|
}
|
2020-08-19 18:19:47 -04:00
|
|
|
err = fuse_fill_super_common(sb, ctx);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (err < 0)
|
|
|
|
goto err_free_fuse_devs;
|
|
|
|
|
|
|
|
for (i = 0; i < fs->nvqs; i++) {
|
|
|
|
struct virtio_fs_vq *fsvq = &fs->vqs[i];
|
|
|
|
|
|
|
|
fuse_dev_install(fsvq->fud, fc);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Previous unmount will stop all queues. Start these again */
|
|
|
|
virtio_fs_start_all_queues(fs);
|
2020-05-06 17:44:12 +02:00
|
|
|
fuse_send_init(fm);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_free_fuse_devs:
|
|
|
|
virtio_fs_free_devs(fs);
|
|
|
|
err:
|
|
|
|
mutex_unlock(&virtio_fs_mutex);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
static void virtio_fs_conn_destroy(struct fuse_mount *fm)
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
{
|
2020-05-06 17:44:12 +02:00
|
|
|
struct fuse_conn *fc = fm->fc;
|
|
|
|
struct virtio_fs *vfs = fc->iq.priv;
|
|
|
|
struct virtio_fs_vq *fsvq = &vfs->vqs[VQ_HIPRIO];
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
/* Stop dax worker. Soon evict_inodes() will be called which
|
|
|
|
* will free all memory ranges belonging to all inodes.
|
2020-08-19 18:19:56 -04:00
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_FUSE_DAX))
|
|
|
|
fuse_dax_cancel_work(fc);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
/* Stop forget queue. Soon destroy will be sent */
|
|
|
|
spin_lock(&fsvq->lock);
|
|
|
|
fsvq->connected = false;
|
|
|
|
spin_unlock(&fsvq->lock);
|
|
|
|
virtio_fs_drain_all_queues(vfs);
|
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
fuse_conn_destroy(fm);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
/* fuse_conn_destroy() must have sent destroy. Stop all queues
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
* and drain one more time and free fuse devices. Freeing fuse
|
|
|
|
* devices will drop their reference on fuse_conn and that in
|
|
|
|
* turn will drop its reference on virtio_fs object.
|
|
|
|
*/
|
|
|
|
virtio_fs_stop_all_queues(vfs);
|
|
|
|
virtio_fs_drain_all_queues(vfs);
|
|
|
|
virtio_fs_free_devs(vfs);
|
|
|
|
}
|
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
static void virtio_kill_sb(struct super_block *sb)
|
|
|
|
{
|
|
|
|
struct fuse_mount *fm = get_fuse_mount_super(sb);
|
|
|
|
bool last;
|
|
|
|
|
|
|
|
/* If mount failed, we can still be called without any fc */
|
2021-10-21 10:01:38 +02:00
|
|
|
if (sb->s_root) {
|
2020-05-06 17:44:12 +02:00
|
|
|
last = fuse_mount_remove(fm);
|
|
|
|
if (last)
|
|
|
|
virtio_fs_conn_destroy(fm);
|
|
|
|
}
|
|
|
|
kill_anon_super(sb);
|
2021-10-21 10:01:38 +02:00
|
|
|
fuse_mount_destroy(fm);
|
2020-05-06 17:44:12 +02:00
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static int virtio_fs_test_super(struct super_block *sb,
|
|
|
|
struct fs_context *fsc)
|
|
|
|
{
|
2020-05-06 17:44:12 +02:00
|
|
|
struct fuse_mount *fsc_fm = fsc->s_fs_info;
|
|
|
|
struct fuse_mount *sb_fm = get_fuse_mount_super(sb);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
return fsc_fm->fc->iq.priv == sb_fm->fc->iq.priv;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static int virtio_fs_get_tree(struct fs_context *fsc)
|
|
|
|
{
|
|
|
|
struct virtio_fs *fs;
|
|
|
|
struct super_block *sb;
|
2021-03-18 08:52:22 -05:00
|
|
|
struct fuse_conn *fc = NULL;
|
2020-05-06 17:44:12 +02:00
|
|
|
struct fuse_mount *fm;
|
2021-03-18 08:52:22 -05:00
|
|
|
unsigned int virtqueue_size;
|
|
|
|
int err = -EIO;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
/* This gets a reference on virtio_fs object. This ptr gets installed
|
|
|
|
* in fc->iq->priv. Once fuse_conn is going away, it calls ->put()
|
|
|
|
* to drop the reference to this object.
|
|
|
|
*/
|
|
|
|
fs = virtio_fs_find_instance(fsc->source);
|
|
|
|
if (!fs) {
|
|
|
|
pr_info("virtio-fs: tag <%s> not found\n", fsc->source);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2021-03-18 08:52:22 -05:00
|
|
|
virtqueue_size = virtqueue_get_vring_size(fs->vqs[VQ_REQUEST].vq);
|
|
|
|
if (WARN_ON(virtqueue_size <= FUSE_HEADER_OVERHEAD))
|
|
|
|
goto out_err;
|
|
|
|
|
2020-11-11 17:22:32 +01:00
|
|
|
err = -ENOMEM;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
fc = kzalloc(sizeof(struct fuse_conn), GFP_KERNEL);
|
2020-11-11 17:22:32 +01:00
|
|
|
if (!fc)
|
|
|
|
goto out_err;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
fm = kzalloc(sizeof(struct fuse_mount), GFP_KERNEL);
|
2020-11-11 17:22:32 +01:00
|
|
|
if (!fm)
|
|
|
|
goto out_err;
|
2020-05-06 17:44:12 +02:00
|
|
|
|
2021-04-14 10:40:58 +02:00
|
|
|
fuse_conn_init(fc, fm, fsc->user_ns, &virtio_fs_fiq_ops, fs);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
fc->release = fuse_free_conn;
|
|
|
|
fc->delete_stale = true;
|
2020-04-21 14:47:15 +02:00
|
|
|
fc->auto_submounts = true;
|
2021-05-20 17:46:54 +02:00
|
|
|
fc->sync_fs = true;
|
virtiofs: use pages instead of pointer for kernel direct IO
When trying to insert a 10MB kernel module kept in a virtio-fs with cache
disabled, the following warning was reported:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 404 at mm/page_alloc.c:4551 ......
Modules linked in:
CPU: 1 PID: 404 Comm: insmod Not tainted 6.9.0-rc5+ #123
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:__alloc_pages+0x2bf/0x380
......
Call Trace:
<TASK>
? __warn+0x8e/0x150
? __alloc_pages+0x2bf/0x380
__kmalloc_large_node+0x86/0x160
__kmalloc+0x33c/0x480
virtio_fs_enqueue_req+0x240/0x6d0
virtio_fs_wake_pending_and_unlock+0x7f/0x190
queue_request_and_unlock+0x55/0x60
fuse_simple_request+0x152/0x2b0
fuse_direct_io+0x5d2/0x8c0
fuse_file_read_iter+0x121/0x160
__kernel_read+0x151/0x2d0
kernel_read+0x45/0x50
kernel_read_file+0x1a9/0x2a0
init_module_from_file+0x6a/0xe0
idempotent_init_module+0x175/0x230
__x64_sys_finit_module+0x5d/0xb0
x64_sys_call+0x1c3/0x9e0
do_syscall_64+0x3d/0xc0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
......
</TASK>
---[ end trace 0000000000000000 ]---
The warning is triggered as follows:
1) syscall finit_module() handles the module insertion and it invokes
kernel_read_file() to read the content of the module first.
2) kernel_read_file() allocates a 10MB buffer by using vmalloc() and
passes it to kernel_read(). kernel_read() constructs a kvec iter by
using iov_iter_kvec() and passes it to fuse_file_read_iter().
3) virtio-fs disables the cache, so fuse_file_read_iter() invokes
fuse_direct_io(). As for now, the maximal read size for kvec iter is
only limited by fc->max_read. For virtio-fs, max_read is UINT_MAX, so
fuse_direct_io() doesn't split the 10MB buffer. It saves the address and
the size of the 10MB-sized buffer in out_args[0] of a fuse request and
passes the fuse request to virtio_fs_wake_pending_and_unlock().
4) virtio_fs_wake_pending_and_unlock() uses virtio_fs_enqueue_req() to
queue the request. Because virtiofs need DMA-able address, so
virtio_fs_enqueue_req() uses kmalloc() to allocate a bounce buffer for
all fuse args, copies these args into the bounce buffer and passed the
physical address of the bounce buffer to virtiofsd. The total length of
these fuse args for the passed fuse request is about 10MB, so
copy_args_to_argbuf() invokes kmalloc() with a 10MB size parameter and
it triggers the warning in __alloc_pages():
if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
return NULL;
5) virtio_fs_enqueue_req() will retry the memory allocation in a
kworker, but it won't help, because kmalloc() will always return NULL
due to the abnormal size and finit_module() will hang forever.
A feasible solution is to limit the value of max_read for virtio-fs, so
the length passed to kmalloc() will be limited. However it will affect
the maximal read size for normal read. And for virtio-fs write initiated
from kernel, it has the similar problem but now there is no way to limit
fc->max_write in kernel.
So instead of limiting both the values of max_read and max_write in
kernel, introducing use_pages_for_kvec_io in fuse_conn and setting it as
true in virtiofs. When use_pages_for_kvec_io is enabled, fuse will use
pages instead of pointer to pass the KVEC_IO data.
After switching to pages for KVEC_IO data, these pages will be used for
DMA through virtio-fs. If these pages are backed by vmalloc(),
{flush|invalidate}_kernel_vmap_range() are necessary to flush or
invalidate the cache before the DMA operation. So add two new fields in
fuse_args_pages to record the base address of vmalloc area and the
condition indicating whether invalidation is needed. Perform the flush
in fuse_get_user_pages() for write operations and the invalidation in
fuse_release_user_pages() for read operations.
It may seem necessary to introduce another field in fuse_conn to
indicate that these KVEC_IO pages are used for DMA, However, considering
that virtio-fs is currently the only user of use_pages_for_kvec_io, just
reuse use_pages_for_kvec_io to indicate that these pages will be used
for DMA.
Fixes: a62a8ef9d97d ("virtio-fs: add virtiofs filesystem")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Tested-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2024-08-31 17:37:49 +08:00
|
|
|
fc->use_pages_for_kvec_io = true;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
2021-03-18 08:52:22 -05:00
|
|
|
/* Tell FUSE to split requests that exceed the virtqueue's size */
|
|
|
|
fc->max_pages_limit = min_t(unsigned int, fc->max_pages_limit,
|
|
|
|
virtqueue_size - FUSE_HEADER_OVERHEAD);
|
|
|
|
|
2020-05-06 17:44:12 +02:00
|
|
|
fsc->s_fs_info = fm;
|
2020-11-11 17:22:31 +01:00
|
|
|
sb = sget_fc(fsc, virtio_fs_test_super, set_anon_super_fc);
|
2021-10-21 10:01:39 +02:00
|
|
|
if (fsc->s_fs_info)
|
|
|
|
fuse_mount_destroy(fm);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (IS_ERR(sb))
|
|
|
|
return PTR_ERR(sb);
|
|
|
|
|
|
|
|
if (!sb->s_root) {
|
2020-08-19 18:19:47 -04:00
|
|
|
err = virtio_fs_fill_super(sb, fsc);
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (err) {
|
|
|
|
deactivate_locked_super(sb);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
sb->s_flags |= SB_ACTIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
WARN_ON(fsc->root);
|
|
|
|
fsc->root = dget(sb->s_root);
|
|
|
|
return 0;
|
2020-11-11 17:22:32 +01:00
|
|
|
|
|
|
|
out_err:
|
|
|
|
kfree(fc);
|
|
|
|
virtio_fs_put(fs);
|
|
|
|
return err;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static const struct fs_context_operations virtio_fs_context_ops = {
|
2021-08-04 13:22:58 +02:00
|
|
|
.free = virtio_fs_free_fsc,
|
2020-08-19 18:19:47 -04:00
|
|
|
.parse_param = virtio_fs_parse_param,
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
.get_tree = virtio_fs_get_tree,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int virtio_fs_init_fs_context(struct fs_context *fsc)
|
|
|
|
{
|
2020-08-19 18:19:47 -04:00
|
|
|
struct fuse_fs_context *ctx;
|
|
|
|
|
2021-06-04 18:11:53 +02:00
|
|
|
if (fsc->purpose == FS_CONTEXT_FOR_SUBMOUNT)
|
|
|
|
return fuse_init_fs_context_submount(fsc);
|
|
|
|
|
2020-08-19 18:19:47 -04:00
|
|
|
ctx = kzalloc(sizeof(struct fuse_fs_context), GFP_KERNEL);
|
|
|
|
if (!ctx)
|
|
|
|
return -ENOMEM;
|
|
|
|
fsc->fs_private = ctx;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
fsc->ops = &virtio_fs_context_ops;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct file_system_type virtio_fs_type = {
|
|
|
|
.owner = THIS_MODULE,
|
|
|
|
.name = "virtiofs",
|
|
|
|
.init_fs_context = virtio_fs_init_fs_context,
|
|
|
|
.kill_sb = virtio_kill_sb,
|
2024-09-03 17:16:26 +02:00
|
|
|
.fs_flags = FS_ALLOW_IDMAP,
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
};
|
|
|
|
|
2024-02-12 19:11:49 -05:00
|
|
|
static int virtio_fs_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
|
|
|
|
{
|
|
|
|
const struct virtio_fs *fs = container_of(kobj, struct virtio_fs, kobj);
|
|
|
|
|
|
|
|
add_uevent_var(env, "TAG=%s", fs->tag);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct kset_uevent_ops virtio_fs_uevent_ops = {
|
|
|
|
.uevent = virtio_fs_uevent,
|
|
|
|
};
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
static int __init virtio_fs_sysfs_init(void)
|
|
|
|
{
|
2024-02-12 19:11:49 -05:00
|
|
|
virtio_fs_kset = kset_create_and_add("virtiofs", &virtio_fs_uevent_ops,
|
|
|
|
fs_kobj);
|
2024-02-12 19:11:48 -05:00
|
|
|
if (!virtio_fs_kset)
|
|
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2024-02-27 10:57:56 -05:00
|
|
|
static void virtio_fs_sysfs_exit(void)
|
2024-02-12 19:11:48 -05:00
|
|
|
{
|
|
|
|
kset_unregister(virtio_fs_kset);
|
|
|
|
virtio_fs_kset = NULL;
|
|
|
|
}
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
static int __init virtio_fs_init(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
ret = virtio_fs_sysfs_init();
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
2024-02-12 19:11:48 -05:00
|
|
|
ret = register_virtio_driver(&virtio_fs_driver);
|
|
|
|
if (ret < 0)
|
|
|
|
goto sysfs_exit;
|
|
|
|
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
ret = register_filesystem(&virtio_fs_type);
|
2024-02-12 19:11:48 -05:00
|
|
|
if (ret < 0)
|
|
|
|
goto unregister_virtio_driver;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
|
|
|
|
return 0;
|
2024-02-12 19:11:48 -05:00
|
|
|
|
|
|
|
unregister_virtio_driver:
|
|
|
|
unregister_virtio_driver(&virtio_fs_driver);
|
|
|
|
sysfs_exit:
|
|
|
|
virtio_fs_sysfs_exit();
|
|
|
|
return ret;
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
module_init(virtio_fs_init);
|
|
|
|
|
|
|
|
static void __exit virtio_fs_exit(void)
|
|
|
|
{
|
|
|
|
unregister_filesystem(&virtio_fs_type);
|
|
|
|
unregister_virtio_driver(&virtio_fs_driver);
|
2024-02-12 19:11:48 -05:00
|
|
|
virtio_fs_sysfs_exit();
|
virtio-fs: add virtiofs filesystem
Add a basic file system module for virtio-fs. This does not yet contain
shared data support between host and guest or metadata coherency speedups.
However it is already significantly faster than virtio-9p.
Design Overview
===============
With the goal of designing something with better performance and local file
system semantics, a bunch of ideas were proposed.
- Use fuse protocol (instead of 9p) for communication between guest and
host. Guest kernel will be fuse client and a fuse server will run on
host to serve the requests.
- For data access inside guest, mmap portion of file in QEMU address space
and guest accesses this memory using dax. That way guest page cache is
bypassed and there is only one copy of data (on host). This will also
enable mmap(MAP_SHARED) between guests.
- For metadata coherency, there is a shared memory region which contains
version number associated with metadata and any guest changing metadata
updates version number and other guests refresh metadata on next access.
This is yet to be implemented.
How virtio-fs differs from existing approaches
==============================================
The unique idea behind virtio-fs is to take advantage of the co-location of
the virtual machine and hypervisor to avoid communication (vmexits).
DAX allows file contents to be accessed without communication with the
hypervisor. The shared memory region for metadata avoids communication in
the common case where metadata is unchanged.
By replacing expensive communication with cheaper shared memory accesses,
we expect to achieve better performance than approaches based on network
file system protocols. In addition, this also makes it easier to achieve
local file system semantics (coherency).
These techniques are not applicable to network file system protocols since
the communications channel is bypassed by taking advantage of shared memory
on a local machine. This is why we decided to build virtio-fs rather than
focus on 9P or NFS.
Caching Modes
=============
Like virtio-9p, different caching modes are supported which determine the
coherency level as well. The “cache=FOO” and “writeback” options control
the level of coherence between the guest and host filesystems.
- cache=none
metadata, data and pathname lookup are not cached in guest. They are
always fetched from host and any changes are immediately pushed to host.
- cache=always
metadata, data and pathname lookup are cached in guest and never expire.
- cache=auto
metadata and pathname lookup cache expires after a configured amount of
time (default is 1 second). Data is cached while the file is open
(close to open consistency).
- writeback/no_writeback
These options control the writeback strategy. If writeback is disabled,
then normal writes will immediately be synchronized with the host fs.
If writeback is enabled, then writes may be cached in the guest until
the file is closed or an fsync(2) performed. This option has no effect
on mmap-ed writes or writes going through the DAX mechanism.
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-12 09:41:17 +01:00
|
|
|
}
|
|
|
|
module_exit(virtio_fs_exit);
|
|
|
|
|
|
|
|
MODULE_AUTHOR("Stefan Hajnoczi <stefanha@redhat.com>");
|
|
|
|
MODULE_DESCRIPTION("Virtio Filesystem");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS_FS(KBUILD_MODNAME);
|
|
|
|
MODULE_DEVICE_TABLE(virtio, id_table);
|