License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* S390 version
|
2012-07-20 11:15:04 +02:00
|
|
|
* Copyright IBM Corp. 1999
|
2005-04-16 15:20:36 -07:00
|
|
|
* Author(s): Hartmut Penner (hp@de.ibm.com),
|
|
|
|
* Martin Schwidefsky (schwidefsky@de.ibm.com)
|
|
|
|
*
|
|
|
|
* Derived from "include/asm-i386/processor.h"
|
|
|
|
* Copyright (C) 1994, Linus Torvalds
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __ASM_S390_PROCESSOR_H
|
|
|
|
#define __ASM_S390_PROCESSOR_H
|
|
|
|
|
2019-07-16 16:27:01 -07:00
|
|
|
#include <linux/bits.h>
|
2015-10-06 16:23:39 +02:00
|
|
|
|
2020-02-20 12:09:36 +01:00
|
|
|
#define CIF_NOHZ_DELAY 2 /* delay HZ disable for a tick */
|
|
|
|
#define CIF_ENABLED_WAIT 5 /* in enabled wait state */
|
|
|
|
#define CIF_MCCK_GUEST 6 /* machine check happening in guest */
|
|
|
|
#define CIF_DEDICATED_CPU 7 /* this CPU is dedicated */
|
2014-04-15 12:55:07 +02:00
|
|
|
|
2019-07-16 16:27:01 -07:00
|
|
|
#define _CIF_NOHZ_DELAY BIT(CIF_NOHZ_DELAY)
|
|
|
|
#define _CIF_ENABLED_WAIT BIT(CIF_ENABLED_WAIT)
|
|
|
|
#define _CIF_MCCK_GUEST BIT(CIF_MCCK_GUEST)
|
|
|
|
#define _CIF_DEDICATED_CPU BIT(CIF_DEDICATED_CPU)
|
2014-04-15 12:55:07 +02:00
|
|
|
|
2021-08-24 15:30:21 +02:00
|
|
|
#define RESTART_FLAG_CTLREGS _AC(1 << 0, U)
|
|
|
|
|
2012-09-05 13:26:11 +02:00
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
|
2019-05-17 12:50:42 +02:00
|
|
|
#include <linux/cpumask.h>
|
2008-12-25 13:39:16 +01:00
|
|
|
#include <linux/linkage.h>
|
2012-03-28 18:30:02 +01:00
|
|
|
#include <linux/irqflags.h>
|
2024-02-03 11:45:02 +01:00
|
|
|
#include <asm/fpu-types.h>
|
2009-09-11 10:29:04 +02:00
|
|
|
#include <asm/cpu.h>
|
2009-04-14 15:36:16 +02:00
|
|
|
#include <asm/page.h>
|
2005-04-16 15:20:36 -07:00
|
|
|
#include <asm/ptrace.h>
|
2009-04-14 15:36:16 +02:00
|
|
|
#include <asm/setup.h>
|
2012-07-31 10:52:05 +02:00
|
|
|
#include <asm/runtime_instr.h>
|
2020-11-21 11:14:56 +01:00
|
|
|
#include <asm/irqflags.h>
|
2024-04-30 16:29:59 +02:00
|
|
|
#include <asm/alternative.h>
|
2024-10-22 14:05:55 +02:00
|
|
|
#include <asm/fault.h>
|
2020-11-21 11:14:56 +01:00
|
|
|
|
2024-07-16 09:26:15 +02:00
|
|
|
struct pcpu {
|
|
|
|
unsigned long ec_mask; /* bit mask for ec_xxx functions */
|
|
|
|
unsigned long ec_clk; /* sigp timestamp for ec_xxx */
|
|
|
|
unsigned long flags; /* per CPU flags */
|
2024-08-12 13:39:33 +02:00
|
|
|
unsigned long capacity; /* cpu capacity for scheduler */
|
2024-07-16 09:26:15 +02:00
|
|
|
signed char state; /* physical cpu state */
|
|
|
|
signed char polarization; /* physical polarization */
|
|
|
|
u16 address; /* physical cpu address */
|
|
|
|
};
|
|
|
|
|
|
|
|
DECLARE_PER_CPU(struct pcpu, pcpu_devices);
|
|
|
|
|
2021-01-18 09:35:38 +01:00
|
|
|
typedef long (*sys_call_ptr_t)(struct pt_regs *regs);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2024-07-16 09:26:15 +02:00
|
|
|
static __always_inline struct pcpu *this_pcpu(void)
|
|
|
|
{
|
|
|
|
return (struct pcpu *)(get_lowcore()->pcpu);
|
|
|
|
}
|
|
|
|
|
2023-02-06 14:49:41 +01:00
|
|
|
static __always_inline void set_cpu_flag(int flag)
|
2014-04-15 12:55:07 +02:00
|
|
|
{
|
2024-07-16 09:26:15 +02:00
|
|
|
this_pcpu()->flags |= (1UL << flag);
|
2014-04-15 12:55:07 +02:00
|
|
|
}
|
|
|
|
|
2023-02-06 14:49:41 +01:00
|
|
|
static __always_inline void clear_cpu_flag(int flag)
|
2014-04-15 12:55:07 +02:00
|
|
|
{
|
2024-07-16 09:26:15 +02:00
|
|
|
this_pcpu()->flags &= ~(1UL << flag);
|
2014-04-15 12:55:07 +02:00
|
|
|
}
|
|
|
|
|
2023-02-13 12:35:17 +01:00
|
|
|
static __always_inline bool test_cpu_flag(int flag)
|
2014-04-15 12:55:07 +02:00
|
|
|
{
|
2024-07-16 09:26:15 +02:00
|
|
|
return this_pcpu()->flags & (1UL << flag);
|
2014-04-15 12:55:07 +02:00
|
|
|
}
|
|
|
|
|
2023-02-13 12:35:18 +01:00
|
|
|
static __always_inline bool test_and_set_cpu_flag(int flag)
|
|
|
|
{
|
|
|
|
if (test_cpu_flag(flag))
|
|
|
|
return true;
|
|
|
|
set_cpu_flag(flag);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __always_inline bool test_and_clear_cpu_flag(int flag)
|
|
|
|
{
|
|
|
|
if (!test_cpu_flag(flag))
|
|
|
|
return false;
|
|
|
|
clear_cpu_flag(flag);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-11-19 11:09:45 +01:00
|
|
|
/*
|
|
|
|
* Test CIF flag of another CPU. The caller needs to ensure that
|
|
|
|
* CPU hotplug can not happen, e.g. by disabling preemption.
|
|
|
|
*/
|
2023-02-13 12:35:17 +01:00
|
|
|
static __always_inline bool test_cpu_flag_of(int flag, int cpu)
|
2015-11-19 11:09:45 +01:00
|
|
|
{
|
2024-07-16 09:26:15 +02:00
|
|
|
return per_cpu(pcpu_devices, cpu).flags & (1UL << flag);
|
2015-11-19 11:09:45 +01:00
|
|
|
}
|
|
|
|
|
2014-09-30 17:37:52 +02:00
|
|
|
#define arch_needs_cpu() test_cpu_flag(CIF_NOHZ_DELAY)
|
|
|
|
|
2009-09-11 10:29:04 +02:00
|
|
|
static inline void get_cpu_id(struct cpuid *ptr)
|
2007-02-21 10:55:18 +01:00
|
|
|
{
|
2010-02-26 22:37:31 +01:00
|
|
|
asm volatile("stidp %0" : "=Q" (*ptr));
|
2007-02-21 10:55:18 +01:00
|
|
|
}
|
|
|
|
|
2024-04-30 16:29:59 +02:00
|
|
|
static __always_inline unsigned long get_cpu_timer(void)
|
|
|
|
{
|
|
|
|
unsigned long timer;
|
|
|
|
|
|
|
|
asm volatile("stpt %[timer]" : [timer] "=Q" (timer));
|
|
|
|
return timer;
|
|
|
|
}
|
|
|
|
|
2016-04-14 12:35:22 +02:00
|
|
|
void s390_adjust_jiffies(void);
|
|
|
|
void s390_update_cpu_mhz(void);
|
|
|
|
void cpu_detect_mhz_feature(void);
|
|
|
|
|
2011-10-30 15:17:13 +01:00
|
|
|
extern const struct seq_operations cpuinfo_op;
|
2012-09-06 15:48:11 -04:00
|
|
|
extern void execve_tail(void);
|
2024-04-29 14:28:48 +02:00
|
|
|
unsigned long vdso_text_size(void);
|
2022-04-06 08:35:26 +02:00
|
|
|
unsigned long vdso_size(void);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
2009-03-18 13:27:36 +01:00
|
|
|
* User space process size: 2GB for 31 bit, 4TB or 8PT for 64 bit.
|
2005-04-16 15:20:36 -07:00
|
|
|
*/
|
|
|
|
|
2021-12-28 14:47:26 +08:00
|
|
|
#define TASK_SIZE (test_thread_flag(TIF_31BIT) ? \
|
2020-03-19 13:44:49 +01:00
|
|
|
_REGION3_SIZE : TASK_SIZE_MAX)
|
2008-02-09 18:24:36 +01:00
|
|
|
#define TASK_UNMAPPED_BASE (test_thread_flag(TIF_31BIT) ? \
|
2020-03-19 13:44:49 +01:00
|
|
|
(_REGION3_SIZE >> 1) : (_REGION2_SIZE >> 1))
|
2017-04-24 18:19:10 +02:00
|
|
|
#define TASK_SIZE_MAX (-PAGE_SIZE)
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2022-04-06 08:44:49 +02:00
|
|
|
#define VDSO_BASE (STACK_TOP + PAGE_SIZE)
|
|
|
|
#define VDSO_LIMIT (test_thread_flag(TIF_31BIT) ? _REGION3_SIZE : _REGION2_SIZE)
|
|
|
|
#define STACK_TOP (VDSO_LIMIT - vdso_size() - PAGE_SIZE)
|
|
|
|
#define STACK_TOP_MAX (_REGION2_SIZE - vdso_size() - PAGE_SIZE)
|
2008-02-08 04:19:26 -08:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
#define HAVE_ARCH_PICK_MMAP_LAYOUT
|
|
|
|
|
2023-04-05 15:08:41 +02:00
|
|
|
#define __stackleak_poison __stackleak_poison
|
|
|
|
static __always_inline void __stackleak_poison(unsigned long erase_low,
|
|
|
|
unsigned long erase_high,
|
|
|
|
unsigned long poison)
|
|
|
|
{
|
|
|
|
unsigned long tmp, count;
|
|
|
|
|
|
|
|
count = erase_high - erase_low;
|
|
|
|
if (!count)
|
|
|
|
return;
|
|
|
|
asm volatile(
|
|
|
|
" cghi %[count],8\n"
|
|
|
|
" je 2f\n"
|
|
|
|
" aghi %[count],-(8+1)\n"
|
|
|
|
" srlg %[tmp],%[count],8\n"
|
|
|
|
" ltgr %[tmp],%[tmp]\n"
|
|
|
|
" jz 1f\n"
|
|
|
|
"0: stg %[poison],0(%[addr])\n"
|
|
|
|
" mvc 8(256-8,%[addr]),0(%[addr])\n"
|
|
|
|
" la %[addr],256(%[addr])\n"
|
|
|
|
" brctg %[tmp],0b\n"
|
|
|
|
"1: stg %[poison],0(%[addr])\n"
|
|
|
|
" larl %[tmp],3f\n"
|
|
|
|
" ex %[count],0(%[tmp])\n"
|
|
|
|
" j 4f\n"
|
|
|
|
"2: stg %[poison],0(%[addr])\n"
|
|
|
|
" j 4f\n"
|
|
|
|
"3: mvc 8(1,%[addr]),0(%[addr])\n"
|
|
|
|
"4:\n"
|
|
|
|
: [addr] "+&a" (erase_low), [count] "+&d" (count), [tmp] "=&a" (tmp)
|
|
|
|
: [poison] "d" (poison)
|
|
|
|
: "memory", "cc"
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Thread structure
|
|
|
|
*/
|
|
|
|
struct thread_struct {
|
|
|
|
unsigned int acrs[NUM_ACRS];
|
2020-11-21 11:14:56 +01:00
|
|
|
unsigned long ksp; /* kernel stack pointer */
|
|
|
|
unsigned long user_timer; /* task cputime in user space */
|
|
|
|
unsigned long guest_timer; /* task cputime in kvm guest */
|
|
|
|
unsigned long system_timer; /* task cputime in kernel space */
|
|
|
|
unsigned long hardirq_timer; /* task cputime in hardirq context */
|
|
|
|
unsigned long softirq_timer; /* task cputime in softirq context */
|
|
|
|
const sys_call_ptr_t *sys_call_table; /* system call table address */
|
2024-10-22 14:05:55 +02:00
|
|
|
union teid gmap_teid; /* address and flags of last gmap fault */
|
2020-11-21 11:14:56 +01:00
|
|
|
unsigned int gmap_int_code; /* int code of last gmap fault */
|
2024-02-03 11:45:18 +01:00
|
|
|
int ufpu_flags; /* user fpu flags */
|
2024-02-03 11:45:12 +01:00
|
|
|
int kfpu_flags; /* kernel fpu flags */
|
2020-11-21 11:14:56 +01:00
|
|
|
|
2016-11-08 11:11:02 +01:00
|
|
|
/* Per-thread information related to debugging */
|
2020-11-21 11:14:56 +01:00
|
|
|
struct per_regs per_user; /* User specified PER registers */
|
|
|
|
struct per_event per_event; /* Cause of the last PER trap */
|
|
|
|
unsigned long per_flags; /* Flags to control debug behavior */
|
|
|
|
unsigned int system_call; /* system call number in signal */
|
|
|
|
unsigned long last_break; /* last breaking-event-address. */
|
|
|
|
/* pfault_wait is used to block the process on a pfault event */
|
2005-04-16 15:20:36 -07:00
|
|
|
unsigned long pfault_wait;
|
2011-05-23 10:24:34 +02:00
|
|
|
struct list_head list;
|
2012-07-31 10:52:05 +02:00
|
|
|
/* cpu runtime instrumentation */
|
|
|
|
struct runtime_instr_cb *ri_cb;
|
2020-11-21 11:14:56 +01:00
|
|
|
struct gs_cb *gs_cb; /* Current guarded storage cb */
|
|
|
|
struct gs_cb *gs_bc_cb; /* Broadcast guarded storage cb */
|
2021-05-05 22:01:16 +02:00
|
|
|
struct pgm_tdb trap_tdb; /* Transaction abort diagnose block */
|
2024-02-03 11:45:10 +01:00
|
|
|
struct fpu ufpu; /* User FP and VX register save area */
|
2024-02-03 11:45:12 +01:00
|
|
|
struct fpu kfpu; /* Kernel FP and VX register save area */
|
2005-04-16 15:20:36 -07:00
|
|
|
};
|
|
|
|
|
2013-07-02 22:58:26 +02:00
|
|
|
/* Flag to disable transactions. */
|
|
|
|
#define PER_FLAG_NO_TE 1UL
|
|
|
|
/* Flag to enable random transaction aborts. */
|
|
|
|
#define PER_FLAG_TE_ABORT_RAND 2UL
|
|
|
|
/* Flag to specify random transaction abort mode:
|
|
|
|
* - abort each transaction at a random instruction before TEND if set.
|
|
|
|
* - abort random transactions at a random instruction if cleared.
|
|
|
|
*/
|
|
|
|
#define PER_FLAG_TE_ABORT_RAND_TEND 4UL
|
2012-07-31 11:03:04 +02:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
typedef struct thread_struct thread_struct;
|
|
|
|
|
|
|
|
#define ARCH_MIN_TASKALIGN 8
|
|
|
|
|
2007-10-22 12:52:45 +02:00
|
|
|
#define INIT_THREAD { \
|
|
|
|
.ksp = sizeof(init_stack) + (unsigned long) &init_stack, \
|
2020-01-22 13:38:22 +01:00
|
|
|
.last_break = 1, \
|
2007-10-22 12:52:45 +02:00
|
|
|
}
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Do necessary setup to start up a new thread.
|
|
|
|
*/
|
2011-10-30 15:16:50 +01:00
|
|
|
#define start_thread(regs, new_psw, new_stackp) do { \
|
2013-09-24 09:14:56 +02:00
|
|
|
regs->psw.mask = PSW_USER_BITS | PSW_MASK_EA | PSW_MASK_BA; \
|
2016-01-18 12:49:44 +01:00
|
|
|
regs->psw.addr = new_psw; \
|
2011-10-30 15:16:50 +01:00
|
|
|
regs->gprs[15] = new_stackp; \
|
2012-09-06 15:48:11 -04:00
|
|
|
execve_tail(); \
|
2008-07-14 09:58:54 +02:00
|
|
|
} while (0)
|
|
|
|
|
2011-10-30 15:16:50 +01:00
|
|
|
#define start_thread31(regs, new_psw, new_stackp) do { \
|
2013-09-24 09:14:56 +02:00
|
|
|
regs->psw.mask = PSW_USER_BITS | PSW_MASK_BA; \
|
2016-01-18 12:49:44 +01:00
|
|
|
regs->psw.addr = new_psw; \
|
2011-10-30 15:16:50 +01:00
|
|
|
regs->gprs[15] = new_stackp; \
|
2012-09-06 15:48:11 -04:00
|
|
|
execve_tail(); \
|
2005-04-16 15:20:36 -07:00
|
|
|
} while (0)
|
|
|
|
|
|
|
|
struct task_struct;
|
|
|
|
struct mm_struct;
|
2008-02-08 04:18:33 -08:00
|
|
|
struct seq_file;
|
2017-02-17 08:13:28 +01:00
|
|
|
struct pt_regs;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2017-02-17 08:13:28 +01:00
|
|
|
void show_registers(struct pt_regs *regs);
|
2015-02-12 13:08:27 +01:00
|
|
|
void show_cacheinfo(struct seq_file *m);
|
2012-08-29 14:12:20 +02:00
|
|
|
|
2017-09-11 11:24:23 +02:00
|
|
|
/* Free guarded storage control block */
|
|
|
|
void guarded_storage_release(struct task_struct *tsk);
|
2020-11-21 11:14:56 +01:00
|
|
|
void gs_load_bc_cb(struct pt_regs *regs);
|
2016-01-26 14:10:34 +01:00
|
|
|
|
2021-09-29 15:02:14 -07:00
|
|
|
unsigned long __get_wchan(struct task_struct *p);
|
2006-01-12 01:05:49 -08:00
|
|
|
#define task_pt_regs(tsk) ((struct pt_regs *) \
|
2006-01-12 01:05:50 -08:00
|
|
|
(task_stack_page(tsk) + THREAD_SIZE) - 1)
|
2006-01-12 01:05:49 -08:00
|
|
|
#define KSTK_EIP(tsk) (task_pt_regs(tsk)->psw.addr)
|
|
|
|
#define KSTK_ESP(tsk) (task_pt_regs(tsk)->gprs[15])
|
2005-04-16 15:20:36 -07:00
|
|
|
|
2013-10-16 09:58:01 +02:00
|
|
|
/* Has task runtime instrumentation enabled ? */
|
|
|
|
#define is_ri_task(tsk) (!!(tsk)->thread.ri_cb)
|
|
|
|
|
2022-11-04 12:06:47 +01:00
|
|
|
/* avoid using global register due to gcc bug in versions < 8.4 */
|
|
|
|
#define current_stack_pointer (__current_stack_pointer())
|
|
|
|
|
|
|
|
static __always_inline unsigned long __current_stack_pointer(void)
|
|
|
|
{
|
|
|
|
unsigned long sp;
|
|
|
|
|
|
|
|
asm volatile("lgr %0,15" : "=d" (sp));
|
|
|
|
return sp;
|
|
|
|
}
|
2016-01-31 17:06:16 +01:00
|
|
|
|
2023-03-27 11:37:27 +02:00
|
|
|
static __always_inline bool on_thread_stack(void)
|
|
|
|
{
|
2024-06-10 13:45:25 +02:00
|
|
|
unsigned long ksp = get_lowcore()->kernel_stack;
|
2023-03-27 11:37:27 +02:00
|
|
|
|
|
|
|
return !((ksp ^ current_stack_pointer) & ~(THREAD_SIZE - 1));
|
|
|
|
}
|
|
|
|
|
2021-06-10 17:50:25 +02:00
|
|
|
static __always_inline unsigned short stap(void)
|
2012-03-28 18:30:02 +01:00
|
|
|
{
|
|
|
|
unsigned short cpu_address;
|
|
|
|
|
2017-11-13 16:37:33 +01:00
|
|
|
asm volatile("stap %0" : "=Q" (cpu_address));
|
2012-03-28 18:30:02 +01:00
|
|
|
return cpu_address;
|
|
|
|
}
|
|
|
|
|
2016-10-25 11:03:13 +02:00
|
|
|
#define cpu_relax() barrier()
|
2013-09-28 11:23:59 +02:00
|
|
|
|
2016-04-14 12:35:22 +02:00
|
|
|
#define ECAG_CACHE_ATTRIBUTE 0
|
|
|
|
#define ECAG_CPU_ATTRIBUTE 1
|
|
|
|
|
|
|
|
static inline unsigned long __ecag(unsigned int asi, unsigned char parm)
|
|
|
|
{
|
|
|
|
unsigned long val;
|
|
|
|
|
2022-02-25 10:39:02 +01:00
|
|
|
asm volatile("ecag %0,0,0(%1)" : "=d" (val) : "a" (asi << 8 | parm));
|
2016-04-14 12:35:22 +02:00
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
2007-06-19 13:10:06 +02:00
|
|
|
static inline void psw_set_key(unsigned int key)
|
|
|
|
{
|
|
|
|
asm volatile("spka 0(%0)" : : "d" (key));
|
|
|
|
}
|
|
|
|
|
2005-06-25 14:55:30 -07:00
|
|
|
/*
|
|
|
|
* Set PSW to specified value.
|
|
|
|
*/
|
|
|
|
static inline void __load_psw(psw_t psw)
|
|
|
|
{
|
2010-02-26 22:37:31 +01:00
|
|
|
asm volatile("lpswe %0" : : "Q" (psw) : "cc");
|
2005-06-25 14:55:30 -07:00
|
|
|
}
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Set PSW mask to specified value, while leaving the
|
|
|
|
* PSW addr pointing to the next instruction.
|
|
|
|
*/
|
2021-06-10 17:50:25 +02:00
|
|
|
static __always_inline void __load_psw_mask(unsigned long mask)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2024-04-30 16:30:01 +02:00
|
|
|
psw_t psw __uninitialized;
|
2005-04-16 15:20:36 -07:00
|
|
|
unsigned long addr;
|
2005-06-25 14:55:30 -07:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
psw.mask = mask;
|
|
|
|
|
2006-09-28 16:56:43 +02:00
|
|
|
asm volatile(
|
|
|
|
" larl %0,1f\n"
|
2019-04-08 23:26:22 +02:00
|
|
|
" stg %0,%1\n"
|
|
|
|
" lpswe %2\n"
|
2005-04-16 15:20:36 -07:00
|
|
|
"1:"
|
2019-04-08 23:26:22 +02:00
|
|
|
: "=&d" (addr), "=Q" (psw.addr) : "Q" (psw) : "memory", "cc");
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
2011-10-30 15:16:48 +01:00
|
|
|
|
2015-07-08 10:20:04 +02:00
|
|
|
/*
|
|
|
|
* Extract current PSW mask
|
|
|
|
*/
|
|
|
|
static inline unsigned long __extract_psw(void)
|
|
|
|
{
|
|
|
|
unsigned int reg1, reg2;
|
|
|
|
|
|
|
|
asm volatile("epsw %0,%1" : "=d" (reg1), "=a" (reg2));
|
|
|
|
return (((unsigned long) reg1) << 32) | ((unsigned long) reg2);
|
|
|
|
}
|
|
|
|
|
2023-12-01 14:09:31 +01:00
|
|
|
static inline unsigned long __local_mcck_save(void)
|
2015-10-12 11:54:03 +02:00
|
|
|
{
|
2023-12-01 14:09:31 +01:00
|
|
|
unsigned long mask = __extract_psw();
|
|
|
|
|
|
|
|
__load_psw_mask(mask & ~PSW_MASK_MCHECK);
|
|
|
|
return mask & PSW_MASK_MCHECK;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define local_mcck_save(mflags) \
|
|
|
|
do { \
|
|
|
|
typecheck(unsigned long, mflags); \
|
|
|
|
mflags = __local_mcck_save(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
static inline void local_mcck_restore(unsigned long mflags)
|
|
|
|
{
|
|
|
|
unsigned long mask = __extract_psw();
|
|
|
|
|
|
|
|
mask &= ~PSW_MASK_MCHECK;
|
|
|
|
__load_psw_mask(mask | mflags);
|
2015-10-12 11:54:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void local_mcck_disable(void)
|
|
|
|
{
|
2023-12-01 14:09:31 +01:00
|
|
|
__local_mcck_save();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void local_mcck_enable(void)
|
|
|
|
{
|
|
|
|
__load_psw_mask(__extract_psw() | PSW_MASK_MCHECK);
|
2015-10-12 11:54:03 +02:00
|
|
|
}
|
|
|
|
|
2011-10-30 15:16:48 +01:00
|
|
|
/*
|
|
|
|
* Rewind PSW instruction address by specified number of bytes.
|
|
|
|
*/
|
|
|
|
static inline unsigned long __rewind_psw(psw_t psw, unsigned long ilc)
|
|
|
|
{
|
|
|
|
unsigned long mask;
|
|
|
|
|
|
|
|
mask = (psw.mask & PSW_MASK_EA) ? -1UL :
|
|
|
|
(psw.mask & PSW_MASK_BA) ? (1UL << 31) - 1 :
|
|
|
|
(1UL << 24) - 1;
|
|
|
|
return (psw.addr - ilc) & mask;
|
|
|
|
}
|
2014-10-01 10:57:57 +02:00
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/*
|
|
|
|
* Function to drop a processor into disabled wait state
|
|
|
|
*/
|
2019-11-22 12:08:44 +01:00
|
|
|
static __always_inline void __noreturn disabled_wait(void)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
2015-10-12 12:28:28 +02:00
|
|
|
psw_t psw;
|
|
|
|
|
|
|
|
psw.mask = PSW_MASK_BASE | PSW_MASK_WAIT | PSW_MASK_BA | PSW_MASK_EA;
|
2019-04-30 12:33:45 +02:00
|
|
|
psw.addr = _THIS_IP_;
|
2015-10-12 12:28:28 +02:00
|
|
|
__load_psw(psw);
|
2008-12-25 13:39:16 +01:00
|
|
|
while (1);
|
2005-04-16 15:20:36 -07:00
|
|
|
}
|
|
|
|
|
2006-09-25 23:31:33 -07:00
|
|
|
#define ARCH_LOW_ADDRESS_LIMIT 0x7fffffffUL
|
|
|
|
|
2020-11-21 11:14:56 +01:00
|
|
|
static __always_inline bool regs_irqs_disabled(struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
return arch_irqs_disabled_flags(regs->psw.mask);
|
|
|
|
}
|
|
|
|
|
2024-04-30 16:29:59 +02:00
|
|
|
static __always_inline void bpon(void)
|
|
|
|
{
|
2024-07-16 13:50:55 +02:00
|
|
|
asm volatile(ALTERNATIVE("nop", ".insn rrf,0xb2e80000,0,0,13,0", ALT_SPEC(82)));
|
2024-04-30 16:29:59 +02:00
|
|
|
}
|
|
|
|
|
2012-09-05 13:26:11 +02:00
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
|
|
|
|
#endif /* __ASM_S390_PROCESSOR_H */
|