## jarowinkler(a, b, t) Computes the jaro-winkler distance for two given arrays. NOTE: this implementation is based on the one found in the Lucene Java library. ### Examples: wuzzy.jarowinkler( ['D', 'W', 'A', 'Y', 'N', 'E'], ['D', 'U', 'A', 'N', 'E'] ); // -> 0.840 wuzzy.jarowinkler( 'DWAYNE', 'DUANE' ); // -> 0.840 ### Params: * **String|Array** *a* - the first string/array to compare * **String|Array** *b* - the second string/array to compare * **Number** *t* - the threshold for adding ### Return: * **Number** returns the jaro-winkler distance for ## levenshtein(a, b, w) Calculates the levenshtein distance for the two provided arrays and returns the normalized distance. ### Examples: wuzzy.levenshtein( ['D', 'W', 'A', 'Y', 'N', 'E'], ['D', 'U', 'A', 'N', 'E'] ); // -> 0.66666667 or wuzzy.levenshtein( 'DWAYNE', 'DUANE' ); // -> 0.66666667 ### Params: * **String|Array** *a* - the first string/array to compare * **String|Array** *b* - the second string/array to compare * **Object** *w* - (optional) a set of key/value pairs ### Return: * **Number** returns the levenshtein distance for ## ngram(a, b, ng) Computes the n-gram edit distance for any n (defaults to 2). NOTE: this implementation is based on the one found in the Lucene Java library. ### Examples: wuzzy.ngram( ['D', 'W', 'A', 'Y', 'N', 'E'], ['D', 'U', 'A', 'N', 'E'] ); // -> 0.583 or wuzzy.ngram( 'DWAYNE', 'DUANE' ); // -> 0.583 ### Params: * **String|Array** *a* - the first string/array to compare * **String|Array** *b* - the second string/array to compare * **Number** *ng* - (optional) the n-gram size to work with (defaults to 2) ### Return: * **Number** returns the ngram distance for ## pearson(a, b) Calculates a pearson correlation score for two given objects (compares values of similar keys). ### Examples: wuzzy.pearson( {a: 2.5, b: 3.5, c: 3.0, d: 3.5, e: 2.5, f: 3.0}, {a: 3.0, b: 3.5, c: 1.5, d: 5.0, e: 3.5, f: 3.0, g: 5.0} ); // -> 0.396 or wuzzy.pearson( {a: 2.5, b: 1}, {o: 3.5, e: 6.0} ); // -> 1.0 ### Params: * **Object** *a* - the first object to compare * **Object** *b* - the second object to compare ### Return: * **Number** returns the pearson correlation for ## jaccard(a, b) Calculates the jaccard index for the two provided arrays. ### Examples: wuzzy.jaccard( ['a', 'b', 'c', 'd', 'e', 'f'], ['a', 'e', 'f'] ); // -> 0.5 or wuzzy.jaccard( 'abcdef', 'aef' ); // -> 0.5 or wuzzy.jaccard( ['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe'], ['babe'] ); // -> 0.16666667 ### Params: * **String|Array** *a* - the first string/array to compare * **String|Array** *b* - the second string/array to compare ### Return: * **Number** returns the jaccard index for ## tanimoto(a, b) Calculates the tanimoto distance (weighted jaccard index). ### Examples: wuzzy.tanimoto( ['a', 'b', 'c', 'd', 'd', 'e', 'f', 'f'], ['a', 'e', 'f'] ); // -> 0.375 or wuzzy.tanimoto( 'abcddeff', 'aef' ); // -> 0.375 or wuzzy.tanimoto( ['abe', 'babe', 'cabe', 'dabe', 'eabe', 'fabe', 'fabe'], ['babe'] ); // -> 0.14285714 ### Params: * **String|Array** *a* - the first string/array to compare * **String|Array** *b* - the second string/array to compare ### Return: * **Number** returns the tanimoto distance for