NewsBlur/utils/feed_functions.py

248 lines
8.3 KiB
Python
Raw Normal View History

2009-06-16 03:08:55 +00:00
import datetime
import threading
import sys
import urllib2
import lxml.html
from PIL import ImageFile
from django.utils.translation import ungettext
from utils import feedfinder
2009-06-16 03:08:55 +00:00
class TimeoutError(Exception): pass
def timelimit(timeout):
"""borrowed from web.py"""
def _1(function):
def _2(*args, **kw):
class Dispatch(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = None
self.error = None
self.setDaemon(True)
self.start()
def run(self):
try:
self.result = function(*args, **kw)
except:
self.error = sys.exc_info()
c = Dispatch()
c.join(timeout)
if c.isAlive():
raise TimeoutError, 'took too long'
if c.error:
raise c.error[0], c.error[1]
return c.result
return _2
return _1
2009-06-16 03:08:55 +00:00
def encode(tstr):
""" Encodes a unicode string in utf-8
"""
if not tstr:
return ''
# this is _not_ pretty, but it works
try:
return tstr.encode('utf-8', "xmlcharrefreplace")
except UnicodeDecodeError:
# it's already UTF8.. sigh
return tstr.decode('utf-8').encode('utf-8')
# From: http://www.poromenos.org/node/87
def levenshtein_distance(first, second):
"""Find the Levenshtein distance between two strings."""
if len(first) > len(second):
first, second = second, first
if len(second) == 0:
return len(first)
first_length = len(first) + 1
second_length = len(second) + 1
distance_matrix = [[0] * second_length for x in range(first_length)]
for i in range(first_length):
distance_matrix[i][0] = i
for j in range(second_length):
distance_matrix[0][j]=j
for i in xrange(1, first_length):
for j in range(1, second_length):
deletion = distance_matrix[i-1][j] + 1
insertion = distance_matrix[i][j-1] + 1
substitution = distance_matrix[i-1][j-1]
if first[i-1] != second[j-1]:
substitution += 1
distance_matrix[i][j] = min(insertion, deletion, substitution)
return distance_matrix[first_length-1][second_length-1]
def fetch_address_from_page(url, existing_feed=None):
from apps.rss_feeds.models import Feed, DuplicateFeed
feed_finder_url = feedfinder.feed(url)
if feed_finder_url:
if existing_feed:
if Feed.objects.filter(feed_address=feed_finder_url):
return None
existing_feed.feed_address = feed_finder_url
existing_feed.save()
feed = existing_feed
else:
duplicate_feed = DuplicateFeed.objects.filter(duplicate_address=feed_finder_url)
if duplicate_feed:
feed = [duplicate_feed[0].feed]
else:
feed = Feed.objects.filter(feed_address=feed_finder_url)
if not feed:
feed = Feed(feed_address=feed_finder_url)
feed.save()
feed.update()
else:
feed = feed[0]
return feed
2010-07-28 18:18:01 -04:00
def _do_timesince(d, chunks, now=None):
"""
Started as a copy of django.util.timesince.timesince, but modified to
only output one time unit, and use months as the maximum unit of measure.
Takes two datetime objects and returns the time between d and now
as a nicely formatted string, e.g. "10 minutes". If d occurs after now,
then "0 minutes" is returned.
Units used are months, weeks, days, hours, and minutes.
Seconds and microseconds are ignored.
"""
# Convert datetime.date to datetime.datetime for comparison
if d.__class__ is not datetime.datetime:
d = datetime.datetime(d.year, d.month, d.day)
if not now:
now = datetime.datetime.utcnow()
2010-07-28 18:18:01 -04:00
# ignore microsecond part of 'd' since we removed it from 'now'
delta = now - (d - datetime.timedelta(0, 0, d.microsecond))
since = delta.days * 24 * 60 * 60 + delta.seconds
for i, (seconds, name) in enumerate(chunks):
count = since // seconds
if count != 0:
break
s = '%(number)d %(type)s' % {'number': count, 'type': name(count)}
return s
def relative_timesince(value):
if not value:
return u''
chunks = (
(60 * 60, lambda n: ungettext('hour', 'hours', n)),
(60, lambda n: ungettext('minute', 'minutes', n))
)
return _do_timesince(value, chunks)
def relative_timeuntil(value):
if not value:
return u''
chunks = (
(60 * 60, lambda n: ungettext('hour', 'hours', n)),
(60, lambda n: ungettext('minute', 'minutes', n))
)
now = datetime.datetime.utcnow()
2010-07-28 18:18:01 -04:00
return _do_timesince(now, chunks, value)
def format_relative_date(date, future=False):
if not date or date < datetime.datetime(2010, 1, 1):
return "Soon"
now = datetime.datetime.utcnow()
diff = abs(now - date)
if diff < datetime.timedelta(minutes=60):
minutes = diff.seconds / 60
2010-07-28 18:18:01 -04:00
return "%s minute%s %s" % (minutes,
'' if minutes == 1 else 's',
'' if future else 'ago')
elif datetime.timedelta(minutes=60) <= diff < datetime.timedelta(minutes=90):
return "1 hour %s" % ('' if future else 'ago')
elif diff >= datetime.timedelta(minutes=90):
dec = (diff.seconds / 60 + 15) % 60
if dec >= 30:
2010-07-28 18:18:01 -04:00
return "%s.5 hours %s" % ((((diff.seconds / 60) + 15) / 60),
'' if future else 'ago')
else:
2010-07-28 18:18:01 -04:00
return "%s hours %s" % ((((diff.seconds / 60) + 15) / 60),
'' if future else 'ago')
def fetch_site_favicon(url, path='favicon.ico'):
HEADERS = {
'User-Agent': 'NewsBlur Favicon Fetcher - http://www.newsblur.com',
'Connection': 'close',
}
image = None
if not url.endswith('/'):
url += '/'
request = urllib2.Request(url + 'favicon.ico', headers=HEADERS)
try:
icon = urllib2.urlopen(request)
parser = ImageFile.Parser()
while True:
s = icon.read(1024)
if not s:
break
parser.feed(s)
image = parser.close()
except(urllib2.HTTPError, urllib2.URLError):
request = urllib2.Request(url, headers=HEADERS)
try:
content = urllib2.urlopen(request).read(2048) # 2048 bytes should be enough for most of websites
except(urllib2.HTTPError, urllib2.URLError):
return
icon_path = lxml.html.fromstring(content).xpath(
'//link[@rel="icon" or @rel="shortcut icon"]/@href'
)
if icon_path:
request = urllib2.Request(url + icon_path[:1], headers=HEADERS)
try:
icon = urllib2.urlopen(request)
parser = ImageFile.Parser()
while True:
s = icon.read(1024)
if not s:
break
parser.feed(s)
image = parser.close()
except(urllib2.HTTPError, urllib2.URLError):
return
return image
def determine_dominant_color_in_image(image):
import Image
import scipy
import scipy.misc
import scipy.cluster
NUM_CLUSTERS = 5
print 'reading image'
# im = image.resize((150, 150)) # optional, to reduce time
ar = scipy.misc.fromimage(image)
shape = ar.shape
print shape
ar = ar.reshape(scipy.product(shape[:2]), shape[2])
print 'finding clusters'
codes, dist = scipy.cluster.vq.kmeans(ar, NUM_CLUSTERS)
print 'cluster centres:\n', codes
print 'cluster centres:\n', '--'.join([''.join(chr(c) for c in code).encode('hex') for code in codes])
vecs, dist = scipy.cluster.vq.vq(ar, codes) # assign codes
counts, bins = scipy.histogram(vecs, len(codes)) # count occurrences
print counts
index_max = scipy.argmax(counts) # find most frequent
peak = codes[index_max]
colour = ''.join(chr(c) for c in peak).encode('hex')
print 'most frequent is %s (#%s)' % (peak, colour)