NewsBlur-viq/apps/analyzer/tests.py
2024-04-24 09:50:42 -04:00

220 lines
8 KiB
Python

from itertools import groupby
# from apps.analyzer.classifier import FisherClassifier
import nltk
from django.core import management
from django.test import TestCase
from django.test.client import Client
from apps.analyzer.phrase_filter import PhraseFilter
from apps.analyzer.tokenizer import Tokenizer
from apps.rss_feeds.models import MStory
from vendor.reverend.thomas import Bayes
class QuadgramCollocationFinder(nltk.collocations.AbstractCollocationFinder):
"""A tool for the finding and ranking of quadgram collocations or other association measures.
It is often useful to use from_words() rather thanconstructing an instance directly.
"""
def __init__(self, word_fd, quadgram_fd, trigram_fd, bigram_fd, wildcard_fd):
"""Construct a TrigramCollocationFinder, given FreqDists for appearances of words, bigrams, two words with any word between them,and trigrams."""
nltk.collocations.AbstractCollocationFinder.__init__(self, word_fd, quadgram_fd)
self.trigram_fd = trigram_fd
self.bigram_fd = bigram_fd
self.wildcard_fd = wildcard_fd
@classmethod
def from_words(cls, words):
wfd = nltk.probability.FreqDist()
qfd = nltk.probability.FreqDist()
tfd = nltk.probability.FreqDist()
bfd = nltk.probability.FreqDist()
wildfd = nltk.probability.FreqDist()
for w1, w2, w3, w4 in nltk.util.ingrams(words, 4, pad_right=True):
wfd.inc(w1)
if w4 is None:
continue
else:
qfd.inc((w1, w2, w3, w4))
bfd.inc((w1, w2))
tfd.inc((w1, w2, w3))
wildfd.inc((w1, w3, w4))
wildfd.inc((w1, w2, w4))
return cls(wfd, qfd, tfd, bfd, wildfd)
def score_ngram(self, score_fn, w1, w2, w3, w4):
n_all = self.word_fd.N()
n_iiii = self.ngram_fd[(w1, w2, w3, w4)]
if not n_iiii:
return
n_iiix = self.bigram_fd[(w1, w2)]
n_iixi = self.bigram_fd[(w2, w3)]
n_ixii = self.bigram_fd[(w3, w4)]
n_xiii = self.bigram_fd[(w3, w4)]
n_iixx = self.word_fd[w1]
n_ixix = self.word_fd[w2]
n_ixxi = self.word_fd[w3]
n_ixxx = self.word_fd[w4]
n_xiix = self.trigram_fd[(w1, w2)]
n_xixi = self.trigram_fd[(w2, w3)]
n_xxii = self.trigram_fd[(w3, w4)]
n_xxxi = self.trigram_fd[(w3, w4)]
return score_fn(
n_iiii,
(n_iiix, n_iixi, n_ixii, n_xiii),
(n_iixx, n_ixix, n_ixxi, n_ixxx),
(n_xiix, n_xixi, n_xxii, n_xxxi),
n_all,
)
class CollocationTest(TestCase):
fixtures = ["brownstoner.json"]
def setUp(self):
self.client = Client()
def test_bigrams(self):
# bigram_measures = nltk.collocations.BigramAssocMeasures()
trigram_measures = nltk.collocations.TrigramAssocMeasures()
tokens = [
"Co-op",
"of",
"the",
"day",
"House",
"of",
"the",
"day",
"Condo",
"of",
"the",
"day",
"Development",
"Watch",
"Co-op",
"of",
"the",
"day",
]
finder = nltk.collocations.TrigramCollocationFinder.from_words(tokens)
finder.apply_freq_filter(2)
# return the 10 n-grams with the highest PMI
print(finder.nbest(trigram_measures.pmi, 10))
titles = [
"Co-op of the day",
"Condo of the day",
"Co-op of the day",
"House of the day",
"Development Watch",
"Streetlevel",
]
tokens = nltk.tokenize.word(" ".join(titles))
ngrams = nltk.ngrams(tokens, 4)
d = [key for key, group in groupby(sorted(ngrams)) if len(list(group)) >= 2]
print(d)
class ClassifierTest(TestCase):
fixtures = ["classifiers.json", "brownstoner.json"]
def setUp(self):
self.client = Client()
#
# def test_filter(self):
# user = User.objects.all()
# feed = Feed.objects.all()
#
# management.call_command('loaddata', 'brownstoner.json', verbosity=0)
# response = self.client.get('/reader/refresh_feed', { "feed_id": 1, "force": True })
# management.call_command('loaddata', 'brownstoner2.json', verbosity=0)
# response = self.client.get('/reader/refresh_feed', { "feed_id": 1, "force": True })
# management.call_command('loaddata', 'gothamist1.json', verbosity=0)
# response = self.client.get('/reader/refresh_feed', { "feed_id": 4, "force": True })
# management.call_command('loaddata', 'gothamist2.json', verbosity=0)
# response = self.client.get('/reader/refresh_feed', { "feed_id": 4, "force": True })
#
# stories = Story.objects.filter(story_feed=feed[1]).order_by('-story_date')[:100]
#
# phrasefilter = PhraseFilter()
# for story in stories:
# # print story.story_title, story.id
# phrasefilter.run(story.story_title, story.id)
#
# phrasefilter.pare_phrases()
# phrasefilter.print_phrases()
#
def test_train(self):
# user = User.objects.all()
# feed = Feed.objects.all()
management.call_command("loaddata", "brownstoner.json", verbosity=0, commit=False, skip_checks=False)
management.call_command(
"refresh_feed", force=1, feed=1, single_threaded=True, daemonize=False, skip_checks=False
)
management.call_command("loaddata", "brownstoner2.json", verbosity=0, commit=False, skip_checks=False)
management.call_command(
"refresh_feed", force=1, feed=1, single_threaded=True, daemonize=False, skip_checks=False
)
stories = MStory.objects(story_feed_id=1)[:53]
phrasefilter = PhraseFilter()
for story in stories:
# print story.story_title, story.id
phrasefilter.run(story.story_title, story.id)
phrasefilter.pare_phrases()
phrases = phrasefilter.get_phrases()
print(phrases)
tokenizer = Tokenizer(phrases)
classifier = Bayes(tokenizer) # FisherClassifier(user[0], feed[0], phrases)
classifier.train("good", "House of the Day: 393 Pacific St.")
classifier.train("good", "House of the Day: 393 Pacific St.")
classifier.train("good", "Condo of the Day: 393 Pacific St.")
classifier.train("good", "Co-op of the Day: 393 Pacific St. #3")
classifier.train("good", "Co-op of the Day: 393 Pacific St. #3")
classifier.train("good", "Development Watch: 393 Pacific St. #3")
classifier.train("bad", "Development Watch: 393 Pacific St. #3")
classifier.train("bad", "Development Watch: 393 Pacific St. #3")
classifier.train("bad", "Development Watch: 393 Pacific St. #3")
classifier.train("bad", "Streetlevel: 393 Pacific St. #3")
guess = dict(classifier.guess("Co-op of the Day: 413 Atlantic"))
self.assertTrue(guess["good"] > 0.99)
self.assertTrue("bad" not in guess)
guess = dict(classifier.guess("House of the Day: 413 Atlantic"))
self.assertTrue(guess["good"] > 0.99)
self.assertTrue("bad" not in guess)
guess = dict(classifier.guess("Development Watch: Yatta"))
self.assertTrue(guess["bad"] > 0.7)
self.assertTrue(guess["good"] < 0.3)
guess = dict(classifier.guess("Development Watch: 393 Pacific St."))
self.assertTrue(guess["bad"] > 0.7)
self.assertTrue(guess["good"] < 0.3)
guess = dict(classifier.guess("Streetlevel: 123 Carlton St."))
self.assertTrue(guess["bad"] > 0.99)
self.assertTrue("good" not in guess)
guess = classifier.guess("Extra, Extra")
self.assertTrue("bad" not in guess)
self.assertTrue("good" not in guess)
guess = classifier.guess("Nothing doing: 393 Pacific St.")
self.assertTrue("bad" not in guess)
self.assertTrue("good" not in guess)