NewsBlur-viq/apps/analyzer/tfidf.py

41 lines
1.2 KiB
Python
Raw Normal View History

import zlib
import math
from operator import itemgetter
from apps.rss_feeds.models import MStory
from BeautifulSoup import BeautifulSoup
def freq(word, document):
return document.split(None).count(word)
def wordCount(document):
return len(document.split(None))
def numDocsContaining(word,documentList):
count = 0
for document in documentList:
if freq(word,document) > 0:
count += 1
return count
def tf(word, document):
return (freq(word,document) / float(wordCount(document)))
def idf(word, documentList):
return math.log(len(documentList) / numDocsContaining(word,documentList))
def tfidf(word, document, documentList):
return (tf(word,document) * idf(word,documentList))
if __name__ == '__main__':
stories = MStory.objects(story_feed_id=184)
documentList = []
for story in stories:
text = zlib.decompress(story.story_content_z)
text = ''.join(BeautifulSoup(text).findAll(text=True)).lower()
documentList.append(text)
words = {}
documentNumber = 0
for word in documentList[documentNumber].split(None):
words[word] = tfidf(word,documentList[documentNumber],documentList)
for item in sorted(words.items(), key=itemgetter(1), reverse=True):
print "%f <= %s" % (item[1], item[0])