NewsBlur-viq/apps/analyzer/models.py

289 lines
11 KiB
Python
Raw Normal View History

2017-01-05 18:26:50 -08:00
import datetime
import mongoengine as mongo
from collections import defaultdict
2009-06-16 03:08:55 +00:00
from django.db import models
from django.contrib.auth.models import User
2017-01-05 18:26:50 -08:00
from django.template.loader import render_to_string
from django.core.mail import EmailMultiAlternatives
from django.conf import settings
from apps.rss_feeds.models import Feed
2017-01-05 18:26:50 -08:00
from apps.analyzer.tasks import EmailPopularityQuery
from utils import log as logging
class FeatureCategory(models.Model):
user = models.ForeignKey(User)
feed = models.ForeignKey(Feed)
feature = models.CharField(max_length=255)
category = models.CharField(max_length=255)
count = models.IntegerField(default=0)
def __unicode__(self):
return '%s - %s (%s)' % (self.feature, self.category, self.count)
class Category(models.Model):
user = models.ForeignKey(User)
feed = models.ForeignKey(Feed)
category = models.CharField(max_length=255)
count = models.IntegerField(default=0)
def __unicode__(self):
return '%s (%s)' % (self.category, self.count)
2017-01-05 18:26:50 -08:00
class MPopularityQuery(mongo.Document):
email = mongo.StringField()
query = mongo.StringField()
is_emailed = mongo.BooleanField()
creation_date = mongo.DateTimeField(default=datetime.datetime.now)
meta = {
'collection': 'popularity_query',
'allow_inheritance': False,
}
def __unicode__(self):
return "%s - \"%s\"" % (self.email, self.query)
def queue_email(self):
EmailPopularityQuery.delay(pk=self.pk)
2017-01-05 18:35:27 -08:00
def send_email(self, limit=1000):
filename = Feed.xls_query_popularity(self.query, limit=limit)
2017-01-05 18:26:50 -08:00
xlsx = open(filename, "r")
params = {
'query': self.query
}
text = render_to_string('mail/email_popularity_query.txt', params)
html = render_to_string('mail/email_popularity_query.xhtml', params)
subject = "Keyword popularity spreadsheet: \"%s\"" % self.query
msg = EmailMultiAlternatives(subject, text,
from_email='NewsBlur <%s>' % settings.HELLO_EMAIL,
to=['<%s>' % (self.email)])
msg.attach_alternative(html, "text/html")
msg.attach(filename, xlsx.read(), 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
msg.send()
logging.debug(" -> ~BB~FM~SBSent email for popularity query: %s" % self)
class MClassifierTitle(mongo.Document):
user_id = mongo.IntField()
feed_id = mongo.IntField()
social_user_id = mongo.IntField()
title = mongo.StringField(max_length=255)
score = mongo.IntField()
creation_date = mongo.DateTimeField()
meta = {
'collection': 'classifier_title',
'indexes': [('user_id', 'feed_id'), 'feed_id', ('user_id', 'social_user_id'), 'social_user_id'],
'allow_inheritance': False,
}
def __unicode__(self):
user = User.objects.get(pk=self.user_id)
return "%s - %s/%s: (%s) %s" % (user, self.feed_id, self.social_user_id, self.score, self.title[:30])
class MClassifierAuthor(mongo.Document):
user_id = mongo.IntField(unique_with=('feed_id', 'social_user_id', 'author'))
feed_id = mongo.IntField()
social_user_id = mongo.IntField()
author = mongo.StringField(max_length=255)
score = mongo.IntField()
creation_date = mongo.DateTimeField()
meta = {
'collection': 'classifier_author',
'indexes': [('user_id', 'feed_id'), 'feed_id', ('user_id', 'social_user_id'), 'social_user_id'],
'allow_inheritance': False,
}
def __unicode__(self):
user = User.objects.get(pk=self.user_id)
return "%s - %s/%s: (%s) %s" % (user, self.feed_id, self.social_user_id, self.score, self.author[:30])
class MClassifierTag(mongo.Document):
user_id = mongo.IntField(unique_with=('feed_id', 'social_user_id', 'tag'))
feed_id = mongo.IntField()
social_user_id = mongo.IntField()
tag = mongo.StringField(max_length=255)
score = mongo.IntField()
creation_date = mongo.DateTimeField()
meta = {
'collection': 'classifier_tag',
'indexes': [('user_id', 'feed_id'), 'feed_id', ('user_id', 'social_user_id'), 'social_user_id'],
'allow_inheritance': False,
}
def __unicode__(self):
user = User.objects.get(pk=self.user_id)
return "%s - %s/%s: (%s) %s" % (user, self.feed_id, self.social_user_id, self.score, self.tag[:30])
class MClassifierFeed(mongo.Document):
user_id = mongo.IntField(unique_with=('feed_id', 'social_user_id'))
feed_id = mongo.IntField()
social_user_id = mongo.IntField()
score = mongo.IntField()
creation_date = mongo.DateTimeField()
meta = {
'collection': 'classifier_feed',
'indexes': [('user_id', 'feed_id'), 'feed_id', ('user_id', 'social_user_id'), 'social_user_id'],
'allow_inheritance': False,
}
def __unicode__(self):
user = User.objects.get(pk=self.user_id)
if self.feed_id:
feed = Feed.get_by_id(self.feed_id)
else:
feed = User.objects.get(pk=self.social_user_id)
return "%s - %s/%s: (%s) %s" % (user, self.feed_id, self.social_user_id, self.score, feed)
def compute_story_score(story, classifier_titles, classifier_authors, classifier_tags, classifier_feeds):
intelligence = {
'feed': apply_classifier_feeds(classifier_feeds, story['story_feed_id']),
'author': apply_classifier_authors(classifier_authors, story),
'tags': apply_classifier_tags(classifier_tags, story),
'title': apply_classifier_titles(classifier_titles, story),
}
score = 0
score_max = max(intelligence['title'],
intelligence['author'],
intelligence['tags'])
score_min = min(intelligence['title'],
intelligence['author'],
intelligence['tags'])
if score_max > 0:
score = score_max
elif score_min < 0:
score = score_min
if score == 0:
score = intelligence['feed']
return score
def apply_classifier_titles(classifiers, story):
score = 0
for classifier in classifiers:
if classifier.feed_id != story['story_feed_id']:
continue
if classifier.title.lower() in story['story_title'].lower():
# print 'Titles: (%s) %s -- %s' % (classifier.title in story['story_title'], classifier.title, story['story_title'])
score = classifier.score
if score > 0: return score
return score
def apply_classifier_authors(classifiers, story):
score = 0
for classifier in classifiers:
if classifier.feed_id != story['story_feed_id']:
continue
if story.get('story_authors') and classifier.author == story.get('story_authors'):
# print 'Authors: %s -- %s' % (classifier.author, story['story_authors'])
score = classifier.score
if score > 0: return classifier.score
return score
def apply_classifier_tags(classifiers, story):
score = 0
for classifier in classifiers:
if classifier.feed_id != story['story_feed_id']:
continue
if story['story_tags'] and classifier.tag in story['story_tags']:
# print 'Tags: (%s-%s) %s -- %s' % (classifier.tag in story['story_tags'], classifier.score, classifier.tag, story['story_tags'])
score = classifier.score
if score > 0: return classifier.score
return score
2010-03-23 20:03:40 -04:00
def apply_classifier_feeds(classifiers, feed, social_user_ids=None):
if not feed and not social_user_ids: return 0
feed_id = None
if feed:
feed_id = feed if isinstance(feed, int) else feed.pk
if social_user_ids and not isinstance(social_user_ids, list):
social_user_ids = [social_user_ids]
for classifier in classifiers:
if classifier.feed_id == feed_id:
# print 'Feeds: %s -- %s' % (classifier.feed_id, feed.pk)
return classifier.score
if (social_user_ids and not classifier.feed_id and
classifier.social_user_id in social_user_ids):
return classifier.score
return 0
def get_classifiers_for_user(user, feed_id=None, social_user_id=None, classifier_feeds=None, classifier_authors=None,
classifier_titles=None, classifier_tags=None):
params = dict(user_id=user.pk)
2012-05-26 22:14:34 -07:00
if isinstance(feed_id, list):
params['feed_id__in'] = feed_id
2012-05-26 22:14:34 -07:00
elif feed_id:
params['feed_id'] = feed_id
if social_user_id:
if isinstance(social_user_id, basestring):
social_user_id = int(social_user_id.replace('social:', ''))
params['social_user_id'] = social_user_id
2012-05-26 22:14:34 -07:00
if classifier_authors is None:
classifier_authors = list(MClassifierAuthor.objects(**params))
if classifier_titles is None:
classifier_titles = list(MClassifierTitle.objects(**params))
if classifier_tags is None:
classifier_tags = list(MClassifierTag.objects(**params))
2012-05-26 22:14:34 -07:00
if classifier_feeds is None:
if not social_user_id and feed_id:
params['social_user_id'] = 0
classifier_feeds = list(MClassifierFeed.objects(**params))
feeds = []
for f in classifier_feeds:
if f.social_user_id and not f.feed_id:
feeds.append(('social:%s' % f.social_user_id, f.score))
else:
feeds.append((f.feed_id, f.score))
2010-03-23 20:03:40 -04:00
payload = {
'feeds': dict(feeds),
'authors': dict([(a.author, a.score) for a in classifier_authors]),
2010-03-23 20:03:40 -04:00
'titles': dict([(t.title, t.score) for t in classifier_titles]),
'tags': dict([(t.tag, t.score) for t in classifier_tags]),
2010-03-23 20:03:40 -04:00
}
return payload
def sort_classifiers_by_feed(user, feed_ids=None,
classifier_feeds=None,
classifier_authors=None,
classifier_titles=None,
classifier_tags=None):
def sort_by_feed(classifiers):
feed_classifiers = defaultdict(list)
for classifier in classifiers:
feed_classifiers[classifier.feed_id].append(classifier)
return feed_classifiers
classifiers = {}
if feed_ids:
classifier_feeds = sort_by_feed(classifier_feeds)
classifier_authors = sort_by_feed(classifier_authors)
classifier_titles = sort_by_feed(classifier_titles)
classifier_tags = sort_by_feed(classifier_tags)
for feed_id in feed_ids:
classifiers[feed_id] = get_classifiers_for_user(user, feed_id=feed_id,
classifier_feeds=classifier_feeds[feed_id],
classifier_authors=classifier_authors[feed_id],
classifier_titles=classifier_titles[feed_id],
classifier_tags=classifier_tags[feed_id])
2017-01-05 18:26:50 -08:00
return classifiers