NewsBlur-viq/apps/analyzer/tests.py

96 lines
4.1 KiB
Python
Raw Normal View History

from utils import json
from django.test.client import Client
from django.contrib.auth.models import User
from apps.rss_feeds.models import Feed, Story
from django.test import TestCase
from django.core import management
from pprint import pprint
from apps.analyzer.classifier import FisherClassifier
from apps.analyzer.phrase_filter import PhraseFilter
class ClassifierTest(TestCase):
fixtures = ['classifiers.json', 'brownstoner.json']
def setUp(self):
self.client = Client()
def test_filter(self):
user = User.objects.all()
feed = Feed.objects.all()
management.call_command('loaddata', 'brownstoner.json', verbosity=0)
response = self.client.get('/reader/refresh_feed', { "feed_id": 1, "force": True })
management.call_command('loaddata', 'brownstoner2.json', verbosity=0)
response = self.client.get('/reader/refresh_feed', { "feed_id": 1, "force": True })
management.call_command('loaddata', 'gothamist1.json', verbosity=0)
response = self.client.get('/reader/refresh_feed', { "feed_id": 4, "force": True })
management.call_command('loaddata', 'gothamist2.json', verbosity=0)
response = self.client.get('/reader/refresh_feed', { "feed_id": 4, "force": True })
stories = Story.objects.filter(story_feed=feed[1]).order_by('-story_date')[:100]
phrasefilter = PhraseFilter()
for story in stories:
print story.story_title, story.id
phrasefilter.run(story.story_title, story.id)
phrasefilter.pare_phrases()
phrasefilter.print_phrases()
def test_train(self):
user = User.objects.all()
feed = Feed.objects.all()
management.call_command('loaddata', 'brownstoner.json', verbosity=0)
response = self.client.get('/reader/refresh_feed', { "feed_id": 1, "force": True })
phrases = [
"House of the Day",
"of the Day",
"Coop of the Day",
"Condo of the Day",
"Development Watch",
"Atlantic Yards",
"Streetlevel"
]
classifier = FisherClassifier(user[0], feed[0], phrases)
stories = Story.objects.filter(story_feed=feed[0]).order_by('-story_date')[:20]
classifier.train('House of the Day: 393 Pacific St.', 'good')
classifier.train('House of the Day: 393 Pacific St.', 'good')
classifier.train('Condo of the Day: 393 Pacific St.', 'good')
classifier.train('Condo of the Day: 393 Pacific St.', 'good')
classifier.train('Condo of the Day: 393 Pacific St.', 'good')
classifier.train('Condo of the Day: 393 Pacific St.', 'good')
classifier.train('Condo of the Day: 393 Pacific St.', 'good')
classifier.train('Coop of the Day: 393 Pacific St. #3', 'good')
classifier.train('Coop of the Day: 393 Pacific St. #3', 'good')
classifier.train('Development Watch: 393 Pacific St. #3', 'bad')
classifier.train('Development Watch: 393 Pacific St. #3', 'bad')
classifier.train('Development Watch: 393 Pacific St. #3', 'bad')
# classifier.train('Streetlevel: 393 Pacific St. #3', 'good')
c1 = classifier.classify('Condo of the Day: 413 Atlantic')
self.assertEquals(c1.category, "good")
c1_prob = classifier.fisher_probability('Condo of the Day: 413 Atlantic', 'good')
print c1_prob
c2 = classifier.classify('Development Watch: Yatta')
self.assertEquals(c2.category, "bad")
c2 = classifier.classify('Development Watch: 393 Pacific St.')
self.assertEquals(c2.category, "bad")
c2_prob = classifier.fisher_probability('Development Watch: Yatta', 'good')
self.assertTrue(c2_prob < .5)
print c2_prob
c4 = classifier.classify('Nothing doing: 393 Pacific St.')
c4_prob = classifier.fisher_probability('Nothing doing: 393 Pacific St.', 'good')
print c4_prob
self.assertEquals(c4.category, "good")
self.assertTrue(c4_prob == .5)