mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-04-13 09:39:17 +00:00
125 lines
4.4 KiB
Python
125 lines
4.4 KiB
Python
#!/usr/bin/env python3
|
|
import requests
|
|
import numpy as np
|
|
import sounddevice as sd
|
|
import time
|
|
import os
|
|
import wave
|
|
|
|
def play_streaming_tts(text: str, output_file: str = None, voice: str = "af"):
|
|
"""Stream TTS audio and play it back in real-time"""
|
|
|
|
print("\nStarting TTS stream request...")
|
|
start_time = time.time()
|
|
|
|
# Initialize variables
|
|
sample_rate = 24000 # Known sample rate for Kokoro
|
|
audio_started = False
|
|
chunk_count = 0
|
|
total_bytes = 0
|
|
first_chunk_time = None
|
|
all_audio_data = bytearray() # Raw PCM audio data
|
|
|
|
# Start sounddevice stream with buffer
|
|
stream = sd.OutputStream(
|
|
samplerate=sample_rate,
|
|
channels=1,
|
|
dtype=np.int16,
|
|
blocksize=1024, # Buffer size in samples
|
|
latency='low' # Request low latency
|
|
)
|
|
stream.start()
|
|
|
|
# Make streaming request to API
|
|
try:
|
|
response = requests.post(
|
|
"http://localhost:8880/v1/audio/speech",
|
|
json={
|
|
"model": "kokoro",
|
|
"input": text,
|
|
"voice": voice,
|
|
"response_format": "pcm",
|
|
"stream": True
|
|
},
|
|
stream=True,
|
|
timeout=1800
|
|
)
|
|
response.raise_for_status()
|
|
print(f"Request started successfully after {time.time() - start_time:.2f}s")
|
|
|
|
# Process streaming response with smaller chunks for lower latency
|
|
for chunk in response.iter_content(chunk_size=512): # 512 bytes = 256 samples at 16-bit
|
|
if chunk:
|
|
chunk_count += 1
|
|
total_bytes += len(chunk)
|
|
|
|
# Handle first chunk
|
|
if not audio_started:
|
|
first_chunk_time = time.time()
|
|
print(f"\nReceived first chunk after {first_chunk_time - start_time:.2f}s")
|
|
print(f"First chunk size: {len(chunk)} bytes")
|
|
audio_started = True
|
|
|
|
# Convert bytes to numpy array and play
|
|
audio_chunk = np.frombuffer(chunk, dtype=np.int16)
|
|
stream.write(audio_chunk)
|
|
|
|
# Accumulate raw audio data
|
|
all_audio_data.extend(chunk)
|
|
|
|
# Log progress every 10 chunks
|
|
if chunk_count % 10 == 0:
|
|
elapsed = time.time() - start_time
|
|
print(f"Progress: {chunk_count} chunks, {total_bytes/1024:.1f}KB received, {elapsed:.1f}s elapsed")
|
|
|
|
# Final stats
|
|
total_time = time.time() - start_time
|
|
print(f"\nStream complete:")
|
|
print(f"Total chunks: {chunk_count}")
|
|
print(f"Total data: {total_bytes/1024:.1f}KB")
|
|
print(f"Total time: {total_time:.2f}s")
|
|
print(f"Average speed: {(total_bytes/1024)/total_time:.1f}KB/s")
|
|
|
|
# Save as WAV file
|
|
if output_file:
|
|
print(f"\nWriting audio to {output_file}")
|
|
with wave.open(output_file, 'wb') as wav_file:
|
|
wav_file.setnchannels(1) # Mono
|
|
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit)
|
|
wav_file.setframerate(sample_rate)
|
|
wav_file.writeframes(all_audio_data)
|
|
print(f"Saved {len(all_audio_data)} bytes of audio data")
|
|
|
|
# Clean up
|
|
stream.stop()
|
|
stream.close()
|
|
|
|
except requests.exceptions.ConnectionError as e:
|
|
print(f"Connection error - Is the server running? Error: {str(e)}")
|
|
stream.stop()
|
|
stream.close()
|
|
except Exception as e:
|
|
print(f"Error during streaming: {str(e)}")
|
|
stream.stop()
|
|
stream.close()
|
|
|
|
def main():
|
|
# Load sample text from HG Wells
|
|
script_dir = os.path.dirname(os.path.abspath(__file__))
|
|
wells_path = os.path.join(script_dir, "assorted_checks/benchmarks/the_time_machine_hg_wells.txt")
|
|
output_path = os.path.join(script_dir, "output.wav")
|
|
|
|
with open(wells_path, "r", encoding="utf-8") as f:
|
|
full_text = f.read()
|
|
# Take first few paragraphs
|
|
text = " ".join(full_text.split("\n\n")[:2])
|
|
|
|
print("\nStarting TTS stream playback...")
|
|
print(f"Text length: {len(text)} characters")
|
|
print("\nFirst 100 characters:")
|
|
print(text[:100] + "...")
|
|
|
|
play_streaming_tts(text, output_file=output_path)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|