mirror of
https://github.com/remsky/Kokoro-FastAPI.git
synced 2025-04-13 09:39:17 +00:00
330 lines
12 KiB
Python
330 lines
12 KiB
Python
#!/usr/bin/env python3
|
||
import argparse
|
||
import os
|
||
from typing import List, Optional, Dict, Tuple
|
||
|
||
import requests
|
||
import numpy as np
|
||
from scipy.io import wavfile
|
||
import matplotlib.pyplot as plt
|
||
|
||
|
||
def submit_combine_voices(voices: List[str], base_url: str = "http://localhost:8880") -> Optional[str]:
|
||
"""Combine multiple voices into a new voice.
|
||
|
||
Args:
|
||
voices: List of voice names to combine (e.g. ["af_bella", "af_sarah"])
|
||
base_url: API base URL
|
||
|
||
Returns:
|
||
Name of the combined voice (e.g. "af_bella_af_sarah") or None if error
|
||
"""
|
||
try:
|
||
response = requests.post(f"{base_url}/v1/audio/voices/combine", json=voices)
|
||
print(f"Response status: {response.status_code}")
|
||
print(f"Raw response: {response.text}")
|
||
|
||
# Accept both 200 and 201 as success
|
||
if response.status_code not in [200, 201]:
|
||
try:
|
||
error = response.json()["detail"]["message"]
|
||
print(f"Error combining voices: {error}")
|
||
except:
|
||
print(f"Error combining voices: {response.text}")
|
||
return None
|
||
|
||
try:
|
||
data = response.json()
|
||
if "voices" in data:
|
||
print(f"Available voices: {', '.join(sorted(data['voices']))}")
|
||
return data["voice"]
|
||
except Exception as e:
|
||
print(f"Error parsing response: {e}")
|
||
return None
|
||
except Exception as e:
|
||
print(f"Error: {e}")
|
||
return None
|
||
|
||
|
||
def generate_speech(text: str, voice: str, base_url: str = "http://localhost:8880", output_file: str = "output.mp3") -> bool:
|
||
"""Generate speech using specified voice.
|
||
|
||
Args:
|
||
text: Text to convert to speech
|
||
voice: Voice name to use
|
||
base_url: API base URL
|
||
output_file: Path to save audio file
|
||
|
||
Returns:
|
||
True if successful, False otherwise
|
||
"""
|
||
try:
|
||
response = requests.post(
|
||
f"{base_url}/v1/audio/speech",
|
||
json={
|
||
"input": text,
|
||
"voice": voice,
|
||
"speed": 1.0,
|
||
"response_format": "wav" # Use WAV for analysis
|
||
}
|
||
)
|
||
|
||
if response.status_code != 200:
|
||
error = response.json().get("detail", {}).get("message", response.text)
|
||
print(f"Error generating speech: {error}")
|
||
return False
|
||
|
||
# Save the audio
|
||
os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else ".", exist_ok=True)
|
||
with open(output_file, "wb") as f:
|
||
f.write(response.content)
|
||
print(f"Saved audio to {output_file}")
|
||
return True
|
||
|
||
except Exception as e:
|
||
print(f"Error: {e}")
|
||
return False
|
||
|
||
|
||
def analyze_audio(filepath: str) -> Tuple[np.ndarray, int, dict]:
|
||
"""Analyze audio file and return samples, sample rate, and audio characteristics.
|
||
|
||
Args:
|
||
filepath: Path to audio file
|
||
|
||
Returns:
|
||
Tuple of (samples, sample_rate, characteristics)
|
||
"""
|
||
sample_rate, samples = wavfile.read(filepath)
|
||
|
||
# Convert to mono if stereo
|
||
if len(samples.shape) > 1:
|
||
samples = np.mean(samples, axis=1)
|
||
|
||
# Calculate basic stats
|
||
max_amp = np.max(np.abs(samples))
|
||
rms = np.sqrt(np.mean(samples**2))
|
||
duration = len(samples) / sample_rate
|
||
|
||
# Zero crossing rate (helps identify voice characteristics)
|
||
zero_crossings = np.sum(np.abs(np.diff(np.signbit(samples)))) / len(samples)
|
||
|
||
# Simple frequency analysis
|
||
if len(samples) > 0:
|
||
# Use FFT to get frequency components
|
||
fft_result = np.fft.fft(samples)
|
||
freqs = np.fft.fftfreq(len(samples), 1/sample_rate)
|
||
|
||
# Get positive frequencies only
|
||
pos_mask = freqs > 0
|
||
freqs = freqs[pos_mask]
|
||
magnitudes = np.abs(fft_result)[pos_mask]
|
||
|
||
# Find dominant frequencies (top 3)
|
||
top_indices = np.argsort(magnitudes)[-3:]
|
||
dominant_freqs = freqs[top_indices]
|
||
|
||
# Calculate spectral centroid (brightness of sound)
|
||
spectral_centroid = np.sum(freqs * magnitudes) / np.sum(magnitudes)
|
||
else:
|
||
dominant_freqs = []
|
||
spectral_centroid = 0
|
||
|
||
characteristics = {
|
||
"max_amplitude": max_amp,
|
||
"rms": rms,
|
||
"duration": duration,
|
||
"zero_crossing_rate": zero_crossings,
|
||
"dominant_frequencies": dominant_freqs,
|
||
"spectral_centroid": spectral_centroid
|
||
}
|
||
|
||
return samples, sample_rate, characteristics
|
||
|
||
|
||
def setup_plot(fig, ax, title):
|
||
"""Configure plot styling"""
|
||
# Improve grid
|
||
ax.grid(True, linestyle="--", alpha=0.3, color="#ffffff")
|
||
|
||
# Set title and labels with better fonts
|
||
ax.set_title(title, pad=20, fontsize=16, fontweight="bold", color="#ffffff")
|
||
ax.set_xlabel(ax.get_xlabel(), fontsize=14, fontweight="medium", color="#ffffff")
|
||
ax.set_ylabel(ax.get_ylabel(), fontsize=14, fontweight="medium", color="#ffffff")
|
||
|
||
# Improve tick labels
|
||
ax.tick_params(labelsize=12, colors="#ffffff")
|
||
|
||
# Style spines
|
||
for spine in ax.spines.values():
|
||
spine.set_color("#ffffff")
|
||
spine.set_alpha(0.3)
|
||
spine.set_linewidth(0.5)
|
||
|
||
# Set background colors
|
||
ax.set_facecolor("#1a1a2e")
|
||
fig.patch.set_facecolor("#1a1a2e")
|
||
|
||
return fig, ax
|
||
|
||
def plot_analysis(audio_files: Dict[str, str], output_dir: str):
|
||
"""Plot comprehensive voice analysis including waveforms and metrics comparison.
|
||
|
||
Args:
|
||
audio_files: Dictionary of label -> filepath
|
||
output_dir: Directory to save plot files
|
||
"""
|
||
# Set dark style
|
||
plt.style.use('dark_background')
|
||
|
||
# Create figure with subplots
|
||
fig = plt.figure(figsize=(15, 15))
|
||
fig.patch.set_facecolor("#1a1a2e")
|
||
num_files = len(audio_files)
|
||
|
||
# Create subplot grid with proper spacing
|
||
gs = plt.GridSpec(num_files + 1, 2, height_ratios=[1.5]*num_files + [1],
|
||
hspace=0.4, wspace=0.3)
|
||
|
||
# Analyze all files first
|
||
all_chars = {}
|
||
for i, (label, filepath) in enumerate(audio_files.items()):
|
||
samples, sample_rate, chars = analyze_audio(filepath)
|
||
all_chars[label] = chars
|
||
|
||
# Plot waveform spanning both columns
|
||
ax = plt.subplot(gs[i, :])
|
||
time = np.arange(len(samples)) / sample_rate
|
||
plt.plot(time, samples / chars['max_amplitude'], linewidth=0.5, color="#ff2a6d")
|
||
ax.set_xlabel("Time (seconds)")
|
||
ax.set_ylabel("Normalized Amplitude")
|
||
ax.set_ylim(-1.1, 1.1)
|
||
setup_plot(fig, ax, f"Waveform: {label}")
|
||
|
||
# Colors for voices
|
||
colors = ["#ff2a6d", "#05d9e8", "#d1f7ff"]
|
||
|
||
# Create two subplots for metrics with similar scales
|
||
# Left subplot: Brightness and Volume
|
||
ax1 = plt.subplot(gs[num_files, 0])
|
||
metrics1 = [
|
||
('Brightness', [chars['spectral_centroid']/1000 for chars in all_chars.values()], 'kHz'),
|
||
('Volume', [chars['rms']*100 for chars in all_chars.values()], 'RMS×100')
|
||
]
|
||
|
||
# Right subplot: Voice Pitch and Texture
|
||
ax2 = plt.subplot(gs[num_files, 1])
|
||
metrics2 = [
|
||
('Voice Pitch', [min(chars['dominant_frequencies']) for chars in all_chars.values()], 'Hz'),
|
||
('Texture', [chars['zero_crossing_rate']*1000 for chars in all_chars.values()], 'ZCR×1000')
|
||
]
|
||
|
||
def plot_grouped_bars(ax, metrics, show_legend=True):
|
||
n_groups = len(metrics)
|
||
n_voices = len(audio_files)
|
||
bar_width = 0.25
|
||
|
||
indices = np.arange(n_groups)
|
||
|
||
# Get max value for y-axis scaling
|
||
max_val = max(max(m[1]) for m in metrics)
|
||
|
||
for i, (voice, color) in enumerate(zip(audio_files.keys(), colors)):
|
||
values = [m[1][i] for m in metrics]
|
||
offset = (i - n_voices/2 + 0.5) * bar_width
|
||
bars = ax.bar(indices + offset, values, bar_width,
|
||
label=voice, color=color, alpha=0.8)
|
||
|
||
# Add value labels on top of bars
|
||
for bar in bars:
|
||
height = bar.get_height()
|
||
ax.text(bar.get_x() + bar.get_width()/2., height,
|
||
f'{height:.1f}',
|
||
ha='center', va='bottom', color='white',
|
||
fontsize=10)
|
||
|
||
ax.set_xticks(indices)
|
||
ax.set_xticklabels([f"{m[0]}\n({m[2]})" for m in metrics])
|
||
|
||
# Set y-axis limits with some padding
|
||
ax.set_ylim(0, max_val * 1.2)
|
||
|
||
if show_legend:
|
||
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
|
||
facecolor="#1a1a2e", edgecolor="#ffffff")
|
||
|
||
# Plot both subplots
|
||
plot_grouped_bars(ax1, metrics1, show_legend=True)
|
||
plot_grouped_bars(ax2, metrics2, show_legend=False)
|
||
|
||
# Style both subplots
|
||
setup_plot(fig, ax1, 'Brightness and Volume')
|
||
setup_plot(fig, ax2, 'Voice Pitch and Texture')
|
||
|
||
# Add y-axis labels
|
||
ax1.set_ylabel('Value')
|
||
ax2.set_ylabel('Value')
|
||
|
||
# Adjust the figure size to accommodate the legend
|
||
fig.set_size_inches(15, 15)
|
||
|
||
# Add padding around the entire figure
|
||
plt.subplots_adjust(right=0.85, top=0.95, bottom=0.05, left=0.1)
|
||
plt.savefig(os.path.join(output_dir, "analysis_comparison.png"), dpi=300)
|
||
print(f"Saved analysis comparison to {output_dir}/analysis_comparison.png")
|
||
|
||
# Print detailed comparative analysis
|
||
print("\nDetailed Voice Analysis:")
|
||
for label, chars in all_chars.items():
|
||
print(f"\n{label}:")
|
||
print(f" Max Amplitude: {chars['max_amplitude']:.2f}")
|
||
print(f" RMS (loudness): {chars['rms']:.2f}")
|
||
print(f" Duration: {chars['duration']:.2f}s")
|
||
print(f" Zero Crossing Rate: {chars['zero_crossing_rate']:.3f}")
|
||
print(f" Spectral Centroid: {chars['spectral_centroid']:.0f}Hz")
|
||
print(f" Dominant Frequencies: {', '.join(f'{f:.0f}Hz' for f in chars['dominant_frequencies'])}")
|
||
|
||
|
||
def main():
|
||
parser = argparse.ArgumentParser(description="Kokoro Voice Analysis Demo")
|
||
parser.add_argument("--voices", nargs="+", type=str, help="Voices to combine")
|
||
parser.add_argument("--text", type=str, default="Hello! This is a test of combined voices.", help="Text to speak")
|
||
parser.add_argument("--url", default="http://localhost:8880", help="API base URL")
|
||
parser.add_argument("--output-dir", default="examples/output", help="Output directory for audio files")
|
||
args = parser.parse_args()
|
||
|
||
if not args.voices:
|
||
print("No voices provided, using default test voices")
|
||
args.voices = ["af_bella", "af_nicole"]
|
||
|
||
# Create output directory
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
|
||
# Dictionary to store audio files for analysis
|
||
audio_files = {}
|
||
|
||
# Generate speech with individual voices
|
||
print("Generating speech with individual voices...")
|
||
for voice in args.voices:
|
||
output_file = os.path.join(args.output_dir, f"analysis_{voice}.wav")
|
||
if generate_speech(args.text, voice, args.url, output_file):
|
||
audio_files[voice] = output_file
|
||
|
||
# Generate speech with combined voice
|
||
print(f"\nCombining voices: {', '.join(args.voices)}")
|
||
combined_voice = submit_combine_voices(args.voices, args.url)
|
||
|
||
if combined_voice:
|
||
print(f"Successfully created combined voice: {combined_voice}")
|
||
output_file = os.path.join(args.output_dir, f"analysis_combined_{combined_voice}.wav")
|
||
if generate_speech(args.text, combined_voice, args.url, output_file):
|
||
audio_files["combined"] = output_file
|
||
|
||
# Generate comparison plots
|
||
plot_analysis(audio_files, args.output_dir)
|
||
else:
|
||
print("Failed to combine voices")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|