""" FastAPI OpenAI Compatible API """ import os import sys from contextlib import asynccontextmanager import torch import uvicorn from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from loguru import logger from .core.config import settings from .routers.development import router as dev_router from .routers.openai_compatible import router as openai_router from .services.tts_service import TTSService def setup_logger(): """Configure loguru logger with custom formatting""" config = { "handlers": [ { "sink": sys.stdout, "format": "{time:hh:mm:ss A} | " "{level: <8} | " "{message}", "colorize": True, "level": "INFO", }, ], } logger.remove() logger.configure(**config) logger.level("ERROR", color="") # Configure logger setup_logger() @asynccontextmanager async def lifespan(app: FastAPI): """Lifespan context manager for model initialization""" from .inference.model_manager import get_manager from .inference.voice_manager import get_manager as get_voice_manager logger.info("Loading TTS model and voice packs...") try: # Initialize managers globally model_manager = await get_manager() voice_manager = await get_voice_manager() # Determine backend type based on settings if settings.use_gpu and torch.cuda.is_available(): backend_type = 'pytorch_gpu' if not settings.use_onnx else 'onnx_gpu' else: backend_type = 'pytorch_cpu' if not settings.use_onnx else 'onnx_cpu' # Get backend and initialize model backend = model_manager.get_backend(backend_type) # Use model path directly from settings model_file = settings.pytorch_model_file if not settings.use_onnx else settings.onnx_model_file model_path = os.path.join(settings.model_dir, model_file) if not os.path.exists(model_path): raise RuntimeError(f"Model file not found: {model_path}") # Pre-cache default voice and use for warmup warmup_voice = await voice_manager.load_voice(settings.default_voice, device=backend.device) logger.info(f"Pre-cached voice {settings.default_voice} for warmup") # Initialize model with warmup voice await model_manager.load_model(model_path, warmup_voice, backend_type) # Pre-cache common voices in background common_voices = ['af', 'af_bella', 'af_sarah', 'af_nicole'] for voice_name in common_voices: try: await voice_manager.load_voice(voice_name, device=backend.device) logger.debug(f"Pre-cached voice {voice_name}") except Exception as e: logger.warning(f"Failed to pre-cache voice {voice_name}: {e}") # Get available voices for startup message voices = await voice_manager.list_voices() voicepack_count = len(voices) # Get device info for startup message device = "GPU" if settings.use_gpu else "CPU" model = "ONNX" if settings.use_onnx else "PyTorch" except Exception as e: logger.error(f"Failed to initialize model: {e}") raise boundary = "░" * 2*12 startup_msg = f""" {boundary} ╔═╗┌─┐┌─┐┌┬┐ ╠╣ ├─┤└─┐ │ ╚ ┴ ┴└─┘ ┴ ╦╔═┌─┐┬┌─┌─┐ ╠╩╗│ │├┴┐│ │ ╩ ╩└─┘┴ ┴└─┘ {boundary} """ startup_msg += f"\nModel warmed up on {device}: {model}" startup_msg += f"\n{voicepack_count} voice packs loaded\n" startup_msg += f"\n{boundary}\n" logger.info(startup_msg) yield # Initialize FastAPI app app = FastAPI( title=settings.api_title, description=settings.api_description, version=settings.api_version, lifespan=lifespan, openapi_url="/openapi.json", # Explicitly enable OpenAPI schema ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Include routers app.include_router(openai_router, prefix="/v1") app.include_router(dev_router) # New development endpoints # app.include_router(text_router) # Deprecated but still live for backwards compatibility # Health check endpoint @app.get("/health") async def health_check(): """Health check endpoint""" return {"status": "healthy"} @app.get("/v1/test") async def test_endpoint(): """Test endpoint to verify routing""" return {"status": "ok"} if __name__ == "__main__": uvicorn.run("api.src.main:app", host=settings.host, port=settings.port, reload=True)