"""Audio conversion service""" from io import BytesIO import struct import numpy as np import scipy.io.wavfile as wavfile import soundfile as sf from loguru import logger from pydub import AudioSegment from ..core.config import settings from .streaming_audio_writer import StreamingAudioWriter class AudioNormalizer: """Handles audio normalization state for a single stream""" def __init__(self): self.int16_max = np.iinfo(np.int16).max self.chunk_trim_ms = settings.gap_trim_ms self.sample_rate = 24000 # Sample rate of the audio self.samples_to_trim = int(self.chunk_trim_ms * self.sample_rate / 1000) async def normalize(self, audio_data: np.ndarray) -> np.ndarray: """Convert audio data to int16 range and trim silence from start and end Args: audio_data: Input audio data as numpy array Returns: Normalized and trimmed audio data """ # Convert to float32 for processing audio_float = audio_data.astype(np.float32) # Trim start and end if enough samples if len(audio_float) > (2 * self.samples_to_trim): audio_float = audio_float[self.samples_to_trim:-self.samples_to_trim] # Scale to int16 range return (audio_float * 32767).astype(np.int16) class AudioService: """Service for audio format conversions with streaming support""" # Default audio format settings balanced for speed and compression DEFAULT_SETTINGS = { "mp3": { "bitrate_mode": "CONSTANT", # Faster than variable bitrate "compression_level": 0.0, # Balanced compression }, "opus": { "compression_level": 0.0, # Good balance for speech }, "flac": { "compression_level": 0.0, # Light compression, still fast }, "aac": { "bitrate": "192k", # Default AAC bitrate }, } _writers = {} @staticmethod async def convert_audio( audio_data: np.ndarray, sample_rate: int, output_format: str, is_first_chunk: bool = True, is_last_chunk: bool = False, normalizer: AudioNormalizer = None, ) -> bytes: """Convert audio data to specified format with streaming support Args: audio_data: Numpy array of audio samples sample_rate: Sample rate of the audio output_format: Target format (wav, mp3, ogg, pcm) is_first_chunk: Whether this is the first chunk is_last_chunk: Whether this is the last chunk normalizer: Optional AudioNormalizer instance for consistent normalization Returns: Bytes of the converted audio chunk """ try: # Always normalize audio to ensure proper amplitude scaling if normalizer is None: normalizer = AudioNormalizer() normalized_audio = await normalizer.normalize(audio_data) # Get or create format-specific writer writer_key = f"{output_format}_{sample_rate}" if is_first_chunk or writer_key not in AudioService._writers: AudioService._writers[writer_key] = StreamingAudioWriter( output_format, sample_rate ) writer = AudioService._writers[writer_key] # Write chunk or finalize if is_last_chunk: chunk_data = writer.write_chunk(finalize=True) del AudioService._writers[writer_key] else: chunk_data = writer.write_chunk(normalized_audio) return chunk_data if chunk_data else b'' except Exception as e: logger.error(f"Error converting audio stream to {output_format}: {str(e)}") raise ValueError(f"Failed to convert audio stream to {output_format}: {str(e)}")